
CMT

Configuration Management Tool

Version v1r18p20041201

Christian Arnault

arnault@lal.in2p3.fr

Document revision date : 2004-12-01

General index

 1  - Presentation
This environment, based on some management conventions and comprising several shell-based
utilities, is an attempt to formalize software production and especially configuration management
around a packagePresentation



Each package can be uniquely identified within the system or the framework by a name
which is usually a short mnemonic and which may be also used for isolating its name-space
(eg. by prefixing components of the package by its mnemonic). 
A package installed in this environment may be exported to a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved
through the transport, the reconstruction procedure will be preserved. Configuration
specifications can be easily provided to cope with machine, site or system specific features. 



 2  - The conventions
This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and developed : 

pac 0 802.048 952



1 - Structuring a package - A typical example. 

Organizing a software base. 

A software base is generally composed of multiple coherent sets of packages, each installed
in its specific root directory and forming different package areas 

There are no constraints on the number of such areas into which CMT packages are installed.
We’ll see later how the different areas can be declared and identified by 



2 - Structuring a sofware base. 

 3  - The architecture of the environment
This environment is based on the fact that one of its packages (named CMT ) provides the basic
management tools. CMT , as a package, has very little specificities and as such itself obeys the
general conventions. The major asymetry between CMT and all other packages is the fact that
once CMT is installed it implicitly defines one default area for storing packages (through the
environment variable CMTROOT ).

Then packages may be installed either in this default root area or in completmfaulyiffernt vrea s



access rights). 



Therefore, we assume that some root directory has been selected by the system manager, and that 
CMT is already installed there. One first has to setup





A similar minimal NMake



So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to work on an application or on a library for details on











A typical package of that kind will contain:

a ../src  directory containing the sources of the package 
a directory for the include files, with a name that will depend on the structuring policies
defined for the project. Tyical examples are 

../include/

../<packagename>/

a ../doc  directory for the documentation 
a ../test  directory for the test programs.

The requirements file will generally contain at least library



 7. 3  - The container or management package

In large projects, it’s often useful to decompose the software base into specialized domains
(Core software, Graphics, Database, Online, etc...) or subsets of the software (eg per
detector in a physics experiment). Then a container package consists in constructing a
simple package with only one requirements file in it and only containing a set of use
statements. 

Management activities directly related with the associated sub-domain can then be
undertaken through this special package:

pas thlongntasefuwith sub-dokage:









The current sub-project to which the current package belongs, and the various tags
automatically generated by CMT to qualify the strategy options. 
The current hardware understood as filled in the cmt_hardware  macro 
The current OS understood as filled in the cmt_system_version  macro 
The version of the C++ compiler understood as filled in the 
cmt_compiler_version  macro 

3.  During a make session, each individual target being rebuilt may define its own context,



1.  Implicit tags deduced from the current version of CMT 
2.  Implicit tag obtained from the uname command (note that there is an associated tag

defined here) 
3.  The current value of CMTCONFIG 
4.  The current value of CMTSITE 
5.  The strategy tags 
6.  Automatic detection of the hardware 
7.  Automatic detection of the current OS 
8.  Automatic detection of the C++ compiler version 
9.  A indirectly activated tag (associated with another active tag)









------> (constituents.make) Building Foo.make                             [2]
Library Foo
------> (constituents.make) Starting Foo
------> (Foo.make) Rebuilding ../Linux-i686/Foo_dependencies.make         [3]
rebuilding ../Linux-i686/FooA.o
rebuilding ../Linux-i686/FooB.o
rebuilding library
------> Foo : library ok
------> Foo ok
Installing library libFoo.so into /home/arnault/mydev/InstallArea/Linux-i686/lib
installation done                                                         [4]
------> (constituents.make) Foo done
 all ok.
Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
gmake[2]: ‘all’ is up to date.

1.  



