CMT
Configuration Management T ool
Version vir18p20050501

Christian Arnault
arnault@lal.in2p3.fr

Document revision date2005-05-02

General index

1 - Presentation

This environment, based on some management conventions and comprising several utilities, is an
attempt to formalize software production and especially configuration management around a
package-orientedprinciple.

The notion ofpackagesepresents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for prodagstgreor a
framework. In such an environment, several persons are assumed to participate in the
development and the components themselves are either independent or relatedtteeeach

The environment provides conventions (f@mingpackages, files, directories and &mfdressing

them) and tools forutomatingas much as possible the implementation of these conventions. It
permits thedescriptionof the configuration requirements and automatically deduce from the
description the effective set of configuration parameters needed to operate the packages (typically
for building them orusingthem).

CMTlays upon some organisational or managerial principles or mechanisms described below.
However, it permits in many respects the users or the managensttol , specialize and
customize these mechanisms, through parameterization, strategy control and generic
specifications.
® Many such packages are produced and maintained.
® Packages sets may be structuredrgmsimplementing grojectoriented organization.
® The projects represent independent organisations of packages, but may be interconnected as
adirect acyclicgraph of projects
® The packages may or not be related with each other (defining disecacyclicgraph of
packages - not just a single tree).
® The concept of package may be extended to implement structuring or organizing patterns
such as those involved in project management.
® Project management policies and behavioural patterns can be easily expressed and
automated by CMT.
® Eachexecutablapplication(from now on simply hamealpplications) either belongs to a

particular package and/or defines its own environment and then makes use of some other
packages.
® Each package can be uniquely identified within the system or the frameworiabyea
which is usually a shorhnemoniand which may be also used for isolating its name-space
(eg. byprefixingcomponents of the package by its mnemonic).
® A package installed in this environment mayelzportedto a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved through the
transport, the reconstruction procedure will be preserved. Configuration specifications can be easily
provided to cope with machine, site or system specific features.
® Packages are maintained consistently to their declared relationships to each other through a
versionidentification model based on :
O aversion is defined with a mnemonic comprising one to three numbemajbed,
theminorid, and thepatchid
O versions with different major ids are said to be incompatible,
O versions with same major ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.
O versions differing only by their patch id are said to be fully compatible with each other.
® Projects are also referenced usinglaase
® Version control and management schemes (eg. by @3ii®) are usually consistently
operated, applying the conventions on organization and version identification.
® An application that uses one or several packages managed in this environment should not
itself be constrained to be manageddMT. The tools should only require a few exported
features (such as a few environment variables) for referencing any given package.
e Similarly, a package maintained in this environment must be able to use packages that are
not managed in this environment (which are often calagdrnalpackages).

Following these definitions, the basic configuration management operations involved here (and
serviced by th€MT tools) consist of :
e installing the packages in conventional locations so that they can be referenced by each
other, following projects or teams structuring paradigms,
e describing the configurationequirementsfor each package:
O dependencies to other packages,
O generic behavioural patterns meant to describe generic configuration items or project
specific policies.
O symbols to be exported to client packages (environment variables, make macros, etc...)
O parameterized configuration activities (documentation generation, deploiement,
installation, etc...)
O components (also namednstituentg of the packages (libraries, applications,
generated documents)
O parameterization of the build and test tools
O parameterization of the deployment tools
O strategies thaEMTshould follow at run time, overriding its default ones.
® deducing the effective configuration parameters fromrdguirementsso as to automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible alternate versions of available packages).

2 -Theconventions

This environment relies on a set of conventions, mainly for organizing the directories where
projects and packages are maintained and developed :

® Each package is installed in a standard directory structure defined at least as follows:

<some root>/<Package mnemonic>/<version mnemonic>/cmt

or (obsolescentonvention)

<some root>/<Package mnemonic>/<version mnemonic>/mgr

The <version mnemonic> directory level may also be omitted, in which case the version
information will be stored inside the cmt directory in a conventional file named
version.cmt leading to the following alternatgganization:

<some root>/<Package mnemonic>/cmt/version.cmt

In both cases, themt directory holds the main source of information neede@GNy: the
requirementdile. All CMT-related operations are generally executed frondirestory.

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized as a valMdT package Any other structuring convention will be
supported by CMT and its operations can always be customized to fhbow

This structure is a central concept since all relationships between packages relies on the
package identification which unambiguously and exclusively consists in the duet [
package-namepackage-versioh (or package-namenly when the version directory level

is omitted).

e Constructing the internal structure of a package.

Many other parallel directory branches (similaciot) such asrc ,include ortest

may be freely added to this list according to the specific needs of each package. In particular,
a set of such parallel branches are expected to cdmteiry outputs (those that compilers,
linkers, archive managers or other kinds of code or pseudo-code generators can produce).
Their name always corresponds to the particcdafigurationtag used to produce the

output (such as the machine or operating system type)CWFgoolkit provides, through

thecmt system utility, a default value for this token. An environment variable

(CMTCONFIQG is also assigned to this value (Seedtmmpletedescriptionof configuration

tags).

Each branch may in addition be freely structured, and there is no constraint to the
complexity of thisorganization.