11. 2  - Working on an application

Assume we now want to add a test program to our development. Then we create a 
FooTest.cxx  source, and generate the associated makefile (specifying that it will be an
executable instead of a library) : 

csh> cd ../src 
csh> emacs FooTest.cxx
... 
csh> cd ../cmt 
csh> vi requirements 
... 
application FooTest FooTest.cxx

So that we may simply build the complete stuff by running : 

> cmt make QUIET=1

------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Linux-i686.make
setup.make ok
------> (constituents.make) Rebuilding library links
------> (constituents.make) all done
------> (constituents.make) Building Foo.make
Library Foo
------> (constituents.make) Starting Foo
------> Foo : library ok
------> Foo ok
installation done
------> (constituents.make) Foo done
------> (constituents.make) Building FooTest.make
Application FooTest
------> (constituents.make) Starting FooTest
------> (FooTest.make) Rebuilding ../Linux-i686/FooTest_dependencies.make
rebuilding ../Linux-i686/FooTest.o
rebuilding ../Linux-i686/FooTest.exe
------> FooTest ok
Installing application FooTest.exe into /home/arnault/mydev/InstallArea/Linux-i686/bin
installation done
------> (constituents.make) FooTest done
 all ok.
Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
onstituents ll  is up to date.



It is also possible to select extra tag sets when running gmake as follows (in this example we
first cleanup the previous build and rebuild with debug options added to the compiler and



csh> cd ..... 
csh> cmt create MyProject v1 /ProjectB

Then the  requirements   file of this new package will simply contain a set of use
statements, defining the official set of validated versions of the packages required for the
project. This mechanism also represents the notion of global release



In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types. 

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes hTj
.llowb9wyle"), whichd must



document tex MyDoc -s=../doc doc1.tex doc2.tex

where: 
1.  The first parameter "tex" is the document-style 
2.  The second parameter "MyDoc" is used for building the constituent’s makefile

(under the name MyDoc.make) and for providing the make target "MyDoc". 
3.  The other parameters (doc1.tex and doc2.tex) are the sources of the document.

Explicit location is required (since default is currently defined to be ../src) 
4.  The constituent’s makefile MyDoc.make is built as follows : 

1.  Install a copy of the $CMTROOT/fragments/make_header  generic
fragment 

2.  Install a copy of the $CMTROOT/fragments/tex_header  fragment 
3.  For each of the sources, install a copy of the fragment "tex" 
4.  Install a copy of the $CMTROOT/fragments/cleanup_header

fragment 

The result for our example is: 

=========== MyDoc.make =============================== 

#==================================== 
#  Document MyDoc 
# 
#   Generated   by  
# 
#==================================== 

help :: 
@echo ’MyDoc’ 

doc1_dependenc  by  
#:9= tex#:9= tex





For building a fragment, one may use pre-defined generic "templates" (which will be
substituted when a fragment is copied into the final constituent’s 



3 - The architecture of document generation. 

12. 3  - Examples

1.  rootcint 

It generates C++ hubs for the Cint interpreter in Root. 

========= rootcint ========================================= 
$(src)${NAME}.cc :: ${FULLNAME}   
        ${rootcint} -f $(src)${NAME}.cc -c ${FULLNAME} 
============================================================

2.  agetocxx and agetocxx_header. 

It generates C++ source files (xxx.g files) from Atlas’ AGE description files. 

========= agetocxx ========================================= 
output=$(${CONSTITUENT}_output) 

$(output)${NAME}.cxx : $(${NAME}_cxx_dependencies) 
        (echo ’#line 1 "${FULLNAME}"’; cat ${FULLNAME}) > /tmp/${NAME}.gh.c 







Applications and libraries are assigned a name (which will correspond to a generated



1.  

The sources of the constituents are generally specified as a set of file names with
their suffixes, and are by default expected from the ../src  directory

library A A.cxx B.cxx

Then it is possible to change the default search location as well as to use a
simplified wildcarding syntax:

library A -s=A *.cxx -s=B *.cxx

-s=A  means that next source files should be taken searched from 
../src/A  
-s=B  means that next source files should be taken searched from 
../src/B  . Note that this new specification is not relative to the previous 
-s=A  but relative to the default search path ../src  
*.cxx  indicates that all files with a .cxx  suffix in the current search path
should be considered 



source FooA.doc  into an html file. 
3.  The user defined template variable named output  is specified and assigned

the value FooA.html  . If the fragment doc_to_html  contains the string 
${output}  , then it will be substituted to this value. 

4.  

For any constituent that has the 



in the context of the Foo package would rebuild objy related or graphics related 
constituents.



macro f90             "f90"
...
macro f90comp         "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"



symbol : symbol-type symbol-name default-value [  tag-expr value  ...   ] 

symbol-type : definition

| modification

definition : macro

| set

| path

| action

| alias

modification : macro_prepend

| macro_append

| macro_remove

| macro_remove_regexp

| macro_remove_all

| macro_remove_all_regexp

| set_prepend

| set_append

| set_remove

| set_remove_regexp

| path_prepend

| path_append

| path_remove

| path_remove_regexp

tag-expr : tag [  & tag  ...   ] 

The symbol-name identifies the symbol.

Values are generally quoted strings (using either simple or double quotes). They
may be unquoted only if they are composed of one single non-empty word, since
the general syntax parsing relies on space separated words.

The default-value is mandatory (although it can be an empty string) optionally
followed by a set of tag/value pairs, each representing an alternate value for this 
symbol.

41







library A ...
action B ...
macro A_dependencies " B "

In this example when doing gmake A (or simply gmake ), the action B
will be executed first. 



----------------
package A

use B v1
use D v1
----------------

----------------
package B

private
use C v1
use D v1
----------------

all operations done in the context of package B will see both packages C and D 
all operations done in the context of package A will see both packages B and D,



package  the name of the current package 

PACKAGE 



3.  



Another consequendps 0, her automatic application 0, her pattern, is heat it is
oth possible to give values to parameters. Ter efore it is oth recommended to







There are basically three categories of such fragments : 
1.  some are provided by CMT itself (they correspond to its internal behaviour) 
2.  others handle the language support 
3.  and the last serve as specialized document generators. 

The fragments defined in 





However, the cmt broadcast  and cmt show uses  commands are configured to
always ignore the private specification and therefore will always traverse the sub-trees
whether they are public or private (in order to ensure the hierarchy dependencies)



2.  This construct declares that the tags Foo , FooA and FooB will become active if 
Bar  becomes active. Note that this statement implicitly declares FooA and FooB 



   run_sequence <sequence file> : execute a cmt equence file









dependencies  

This command is internally (and transparently) used by CMT from the constituent
specific fragment, and when the make command is run, to generate a fragment



The prototype header files (named <file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C source file. 

The effective activation of this feature is controled by the build strategy of CMT .
The build strategy may be freely and globally overridden from any  requirements 
file, using the build_strategy  cmt statement, providing either the
"prototypes" or the "no_prototypes" values. 

In addition, any constituent may locally override this strategy using the
"-prototypes" or "-no_prototypes" modifiers. 

readme  

This command generates a README.html file into the cmt branch of the
referenced package. This html file will include 





In the first mode (ie. without the area argument) the package will be created in the
default path.

The second mode explicitly provides an alternate path.

A minimal configuration is installed for this new package:



The following examples will explain some of the mechanisms. 

We consider A containing:

A$(P1)B$(P2)C

And B containing:

i<cmts:A P1=’j’ P2=’${P2}’/>k



13. 3.12  - cmt help | --help

This command shows the list of options of the cmt  driver. 

13. 3.13  - cmt lock [ <package> <version> [<area>] 



This may be combined with the global options -pack= package   , 
-version= version   , -path= access-path   , to give a direct access to any
package context. 

13. 3.17  - cmt set version <version>

This command creates and/or fills in the version.cmt  file for a package structured
without the version directory. 

This command has no effect when run in the context of a package structured with the
version directory

This command must be run while being in the context of one CMT package.

13. 3.18  - cmt set versions

This command applies recursively the cmt set version ...  command onto all
used packages using a broadcast operation. 

skage.

139 3.18  - cmup ctor67.8707.163 0[-csh|-sh|-bat]
t.577 o9.4139 11 Tf
-104.817 -24.gensing
0 �8 0sdirn. ndar
19utput�usef
17ingsheet 817 -240 �e TferTf
7ngorigin gl Tdio7.8,gshet  3 0gsheet famid
(T� meantive f
17 Td environ.57  variab6)Tnt Td
(d
(teates and/o-13.2Td
10365698 l614.Tm
36569075419 m
4
2075419 l
S
q 10 0 0 10 0 0 cm BT
/R139367Tf
1 ree -3 .57 T.57 57.431Tj
/R139 11 s7inges a
-295.57 -13.broadc-57.431T139 11 Tf
-104.817 -24.2stdilerfrod a
-295eates and/or fills in theTf
tput�0 ct82.[c]s1 Tf
339.086 0 Tdon.cmt)Tj
/Rshes and/or fills in4.6 )Tj
/R14 ct82.t   Tf
339.086 0 Tdrsion=pack31 Tf01139 3.18notn24.rTf
yhe path=-70.17 roadc-57.431T139 11 Tf
displays meanj
/817 ceactu-24.2-104.8d command 4.rTf
 being .08886 0 Td-pack=



This command displays all packages that express an explicit use statement onto
the specified package. If no version is specified on the argument list, then all uses
of that package are displayed.