W » et requirements
\! vl [+
I'| "-_\ In' e T
: oxx %K
||i!l e ‘111.1 . ||

| | i e
M SIC [~ = test :k.'-::_.‘{ :i'-l-'
. / :
oyl ||/ ! . 4
'.. e |[\'“*{ lib ‘ g > S
|

[:
\ j".".r""i doc * html
A ,f‘j.-'! ;
Jv2 & data ¥ dat .
Rt Y
RS = e i i
”g\ = SunOSs | % o B T
' » Linmx | *.exe *.a *.s0
™ insure * exe *.a* 50

1 - Structuring a package - A typicakample.
e Organizing a software base.

A software base is generally composed of multiple coherent sets of packages, each installed
in its specific root directory and forming differgrackageareasor sub-projects

Package areas implement the concepirofectsor sub-projectavhich correspond to the
practical organization of the softwarase.

There are no constraints on the number of such sub-projects or areas int€Mfich
packages are installed. We’ll deger how the different sub-projects can be declared and

identified byCMT.

examples of such organization can be :

Q A package area

E A package

D || D_| Versions of a package

A private use relationship

-\.,_ A public use relationship

2 - Structuring a sofwarbase.

‘3 - Thearchitecture of the environment

This environment is based on the fact that one of its packages (@digdrovides the basic
management tool€MT, as a package, has very little specificities and as such itself obeys the
generakonventions.

Then the complete software base is organized in terms of projestshfprojects, containing
consistently managed package sets. Projects are localized either globally or individually:
e globally using the environment varialldTPROJECTPATtHat describes all locations
where CMT projects can be found
e individually using the environment variadlBMTPATHhat describe all package areas where
packages can be found
Packages are localized respectively to the projects they belong

It should be noted that the choice of a location for installing CMT itself is totally independent of
the locations where projects are installed enrachaged.

CMTis operated through one main user interface ciiecommand, which operates t6@dT
conventions and which provides a set of services for :

® creating a new package. This operation will create or check the local package directory tree
and generate several minimal scripts (see the description gediecommand),
® describing or monitoring :
O the relationships between the package and other packages
O the configuration features either specified in the current package, or imported from
related(used) ones. (symbols, patterns, fragments)
O the constituents of the package in terms of libraries, executables, or generated
documents.
e automatically generating the reconstruction scifiptakefiles) from this description.
® recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared librarie§,prototypes, management of interactions betweés8andCMT
itself, the management of a similar architecture/fimdows or OS9, setting up protections for
packages (through locks) etc...).

3.1 - Supported platforms

CMThas been ported and tested on a wide range of machines/operating systems, including :
e DEC-Unix V4.0
HP-UX-10 (several types of platforms)
AlX-4
Solaris
IRIX
Several variants of LynxOS
All variants of Linux (RedHat, Debian, SuSe, ScientificLinux, ...)
Windows 95/98/NT/Windows2000 in various environments:
O CYGWIN_NT-5.1 environment
O nmake based environment
O MSDev/VisualC 6 environment
O MSDev/VisualC 7 environment
® Darwin (Mac OS X)
This in particular means that a package developped on one platform may be re-configured
towards any of these platforms without any change to its configuration description. All
platform specific tools will be dynamically reconfigured and parametetiaedparently.

4 - Defining and managing proj ects

In the CMT terminology, the complete software base is composed of CMT packages. Those
packages are organized into sub-projects. The semantics of a sub-project is very opened since it's
merely an area for grouping CMT packages. Typically sub-projects may corréepond

® a structuration in software domains, such as Reconstruction, Simulation, Graphics, Core, etc.
® how responsibilities or management policies are defined and assigned

® reusing or sharing different software products from diffepeajects

Considering the simple structuring aspects of sub-projects, two important configuration
parameters (environment variables) handled by CMT must be understood before attempting to
managepackages:

e CMTPROJECTPATIbr a global specification of where projects can be found. This
specification should be considered as the standard mechanism for structuring the software
base since from it, CMT can and will deduce all other localization parameters (like
CMTPATH.

e CMTPATHoffers a more internal mechanism for localizing packages. It's not generally
meant to be defined manually since CMT will construct it fRRMTPROJECTPATH
However, it's important to understand how this configuration parameter is used to locate
packages.

Projects receive detailed descriptions or specifications in a dedjmajedtfile , always located
in acmt directory at their top directory level, and nanceat/project.cmt . It can receive
the followingspecifications:

project <project-name> [1]
project-use specifications... [2]
strategy specifications... [3]

1. The project name specified here takes precedence over the project name specified in the
directory structure. However wh&MTPROJECTPATIH not specified, this may cause
conflicts in the localization of projects. In this case it's highly recommended to always use
the same naming convention in project files as in the direbiergrchy.

2. Projects are hierarchized as a directed acyclic graph. The minimal hierarchy simply
corresponds to the order of tGMTPATHtems. A more complex hierarchy can be specified
through use statements between sub-projects. This hierarchy also dgtmestéchild
relationship between projects. If a projéatses another projeBt, A is also named the
parentandB thechild

3. CMT Strategies (for build or setup) are separately collected into each project. Therefore one
can apply different strategies to different sub-projects. The strategy specifications may
appear in requirements file of any package of a project or icntit¥@roject.cmt
project file.

By default a project inherits the strategies of its parents. Or if it's the top project, it follows
the default strategies defined by CMT (Refer to #iipendixto see the default strategies
currently defined byCMT).