Note that the search on clients is not performed recusively. Thus only clients
explicitly using the specified package will be displayed.

constituent_names  

constituents  

cycles  

This command displays all cycles in the use graph of the current package.
Although CMT smoothly accepts such cycles, it is generally a bad practice to have
cycles in a use graph, because CMT can never decide on the prefered entry point
in the cycle, leading to somewhat unpredictable results, eg in constructing the 
use_linkopts  



macro_value <name> 
set_value <name> 
action_value <name> 

This set of commands displays the raw value assigned to the symbol (macro, set or
action) specified as the additional argument. It only presents the final result of the
assignment operations performed by used packages. 

By adding a -tag=<tag>  option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuration is defined.

The typical usage of the show macro_value  command is to get at the shell
level (rather than within a Makefile  ) the value of a macro definition, providing
means of accessing them (quite similarly to an environment variable) : 

csh> set compiler=‘cmt show macro_value cppcomp‘ 
csh> ${compiler} ....

macros  
sets  
actions  

This set of commands extracts from the  requirements   file(s) the complete
set of symbol (macro, set or action) definitions, selects the appropriate tag
definition (or uses the one provided in the -tag=<tag>







This commanS 11nisplays the version tag of the current package.

Thversions 

<name> 

is commanS 11nisplays the reachable versions of the specified package, looking at

the current access 

paths.

Th13. 3.21

 -m Bt 

system





build_strategy prototypes
build_strategy no_prototypes









provide a nickname for this external package, 
adapt the version tag convention consistently to the project, hiding the version tag
specificities of eg. commercial packages. 
provide compiler options using the the standard make macros <package>_cflags  , 
<package>_cppflags  or <package>_fflags  , 
specify a set of search paths for the include files, using the include_dirs  statement, 
provide linker options using the the standard make macros <package>_linkopts  

Let’s consider the example of the OPACS package. This package is provided outside of the CMT
environment. Providing a directory tree following the CMT conventions (ie. a branch named after





${CMTROOT}/mgr/cmt_install_action.sh
${CMTROOT}/mgr/cmt_uninstall_action.sh
${CMTROOT}/mgr/cmt_install_action.bat
${CMTROOT}/mgr/cmt_uninstall_action.bat



http://www.cmtsite.org/


17. 1  - Installing CMT on your Unix site

The very first operation after dowloading CMT consists in running the INSTALL  shell script.
This will build the setup scripts required by any CMT user. 

Then you may either decide to build CMT by yourself or fetch a pre-built binary from the
same Web location. The prebuilt binary versions may not exist for the actual platform you
are working on. You will see on the distribution page the precise configurations used for
building those binaries. 

In case you have to build CMT yourself, you need a C++ compiler capable of handling



17. 2  - Installing CMT on a Windows or Windows NT site

You first have to fetch the distribution kit from the Web at 

http://www.cmtsite.org/


http://www.cecill.info/


These targets have to be specified as follows : 

sh> gmake clean 
sh> gmake Foo

18. 3  - Standard macros predefined in CMT

18. 3. 1  - CMT static macros

These macros provide static data about CMT itself. They cannot be modified by the
user. 