4.1 -Theproject file
The project file can be created using teenmand:

> cmt create_project <project-name> [<release>] [<path>]

This will create the complete directory hierarchy from the current directory (or, when it is
specified from the optional project path). It will also create a project file containing the prajeet

Note that the <release> argument may be left empty (or to an empty string). In this
case, the directory hierarchy will be limited to one level devoted to the pnaject.

<path>/<project-name>/<release>/cmt/project.cmt
<path>/<project-name>/cmt/project.cmt

As an example, we create the followipigjects:
> cmt create_project WorkArea ™ /test

> cmt create_project ProjectA 1.0 /test
> cmt create_project ProjectB 1.0 /test

And we fill CMTPAThwvith:

ltest/WorkArea:/test/ProjectA/1.0:/test/ProjectB/1.0

Then the following projects will appear displayed from bottom taawop
> cd /test/WorkArea

> cmt show projects

WorkArea (in /test/WorkArea) (current)

ProjectA 1.0 (in /test/ProjectA/1.0)
ProjectB 1.0 (in /test/ProjectB/1.0)

Of course the preferred way to characterize this software base should rather be based on
specifying the relationships between those three sub-projects, through the use statements in
the projectdiles.

For instance in our little example, we could add the following statement into the project file
of WorkArea:

use ProjectA 1.0
and the following statement into the project filePobjectB:
use ProjectB 1.0

Then instead of specifyil@MTPATHve’d rather simply definEMTPROJECTPAT&S:

/test

4.2 - Projectsand strategies

Every strategy setting defines two mutually exclusive tags and activates thieenof

<project>_<have_item>
<project>_<have_not_item>

Examples

<project>_prototypes
<project>_no_prototypes
<project>_with_install_area
<project>_without_install_area
<project>_config
<project>_no_config
<project>_root
<project>_no_root
<project>_cleanup
<project>_no_cleanup

In particular, the installation area mechanism is strongly connected with the project
hierarchy. This happens through sevenachanisms:

® The<project> parameter is expanded in ttratpath_pattern construct in
addition to the<path> parameter. This parameter is assigned the name of the project
associated with the runnif@MTPATHentry.

® The<project> parameter is also available for normal patterns. In this case it is
assigned the project name associated with the cmtpath parameter for the current
package.

® Every project defines a tag of the same name, and the tag of the current project is

active.

® Thecmt_installarea_prefix macro is specializeper projectand every project
may override theproject>_installarea_prefix macro. The default value of
any<project>_installarea_prefix is ${cmt_installarea_prefix}

4.3 -CMTPROJECTPATH

This is an environment variable containing a search list, very similar to the well know Unix
or WindowsPATHenvironment variable, containing a list of file paths where CMT projects
can be found. The syntax of this search list follows the standard syntax of search lists, i.e.
items are separated using &haracter on Unix and;acharacter oWindows.

One should understand this search list as the primary mechanism to locate sub-projects
in the software base, and therefore packages. This in particular can completely replace
the CMTPATHbased search mechanism for packages that was used béfbge .

However the two mechanisms are still both supported and in fact interact with each
other.

A sub-project in itself is a multi-level directory structure, located below one of the items of
this search list, and composef

® the sub-project name
® the sub-project release (which may span several dirdetosis)

Then, below this directory structure, fired

® A project definition file incmt/project.cmt
® A set of CMTpackages

A typical example of such a structure cohtsl

/project-areal/Reconstruction/1.0/cmt/project.cmt
/RecA/...

/RecBl...
/project-areal/Reconstruction/2.0/cmt/project.cmt
/RecA/...

/RecBl...

Iproject-areal/Simulation/1.0/cmt/project.cmt
/SimA/...
/SimB/...
/project-areal/Core/1.0/cmt/project.cmt
/CoreA/...
/CoreB/...

/project-area2/ProductA/1.1.2/cmt/project.cmt
IPA_A...
IPA_BI...
/PA_CI...
/project-area2/ProductB/v1r8p3/cmt/project.cmt
/PB_A/...
/PB_BI...
/project-area2/ProductB/v1r10/cmt/project.cmt
IPB_A/...
/PB_BI...

® there are two project areas, one for the main developments, and another one for
managing external products

® project-areal offers three sub-projecReconstruction , Simulation and

Core

project-area2 offers two sub-project8roductA andProductB

the sub-projedReconstruction is available in two releasés0 and2.0

the sub-projedReconstruction offers two packageRecA andRecB

the sub-projedProductB is available in two release4r8p3 andvlrlO

This search list is used to interpret tieestatements written in the project files. This project
use statement takes tfoem:

project-use : useproject-nameproject-release

Typically, in our example one could construct the project file oRbeonstruction
sub-project afollows:

use Core 1.0
use ProductA 1.1.2

Note that sub-project release identifiers are always considered using a perfect-match
principle.

Structuring the set of sub-projects comprising a software base is sufficient to permit CMT to
find all sub-projects and thadl packages in them. DefiniM@MTPROJECTPAT&hd

installing the list of use statements in all appropriate project files entirely suppress the need
of manually defining th€ MTPATHearcHist.

10

4.4 -CMTPATH

This is an environment variable containing a search list, very similar to the wellP4\din
environment variable, containing a list of file paths where CMT packages can be found. The
syntax of this search list follows the standard syntax of search lists, i.e. items are separated
using a character on Unix and;acharacter oiwVindows.

When the software base is organized and configured usir@Mi¢*ROJECTPATH
search list and project-use statements in the project files, this search list is
automatically and internally generated by CMT, and therefore it should not be
manually defined nor manipulated. If this is your case, you can skipettii®n

It is possible to manually define this search list (WBMTPROJECTPATIH not defined or
when project files are ngrovided)

There should be one entry per package area, and the list is ordered. The order of items is
used to prioritize the packagearch.

CMTPATHan bespecified:
® as the environment variable nan@MTPATH
sh> export CMTPATH=/home/arnault/mydev:/ProjectB
bat> set CMTPATH=/home/arnault/mydev;/ProjectB
or (in arequirements file)

path_append CMTPATH "/home/arnault/mydev"
path_append CMTPATH "/ProjectB"

® in.cmtrc files, which can be located either in the current directory, indinee
directory of the developper or #{CMTROOT}/mgr . The syntax to use in this
configuration file is:

CMTPATH=/home/arnault/mydev:/ProjectB

e In the Windows environment, this configuration parameter may also be installed as a
Registryunder the alternate keys:
O HKEY_LOCAL_MACHINE/Software/CMT/path
0 HKEY_CURRENT_USER/Software/CMT/path

The project file (i.e. the filemt/project.cmt), when it exists for the current
package (i.e. upstream in the directory hierarchy), also provides an automatic value for
the CMTPATHsearchlist.

5 -Installing a new package

We consider here the installation of a user package. Inst@liMiftself requires special attention
and is described in a dedicatgzgttionof thisdocument.

11

Therefore, we assume tHamMTis already installed in some location in the system. One first has
to setupCMTin order to gain access to the various management utilities, using for example the
shell command:

csh> source /lal/CMT/v1r18p20050501/mgr/setup.csh
or

ksh> . /lal/lCMT/v1r18p20050501/mgr/setup.sh

or

dos> call \lahNCMT\v1r18p20050501\mgr\setup.bat

Obviously, this operatiomustbe performed (once) before any ot Taction. Therefore it is
often recommended to install this setup action straight itothe script.

Thesetupscript used in this example is a constant in @M Tenvironment : every

configured package will have one such setup script automatically generated and installed by
CMT. It is one important entry point to any package (and th@Mditself). It provides
environment variable definitions for all relatéased) packages (A corresponding cleanup
script is also provided). This script contains a uniform mechanisintenpretingthe
requirementsfile so as to dynamically define environment variables, aliases for the

package itself and all its used packages. It is constructed once per package installation by
thecmt create command, or restored by tbent config command (if it has been

lost).

It is generally good to start by immediately definingraject. This project is our first disk area
where CMT packages will be located. Remember that several such projects can be set up and
defined. The simplest way to do tlss

> cmt create_project Dev

Configuring environment for project Dev
CMT version v1r18p20050501.

Installing the cmt directory
Creating a new project file

This creates a project structubev/cmt/project.cmt from the current directory. Once this
project has been created we have a complete environment to start creating packages\below
and working out our softwartease.

A package is primarily defined byremeand aversionidentifier (this duet actually forms the
completepackagddentifier). These two attributes will be given as argumentsrib create
such as in the following example

csh> cd Dev
csh> cmt create Foo v1

Configuring environment for package Foo version v1.
CMT version v1r18p20050501. [1]
Root set to /home/arnault/Dev.

System is Linux-i686 [2]

12

Installing the package directory [3]
Installing the version directory

Installing the cmt directory

Installing the src directory

Creating setup scripts.

Creating cleanup scripts.

1. This shows which actual CMT version you are currently using

2. This shows the current configuration tag (also available bgrtiie system command). In
this example this is Binux machine

3. This shows the detailed construction of the complete directory structure, starting from the
top directory which has the name of the package. Since we are creating a completely new
package, there will be by default only two branches below the version directotyand
src

The package creation occured from the current directory, creating from there the complete
directory tree for this newackage.

In the next example, we install the package in a completely different area, by explicitly specifying
the path to it as a third argumentiot create

> cmt create Foo v1 /ProjectB

Configuring environment for package Foo version v1.
CMT version v1r18p20050501.

Root set to /ProjectB.

System is Linux-i686

Installing the path directory
Installing the package directory
Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

Several file creations occurred at this level :
e a minimal directory tree for the package, includsng andcmt (the other branches will be
installed when needed or generated at build time).

® an empty configuration specification file (nhamedquirements) installed in themt
branch.

e A minimal Makefile (on Unix environments only), containing

include $(CMTROOT)/src/Makefile.header

include $(CMTROOT)/src/constituents.make

ThisMakefile does not need any further modification to build any of the constituents
managed bMT. The intermediate makefile fragments will always be re-generated
transparently and automatically at build time. However (and thanks to this feature), this file
will not be modifiedanymoreby CMTitself. Thus you may insert any particular make
statement you would feel appropriate, typically when you ask for operations that cannot be
taken - if any - into account YMT.

13

® A similar minimalNMakefile (on Windows environments only), containing

linclude $(CMTROOT)\src\NMakefile.header

linclude $(CMTROOT)\src\constituents.nmake

® the setup and cleanup scripts (one flavour for each shell family).
Onemaythen setup this new package by running the setup script (which will not have much
effect yet since the requirements file is empty) :

sh> cd ~/mydev/Foo/vl/cmt
sh> . setup.sh

or

csh> cd ~/mydev/Foo/vl/cmt
csh> source setup.csh

or

dos> cd \mydev\Foo\v1\cmt
dos> call setup.bat

The FOOROOandFOOCONFI&@nvironment variables are defined automatically by this
operation.