macro usage default value 

CMTreleaseCMTreleasemacr l
S
6 w
3 0 1781 5809m BT781 5591.53 Tf
T781 5591.53 BT013 5591.53 Tf
39ic 17 5809m B39ic 17 5591.53 Tf
39ic 17 5591.53 BT781 5591.53 Tf
4929 17 5591.53 B39ic 17 5591.53 Tf
T781 5591.53 BT781 53743 Tf
T781 53743 BT013 53743 Tf
39ic 17 5591.53 B39ic 17 53743 Tf
39ic 17 53743 BT781 53743 Tf
4929 17 53743 B39ic 17 53743 Tf
T781 53743 BT781 5156.53 Tf
T781 5156.53 BT013 5156.53 Tf
39ic 17 53743 B39ic 17 5156.53 Tf
39ic 17 5156.53 BT781 5156.53 Tf
4929 17 5156.53 B39ic 17 5156.53 Tf
930 6T013 5156.533889 17 652.53reTf
313 5046.53 B6313 5046.53 10 0 0 10 04767.53 BT
/R14767.53 Tf
1 0 0 1 93 632.6 Tm
(18. 3. 1)Tj
/R131 13 Tf
47Tf
50 Td
( - CMT2static )Tj
77.259 0 Td
(macrosStructural11 Tf
8 T51659 -24.2 Td
(These macros provi975516tic data about CMT itsedescriuse 11 structural1convention Td
(sh>
/R135 l
STrelease)Tj
274.945
5240 6592 l
STreried by t9n 6313 m
1554 c2tion Td
(sh>
/ S
eren aby t-294.7 l
Td
(macro)d
(sh>
/R1n T23.826 01 Tf
 fromral1c)Tj
274.945
5240159.77l
STreried by t9n 6313 m
1554 c2tion Tdrequiremh>
35 ile. HTreof9,ral1r. )TR13by t-179.57l
Td
(macro)oof9ridden2 m
any packTf
5 lr13.2 own needsR139 11 Tf
28.105 55Td
( )Tj
/2( )135 11 Tf
117.324 0 Td
(usage)Tj
/R139 11 Tf
25.663 0 Td
(3.018p2004121 Tf
116.01 0 Td
(default )Tj
33.308 0 Td
(value)Tj98.517  11 Tf
23.826 0 Td
( )Tj
/R141 11 Tf
-363.234 -21.75 Td
(CMTrelease)Tj
/R139 11 Tf
6R659511 TfVERSION6682.by t9n 6313 m
1554 c2tion Td240 620.35 11 current compbinarse)Tj
73.01c2tion T82.by t9n 39 11 Tf
66.78MTreleas${ed CONFIG}by t9n 6313 m
1579.MTrelease)Tj
/R01.617 Tf
6R59.1 TfVERSION66srcby t9n 6313 m
1554 c2tion Td240 620.35 11 cual1cor659 -213v76c2tion Tbranch)Tj
274.945
524010 CM3MTreleas../or6/by t9n 6313 m
15 10MTreleasevaluevalue.35 11 cu
3



18. 3. 3  - Language related macros

These macros are purely conventional. They are expected in the various make
fragments available from CMT itself for providing the various building actions. 

During the mechanism of new language declaration and definition available in theCMT
syntax, developers are expected to define similar conventions for corresponding 
actions.

Their default values are originally defined inside the  requirements





macro usage 

<package  
>_cflags  

specific C flags 

<package  
>_pp_cflags  

specific C preprocessor flags 

<package  
>_cppflags  

specific C++ flags 

<package  
>_pp_cppflags  

specific C++ preprocessor flags 

<package  
>_fflags  

specific Fortran flags 

<package  
>_pp_fflags  

specific Fortran preprocessor flags 

<package  
>_libraries  

gives the (space separated) list of library names exported by this
package. This list is typically used in the cmt build 
library_links  command. 

<package  
>_linkopts  

provide the linker options required by any application willing to access
the different libraries offered by the package. This may include support
for several libraries per package. 

A typical example of how to define such a macro could be : 

macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -lCm -lm"

<package  
>_stamps  

may contain a list of stamp file names (or make targets). Whenever a
library is modified, one dedicated stamp file is re-created, simply to
mark the reconstruction date. The name of this stamp file is
conventionally <library  >.stamp  . Thus, a typical definition for
this macro could be : 

macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp"

Then, these stamp file references are accumulated into the standard
macro named use_stamps  which is always installed within the
dependency list for applications, so that whs). Whe.cato nae4e ibraries



macro usage 

<package  
>_native_version  

specifies the native version of the external package referenced
by this interface package.
When this macro is provided, its value is displayed by the cmt
show uses  command 

<package  
>_export_paths  

specifies the list of files or directories that should be exported
during the deployment process for this package. Generally this
is only useful for glue packages refering to external software 

<package  >_home 
specifies the base location for external software described in
glue packages. This macro is generally used to specify the
previous one 

18. 3. 5  - Constituent specific customizing macros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each constituent, specific variants to the corresponding generic
language related macros. 