It should be noted that running the setup script of a package is not always necessary for building
operations. The only situation where running this senigybecome useful, is when an

application is to be run, while requiring domain specific environment variables defined in one of
the used packages. Besides this particular situation, running the setup scripts may not be needed
at all.

Lastly, this newly created package may be removed by the quite similar remove command, using
exactly the same arguments as those used for creatipgtkage.

csh> cd mydev
csh> cmt remove Foo vl

Removing package Foo version v1.
CMT version v1r18p20050501.
Root set to /home/arnault/mydev.
System is Linux-i686

Version v1 has been removed from /home/arnault/mydev/Foo
Package Foo has no more versions. Thus it has been removed.

or:

csh> cmt remove Foo v1 /ProjectB

Removing package Foo version v1.
CMT version v1r18p20050501.
Root set to /ProjectB.

System is Linux-i686

Version v1 has been removed from /ProjectB/Foo
Package Foo has no more versions. Thus it has been removed.

14

So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to work omjawlicationor on alibrary for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of dsllows:

csh> cd ~/mydev/Foo/vl/cmt
csh> cat >../src/FooTest.c
#include <stdio.h>

int main ()

printf ("Hello Foo\n");
return (0);

}

csh> vi requirements

application FooTest FooTest.c
csh> gmake

csh> source setup.csh

csh> FooTest.exe

Hello Foo

Directly running the application is possible since the application has been installed after being
built in an automatiinstallationareareachable through the stand®&THenvironmentwariable

This can also be integrated in the build process by providing the -check option to the application
definition:

csh> cd ../cmt
csh> vi requirements

application FooTest -check FooTest.c
csh> gmake check
Hello Foo

6 - Localizing a package

In the next sections, we'll see that packagdsrencesach other by means w$erelationships.
Generally packages are found in different locations, according to the project - or sub-project -
they belong toCMTprovides a quite flexible mechanism focalizingthe referenced packages.

The first ingredient we need at this level is to understand how projects themselves are localized,
since packages will be found inside project areas. You should therefore refesectibe on
projectswhere the complete mechanism base€bTPROJECTPATIdr CMTPATHis

described.

However, there is one special case where this path list can be avoided, i.e. when only one project
is considered. In this case, the knowledge of this single project area can simply be deduced from
the detection of the project file, created at the top of itsspske.

A given version of a given package is always referred to by usisgsiatement within its
requirements file. This statement should specify the package through kieyee

15

® its name (such &Bar)
® its version (such as/r5)
e optionally its expected absolute location or relative offset

use Bar v7r5 [1]
or
use Bar v7r5 A [2]
or

use Bar v7r5 /ProjectB/A [3]

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order) :

1. the absolute access path, if tieepathis absolute (case #3),
2. the access paths registered in the configuration para@EEPATH(and in decreasing
priority, the first element being searched ficst).

If the pathargument is specified as a relative path (case #2 above) (ie. there is nod&sesting
character or it's not diskon windows machines), it will be used asoffisetto each search case.
The search is done starting from the list specified ifCt@ PATHonfiguration parameter; and
the offset is appended at each seardbeation.

As an example, if thEMTPATHbarameter contains:

/home/arnault/mydev:/ProjectB

Then ausestatement (defined within a given package) containing :

use Bar v7r5
use BarAv1 A

would look for the packag®ar from :
1. /nome/arnault/mydev/Bar/v7r5/cmt
2. /ProjectB/Bar/v7r5/cmt
Whereas the packaggarA would be searched from :
1. /home/arnault/mydev/A/BarA/vl/cmt
2. [ProjectB/A/BarAlvl/cmt
The packages are searched assuming that the directory hierarchy below the access paths always
follow the convention :
1. there is a first directory level exactly named according to the package name (this is case
sensitive),
then (optionally) the next directory level is named according to the version tag,
then there is a branch namedt |,
. lastly there is aequirementdile within thiscmt branch.
us the list of access paths is searched for until these conditions are properly met.

AW

j

16

The actual complete search list can always be visualized by the command:

> cmt show path

Add path /home/arnault/dev from CMTPATH
Add path /ProjectB from CMTPATH

#

/home/arnault/dev:/ProjectB

7- Assigning semantics to packages. Common practices

Generally speaking, CMT makes no assumption on how or why is used a package. However past

experience has shown that packages can be categorized according to their purpose or their type of
contents.

7.1 -Theprimary package

This is the most general and basic pakage type, which provides actual pieces of software,
such as libraries or applications. Generally the main activities performed by such a package

include building the software (compiling, linking), testing, generating the documentation,
installing, ...

A typical package of that kind witlontain:

® a./src directory containing the sources of the package

e a directory for the include files, with a name that will depend on the structuring policies
defined for the project. Tyical examples are

./linclude/
..I<packagename>/

® a./doc directory for the documentation
® a./test directory for the tegbtrograms.

The requirements file will generally contain at |ddstary ~ andapplication
statements.

7.2 -Thepolicy package

This kind of package only provides conventions, working methods, general purpose shell
scripts but generally provides no software per se. It is designed to gather all policies and
management conventions for a project or a sub project.

The basic contents of such a package is the requiremernitgfilding

® strategy definitions
® pattern definitions
e general purpose symbdéfinitions

17

In principle the idea when such a policy package is defined, is that all packages of the
project or of the sub-project will use

Global patterns may be specified so as to automate the applying of basic policies and
conventions.

Typical examples of policies that are profitably specified in such a paekage

® include search path convention (using a global pattern witin¢hede dir

statement)

build or setup strategies

compiler or linker generic options

defining the project-wide production tools (compiler, documentation generator, etc...)
tag associations need to describe the binary tag conventiongrofaet

In large projects, it is even often desirable to split the policies into a set of specialized
policies and to associate one dedicated policy package with etiisef

policies for the test

policies for each programming language

policies for documentation management

policies for installation and deployment
® policies for external softwam@ganisation

Then the global policy package will usgem

7.3 -Thecontainer or management package

In large projects, it's often useful to decompose the software base into specialized domains
(Core software, Graphics, Database, Online, etc...) or subsets of the software (eg per detector
in a physics experiment). Then a container package consists in constructing a simple
package with only one requirements file in it and only containing a set of use statements.

Management activities directly related with the associated sub-domain can then be
undertaken through this speqgmckage:

® version management (such as CVS tagging) of packages belonging to the domain

e consistently building the domain

® Generally themt broadcast command is widely exploited to perform those
managemerdctivities.

Generally the use statements installed in a container package make use of explicit version
specification (and prohibit wild carding) since each version of this container package acts as
a reference of the set of version tags validated for the packagesiohth.

18

7.4 - Therelease package

This package is one particular example of the container concept, but dedicated to manage the
project-wide activities. This release package is the primary target of the project manager. It
will generally receive as its version tags the version tags assigned to the project releases
themselves.

7.5 -Thedglueor interface package

This kind of package defines an interface to an existing software product not managed in the
context of the project itself. Typical examples concern:

® packages shared from external projects that don't use CMT as their configuration tool

e third party software (free software, commercial products, ...) locally installed on the
developmenplatform.

The primary goal fo such a glue package is to convert the management conventions and
policies expected by the referenced product to the ones appropriate for theprojest

e compiler and linker options
® run time settings such as environment variable definitions (PATH,
LD_LIBRARY_PATH, etc..)

e data file access
® specification of local installation according to the profcategy

Generally this kind of package only provides a requirements file, or make fragments used to
automate some actions (typically when document generation is expected from thie interfaced
product)

8 - Managing site dependent features- The CMTSITE
environment variable

Software bases managed®WTare often replicated to multiple geographically distant sites (as

opposed to machines connected through AFS-like WAN). In this kind of situation, some of the
configuration parameters (generally those used for instance to reference local installations of

externalsoftware) take different values.

TheCMTSITE environment variable aegistryin Windows environments, is entirely under the
control of thesite manager and can be set with a value representing the site (typical values may
belLAL ,Virgo ,Atlas ,LHCb,CERN etc.).

This variable, when set, corresponds tagawhich can be used to select different values for
make macros or environment variables.

A typical use for this tag is to build up actual values for the location path of an external software
package. Here we take the example of the Anaphe utility:

19

macro AnapheTOP "\
CERN "/afs/cern.ch/sw/lhcxx™" \
BNL "/afs/rhic/usatlas/offline/external/lncxx" \
LBNL "/auto/atlas/sw/lhcxx"

9 - Configuring a package

The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file uniquely namesyuirements and necessarily
installed in theemt branch of the package directory tree.

An empty version of this file is automatically created the first time the package is installed, and
the package manager is expected to augment it with configuration specifications.

The primary goal of this configuration file is to spedafyy configuration information for this
package. There is virtually no limit to what could be specified there. And we can expect to find
exhaustive information about:

e the primary constituents of the package

® how to rebuild the software

® how to setup and use the software

® how to transport and deploy the package

Many configuration parameters are supposed to be described intedhisementsfile - see the
detailedsyntax specifications here - namely

the package information about its author(s) and manager(s)

the relationships with other packages

the package constituents (libraries, applications, documents, etc.)

the policy patterns to be applied by clients of this package

the parameterization of the tools used in the build process (eg. make macros)

the parameterization of the run-time activity (eg. environment variables, search paths, etc.)

Generally, every such appropriate parameter will be deduced on demand frosguirements
file(s) through the various query functions available fronctné main driver. Therefore there is
no systematic package re-configuration per se, besides the very first time a package is newly
installed in its location (using tlemt create action).

Query actions (generally provided using timet show ... family of commands) are to be
embedded in the various productivity tools, such as the setup shell scripts, or makefile fragment
generators.

These query actions always interpret the sategfuirementsfiles obtained from the current
packageandfrom the packages in the effectivgedchain. Symbols, tags and other definitions

are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Conversely one may say that parameters definedregairementsfile are meant to be exported
to the clients of thpackage.