By convention, they are all prefixed by the constituent name. But macros used for
defining compiler options are in addition prefixed by the constituent type (either lib_
, app_  or doc_  ).

They are used in the various make fragments for fine customization of the build
command 







<PACKAGE >ROOT The access path of the package (including the version branch) 

<package  >_root  
The access path of the package (including the version branch). This
macro is very similar to the <PACKAGE >ROOT macro except that
it tries to use a relative path instead of an absolute one. 

<PACKAGE 
>VERSION

The current access path of the package (inrsion branch). Tluding the version branch) The current access phe version branch) The current access phe version branch) >_r92.4TThe current access phe version branch) >_r99Tj
/R139 11 Tf
39.6 0 Td
( )Tjaccess parea where(The current access phas been foundof an absolute one. )Tj
/R141 11 Tf
-113.103 -21.75 Td
(<)Tj
/R184 11 Tf
6.6 0 Td
(package)Tj
/R141 11 Tf
46.2 0 Td
( )T_project -13.2 Td
(>VERSI9.4T)Tj
/R139 153Tf
33 184 11 Tf
6.projectjnameT-13which(The correspon the access pbelongsof an absolute one. )Tj
/R148.31 Tf
-113.103 -21.75 Td
(<)Tj
/R184 11 Tf
6.6 0 Td
(package)Tj
/R141 11 Tf
46.2 0 Td
( )T_cmt3.2 Tj
6.6 0 Td
(>_rI9.4T)Tj
/R139 153Tf
33 184 11 Tf
6.pccess parea where(The correspon the access phas been foundof an absolute one. )Tj
/R148.31 Tf
-113.103 -21.75 Td
(<)Tj
/R184 11 Tf
6.6 0 Td
(package)Tj
/R141 11 Tf
46.2 0 Td
( )T_offse>_rION









make_hosts





PACKAGEPATH



<constituent  
>.make  

application or
library specific
make fragment

1.  make_header 
2.  java_header | jar_header | library_header

| application_header 
3.  protos_header 
4.  buildproto 
5.  jar | library | library_no_share |

application 
6.  dependencies 
7.  <language> | <language>_library | java 
8.  cleanup_header 
9.  cleanup 

10.  cleanup_application 
11.  cleanup_objects 
12.  cleanup_java 
13.  cleanup_library 
14.  check_application 

<constituent  
>.make  

document specific
make fragment

1.  make_header 
2.  document_header 
3.  dependencies 
4.  <document> 
5.  <document-trailer> 
6.  cleanup_header 

<package>.dsw
3.  

4.  
4.  

6.  cleanue/Rrr> 
4.  <langudsprallR141 11 Tf
-241.678 -50.64995Td
(ackagtuent)Tj
/RTj
/p139 11 Tf
85.8 /1Tj
2 11 Tf
(<pacTj
4Tf
0 T
(5applicVisual )Tj)Tj
-13.2 Td
(make )tuefigur3.  documen/p_tuet
/R-13.75 -14.2 Td
(4.  )Tj
13.75 0 Td
(depende/prr> )Tj
13.7511 Tf
-241.678 -50.6494
(0
(ackaREADME139 11 Tf
39.6 0 Td
( )Tj
83.039 13.2 T )Tj
8.<pacTj5.289 21.3.  )Tj
13.75 0 Td
(make_hr)Tjmer 2.  4.  4.  





application : application application-name [  constituent-option  ...   ] 

    [  source



cmtpath_pattern : cmtpath_pattern cmt-statement

    [  ; 





|



18. 9  - The internal mechanism of cmt cvs operations

Generally, CVS does not handle queries upon the repository (such as knowing all installed
modules, all tags of the modules etc..). Various tools such as CVSWeb, LXR etc. provide
very powerful answers to this question, but all through a Web browser. 

CMT provides a hook that can be installed within a CVS repository, based on a helper script
that will be activated upon a particular CVS command, and that is able to perform some
level of scan within this repository and return filtered information. 

More precisely, this helper script (found in 
${CMTROOT}/mgr/cmt_buildcvsinfos2.sh  ) is meant to be declared within the 
loginfo  management file (see the CVS manual for more details) as one entry named 
.cmtcvsinfos  , able to launch the helper script. This installation can be operated at once
using the following sequence:

sh> cd ${CMTROOT}/mgr
sh> gmake installcvs

This mechanism is thus fully compatible with standard remote access to the repository.