20

Other configuration parameters are also optionally inserted froM@hENdUSERcontext
requirementdiles

Typical examples of these query functions are:

e cmt setup builds a shell command line for setting up environment variables
e cmtshow projects gives the ordered sequence of sub-projects comprising the
complete software base
e cmtshow macros construct the effective set of inherited make macros
e cmtshow uses gives the ordered and flattened set of used packages
® cmtshow constituents lists the package’s constituents
e cmtshow path lists the effective search path for packages.
e cmtshow strategies shows the current setup of various functidd®lTstrategies.
e cmtshow setup combines in one display the resulusies ,tags andpath
10 - Selecting a specific configuration

A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

the operating system (suchlasux, Windows, ...)

the platform (such asitel , Compag, Sun, etc...)

the sub-project into which a package is inserted

the choice of the compiler (such@gst+ , egcs, CC, etc...)

options used for compiling (such agtimizer, debugger, etc...) or linking

the context specifications (selecting a particular version of a firmware, selecting a database
server, ...)

the site itself

the context of a constituent during its rebuifgeration

Carefully describing this configuration is essential both for maintenance operations (so as to
remember the precise conditions in which the package was built) and when the development area
is sharedbetween machines running different operating systems, or when a project has to be
deployed on several sites.

10.1 - Describingaconfiguration

CMTrelies on several complementary conventions or mechanisms for this description and
the associated management. All these conventions rely on the conceptigdirationtags.

® Atag is a symbol that describes one aspect of the configuration.

® A tag can bactivewhen the corresponding aspect of the configuration is true or
inactiveotherwise

® The set of active tags represents the complete configuration known by CMT, and can be
visualized with themt show tags command

® Tags can be combined using logical expressions to formstsagiations

1. Some aspects of the configuration - and their associated tags - are automatically
deduced from some standard environment variables that the user is expected to specify
(typically using sheltcommands):

21

® CMTCONFIGlescribes the current settings for producing binary objects. One
default value is provided automatically by CMT, but generally project will
override it to apply specific conventions.

The default value is computed by CMT in the
${CMTROOT}/mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type
and the opebrating system type (using a mixing oftitteane standardJNIX
command with various operating system specific definitions such dd¢-the
baseds sysname command)

e CMTSITEcharacterizes the current site. Its syntax is complétsdy

o CMTEXTRATAGRay contain a space-separated list of additional tags to
systematically activate

Note that theCMTBINvariable which represents the current binary installation of
CMT itself does NOT correspond to aay.

2. Some aspects of the configuration represents the implicit knowledge CMT gets of the
current context:

® The value given by thenamestandard Unix facility is always a valid
configuration tag. (ed-inux)

® The current major version id of CMT is a valid tag and takes the @vifiv<n>
(eg.CMTv1)

® The current minor version id of CMT is a valid tag and takes the @viir<n>
(eg.CMTr18)

® The current patch id of CMT is a valid tag and takes the @kt p<n>(eg.
CMTp20030616)

® The current sub-project to which the current package belongs, and the various tags
automatically generated by CMT to qualify the strategy options.

® The current hardware understood as filled indim¢_hardware macro

The current OS understood as filled in tmat_system_version macro

® The version of the C++ compiler understood as filled in the
cmt_compiler_version macro

3. During amake session, each individual target being rebuilt may define its own context,
when thetarget_tag is set to the associated constituent, and this is materialized
with a dedicated tag naméarget_<constituent>

For instance, a package defines a libragnd an applicatioR , both in the default

group. Both constituents have thaarget tag option set. Thus, when the
standardnake command is run, then those two targets will be rebuilt successively (eg
AthenB). Then, during the build @& (and only then) the tag namedget A will

be active and during the build Bf, the tag nametarget B will in turn beactive.

22

library A -target_tag A.cxx
application P -target_tag P.cxx

macro_append cppflags " target_A "-DA" target_P "-DP"

4. During the execution of agction , a specific context is created, which is
materialized with a dedicated tag nant@djet <action> , very similarly to the
target tags for constituents.

5. User defined tags can be explicitly or implicitly activated:

e explicitly from thecmt command line, using théag=<tag-list> option
e explictly from requirements files using thpply tag <tag> syntax
e implicitly from requirements files using the tag association syntax, when a tag is
associated with an otherwise activated tag. One examplelintketag
associated by CMT itself with most Unix variants
The minimal tag set available from CMT can be visualized as follows (note that the exact
output will obviously not necessarily be the one presented in this document according to the
context effectively used):

> cd ${CMTROOQOT}

> cmt show tags

CMTv1 (from CMTVERSION) [1]

CMTr18 (from CMTVERSION) package CMT implies [CMTr14] [1]
CMTp20040701 (from CMTVERSION) [1]

Linux (from uname) package CMT implies [Unix] [2]
i686-rh73-gcc32-opt (from CMTCONFIG) [3]

CERN (from CMTSITE) [4]

CMT_prototypes (from PROJECT) excludes [CMT_no_prototypes] [5]
CMT_with_installarea (from PROJECT) excludes [CMT_without_installarea]
CMT_setup_config (from PROJECT) excludes [CMT_setup_no_config]
CMT_setup_root (from PROJECT) excludes [CMT_setup_no_root]
CMT_setup_cleanup (from PROJECT) excludes [CMT_setup_no_cleanup]
CMTr14 (from package CMT)

i686 (from package CMT) [6]

rh73 (from package CMT) [7]

gcc32 (from package CMT) [8]

Unix (from package CMT) excludes [WIN32 Win32] [9]

1. Implicit tags deduced from the current version of CMT

2. Implicit tag obtained from the uname command (note that there is an associated tag
defined here)

. The current value of CMTCONFIG

. The current value of CMTSITE

. The strategy tags

. Automatic detection of the hardware

. Automatic detection of the current OS

. Automatic detection of the C++ compiler version

. A'indirectly activated tag (associated with another a¢tigg

O 0O ~NO 01~ W

23

10. 2 - Defining the user tags

The user configuration tags can generally be specified though various complementary
mechanisms:

CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

sh> export CMTSITE=CERN

CMTSITE and CMTCONFIG can alternatively be specified using#ie statement in
a requirements file

set CMTSITE "CERN"
set CMTCONFIG "${CMTBIN}" sun "Solaris-CC-dbg"

Additional tags may also be associated with other tags, usirtgghstatement (in a
requirements file):

tag newtag tagl tag2 tag3

which means that:
O newtag defines a tag (inactive by default)
O whennewtag is active, then both tagl, tag2 and tag3 are simultaneously active

Tags may be declared esclusiveusing theag_exclude syntax.

tag_exclude debug optimized

This example implies that the two taggbug andoptimized should never become
active simultaneously.

Tags are assigned priorities according to the way they have been defined. The priority
is particularly useful for specifying exclusion. The tag association promotes the priority
of the associated tags to the priority of the defining tag. The following decreasing
priorities are currently defined by CMT:

tag specified in the command line using the -tag=<tag-list> option
tag deduced from CMTCONFIG

tag defined in a requirements file using thg syntax

tag deduced from CMTSITE

tag deduced fromname

tags deduced from the version of CMT

ok whNPE

10. 3 - Activating tags

By default, CMTCONFIG uname andCMTSITE (also nhamed system tags) are always
active.

The tag associated with the current project name as well as those describing the strategy
properties of all projects are also alwaysive.

24

The target tags associated with constituents (whetidtget tag option was set on
them) or with actions are automatically activated during the build of the constituent or during the
execution of thection.

It is possible tactivateother tags through the following argumentaiy cmtcommand:
® -tag=<tag-list>

will cleanup the complete current tag set, and activate the new tags (the system tags are
restored).

® -tag add=<tag-list>
will add to the current tag set the tags specified in the comma separated list
® -tag remove=<tag-list>

will remove from the current tag set the tags specified in the comma sepistated

Beware that giving these arguments generally make the selected tag set active only
during the selected command. Therefore two different CMT commands run with
different tag sets will generally yield different results.

However it's often useful to state that a given tag or tag set should be active. This can be
obtained by the followingnechanisms:

1. Forcing a tag in a requirements file using tigply tag syntax

Eg the following syntax installed in a requirements file will force thddag:
tag_apply foo

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr18 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)

Default (from Default)

foo (from package Foo)

2. Implying a tag from another one using the tag associatyorax
tag Linux foo

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr18 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname) package Foo implies [foo]

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)

Default (from Default)

foo (from package Foo)

25

3. Through conventionally encoded valueCMTCONFIG
tag Linux-foo Linux foo

> export CMTCONFIG=Linux-foo

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr18 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-foo (from CMTCONFIG) package Foo implies [Linux foo]
A (From PROJECT)

Default (from Default)

Linux-i686 (from package CMT) package CMT implies [Linux]
foo (from package Foo)

The current active tag set can always be visualized usirgpthehow tags command.

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr18 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)

Default (from Default)

> cmt -tag_add=tagl,tag2,tag3 show tags

CMTv1 (from CMTVERSION)

CMTr18 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)

tagl (from arguments)

tag2 (from arguments)

tag3 (from arguments)

Default (from Default)

Typical usages of those extra tags:

when using special compiler options (e.g. optimization, debugging, ...)
for switching to different compilers (e.gcc versus the native compiler)
when one uses a special debugging environment suoswe or Purify

when using special system specific features (such as whether one uses thread-safe
algorithms or not)

All symbol definitions providing specific values triggered by the active selectors will be
selected, such as:

macro_append cppflags " \
debug "-g"

26

11 - Working on a package

In this section, we'll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are continuingxbmpleof theFoo
package already used in this document.

11.1 -Workingon alibrary

Let's assume, as a first example, thatkbe packagés originally composed of one library
libFoo.a itself made from two source$00A.c andFooB.c . A shared flavour of the
library libFoo.so orlibFoo.sl or libFoo.dll) is alsoforeseen.

The minimal set of branches provided®WIT(once themt create operation has been
performed) for a package includes for the sources amtnt for theMakefilesand other
scripts.

The various tool€MTprovide will be fully exploited if one respects the roles these branches
have to play. However it is always possible to extend the default underst@ndiiggets on
the package by appropriate modifiers (typically by overriditaqdardnacros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a software package.

We first have to create the two source files intostfte branch (typically using our
favourite text editor). Then a description of the expected library (ie. built from these two
source files) will be entered into thequirements file. The minimal syntax required in
our example will be

csh>cd ../cmt
csh> vi requirements Q)
library Foo FooA.cxx FooB.cxx

1. the requirements file located in themt branch of the package receives the
description of thidibrary component. This is done using diwary statement.

Thecmt create command had generated a simdiekefile (or NMake file) which is

generaly sufficient for all standard operations, si@b&lcontinuously and transparently
manages the automatic reconstruction of all intermediate makefile fragments. We therefore
simply and immediately execute gmakdakws:

...vl/cmt> gmake QUIET=1

------