Once the helper script is installed, the mechanism operates as follows (this actually
describes the algorithms installed in the CvsImplementation::show_cvs_infos
method available in cmt_cvs.cxx  and is transparently run when one uses the cmt 
cvs xxx  commands ):

1.  Find a location for working with temporary files. This is generally deduced from the 
${TMPDIR}  environment variable or in /tmp  (or in the current directory if none of
these methods apply). 

2.  There, install a directory named cmtcvs/< unique-name  >/.cmtcvsinfos  
3.  Then, from this directory, try to run a fake import command built as follows: 

cvs -Q import -m cmt .cmtcvsinfos/< package-name > CMT v1

Obviously this command is fake, since no file exist in the temporary directory we have
just created. However, 

4.  This action actually triggers the cmt_buildcvsinfos2.sh  script, which simply
receives in its argument the module name onto which we need information. This
information is obtained by scanning the files into the repository, and an answer is built
with the following syntax: 

[error= error-text ]            (1)
tags= tag  ...                  (2)
branches= branch  ...           (3)
subpackages= sub-package  ...   (4)

2.  

http://www.cvshome.org/docs/manual/index.html


4.  The list of subpackages (ie subdirectories containing a requirements files) 

Contents
 1 Presentation

 2 The conventions

 3 The architecture of the environment

 3. 1     Supported platforms

 4 Installing a new package

 5 Localizing a 

packageTh
(ccepist oa )Tj
ET Q474.732735225 m
7921.7735225 l
S
q 10 0 0 10 0 0 cm BT
/R139 11 Tf
1 0 0 Q47.473273724 Tmprojitegeplatforms

 3. 1     

ccepist oa 



12. 3     Examples

13 The tools provided by CMT

13. 1     The requirements file

13. 1. 1         The general requirements syntax

13. 2     The concepts handled in the requirements file

13. 2. 1         The package structuring style 

13. 2. 2         Meta-information : author, manager

13. 2. 3         package, version

13. 2. 4         Constituents : application, library, document

13. 2. 5         

13. 2.65         

13. 2.75         

13. 2.72. 1             

13. 2.85         

13. 2.95         

ptterols

13. 2.92. 1             

ptteroe

13. 2105         

pth_(ptterols)Tj
/R141 11 Tf
-110.7 -21.75 Td
(13. 21 1)Tj
/R139 11 Tf
88.7 0 Td
(        )Tj
ET Q
200737311 T m
269799437311 T l
S
q 10 0 0 10 0 0 cm BT
/R139 11 Tf
1 0 0 1 200.7
745.25 Tm
ibrnchges

13. 21 2         

13. 21 3         

etup_scripte, 

13. 21 4         

pths

13. 21 5         

13. 2165         

mke_fragument

13. 2175         

ubplie, rivatet

13. 2172. 1             

ecatiols

13. 2185         

13.in1 Tfac 11 Tf
1 0 0 1 330.9R.09 2 0 10 0 0 cm BT

/R141 11 Tf
-286.051 -21.75 Td
(13. 2. 1)Tj
/R139 11556
88.7 0 m
Sc1556
88

13. 2172. 1 13. 2. 1T1211788    








	CMT Configuration Management Tool
	Version v1r18p20041201 Christian Arnault arnault@lal.in2p3.fr
	General index
	€1 - Presentation
	€2 - The conventions
	€3 - The architecture of the environment
	€3.€1 - Supported platforms

	€4 - Installing a new package
	€5 - Localizing a package
	€6 - The concept of project
	€7 - Assigning semantics to packages. Common practices
	€7.€1 - The primary package
	€7.€2 - The policy package
	€7.€3 - The container or management package
	€7.€4 - The release package
	€7.€5 - The glue or interface package

	€8 - Managing site dependent features - The CMTSITE environment variable
	€9 - Configuring a package
	10 - Selecting a specific configuration
	10.€1 - Describing a configuration
	10.€2 - Defining the user tags
	10.€3 - Activating tags

	11 - Working on a package
	11.€1 - Working on a library
	11.€2 - Working on an application
	11.€3 - Working on a test or external application
	11.€4 - Construction of a global environment

	12 - Defining a document generator
	12.€1 - An example : the tex document-style
	12.€2 - How to create and install a new document style
	12.€3 - Examples

	13 - The tools provided by CMT
	13.€1 - The requirements file
	13.€1.€1 - The general requirements syntax

	13.€2 - The concepts handled in the requirements file
	13.€2.€1 - The package structuring style
	13.€2.€2 - Meta-information : author, manager
	13.€2.€3 - package, version
	13.€2.€4 - Constituents : application, library, document
	13.€2.€5 - Groups
	13.€2.€6 - Languages
	13.€2.€7 - Symbols
	13.€2.€7.€1 - actions

	13.€2.€8 - use
	13.€2.€9 - patterns
	13.€2.€9.€1 - Applying a pattern

	13.€2.10 - cmtpath_patterns
	13.€2.11 - branches
	13.€2.12 - Strategy specifications
	13.€2.13 - setup_script, cleanup_script
	13.€2.14 - include_path
	13.€2.15 - include_dirs
	13.€2.16 - make_fragment
	13.€2.17 - public, private
	13.€2.17.€1 - Scoping sections

	13.€2.18 - tag, apply_tag

	13.€3 - The general cmt user interface
	13.€3.€1 - cmt broadcast
	13.€3.€1.€1 - Specifying the shell command
	13.€3.€1.€2 - Templates in the shell command

	13.€3.€2 - cmt build <option>
	13.€3.€3 - cmt check configuration
	13.€3.€4 - cmt check files <reference-file> <new-file>
	13.€3.€5 - cmt checkout ...
	13.€3.€6 - cmt co ...
	13.€3.€7 - cmt cleanup [-csh|-sh]
	13.€3.€8 - cmt config
	13.€3.€9 - cmt create <package> <version> [<area>]
	13.€3.10 - cmt expand model [-strict] <model-string>
	13.€3.11 - cmt filter <in-file> <out-file>
	13.€3.12 - cmt help | --help
	13.€3.13 - cmt lock [ <package> <version> [<area>] ]
	13.€3.14 - cmt remove <package> <version> [<area>]
	13.€3.15 - cmt remove library_links
	13.€3.16 - cmt run [shell-command]
	13.€3.17 - cmt set version <version>
	13.€3.18 - cmt set versions
	13.€3.19 - cmt setup [-csh|-sh|-bat]
	13.€3.20 - cmt show <option>
	13.€3.21 - cmt system
	13.€3.22 - cmt unlock [ <package> <version> [<area>] ]
	13.€3.23 - cmt version | --version
	13.€3.24 - cmt cvstags <module>
	13.€3.25 - cmt cvsbranches <module>
	13.€3.26 - cmt cvssubpackages <module>

	13.€4 - The setup and cleanup scripts
	13.€5 - cmt build prototype

	14 - Using cvs together with CMT
	14.€1 - Importing a package into a cvs repository
	14.€2 - Checking a package out from a cvs repository
	14.€3 - Querying CVS about some important infos
	14.€4 - Working on a package, creating a new release
	14.€5 - Getting a particular tagged version out of CVS

	15 - Interfacing an external package with CMT
	16 - The installation area mechanism
	16.€1 - The default implementation
	16.€2 - Tuning the installation area mechanisms

	17 - Installing CMT for the first time
	17.€1 - Installing CMT on your Unix site
	17.€2 - Installing CMT on a Windows or Windows NT site

	18 - Appendices
	18.€1 - Copyright
	18.€2 - Standard make targets predefined in CMT
	18.€3 - Standard macros predefined in CMT
	18.€3.€1 - CMT static macros
	18.€3.€2 - Structural macros
	18.€3.€3 - Language related macros
	18.€3.€4 - Package customizing macros
	18.€3.€5 - Constituent specific customizing macros
	18.€3.€6 - Source specific customizing macros
	18.€3.€7 - Generated macros
	18.€3.€8 - Macros related with the installation area mechanisms
	18.€3.€9 - Utility macros

	18.€4 - Standard tags generated by CMT
	18.€5 - Standard templates for makefile fragments
	18.€6 - Makefile generation sequences
	18.€7 - The complete requirements syntax
	18.€8 - The default strategies defined in CMT
	18.€9 - The internal mechanism of cmt cvs operations


	Contents

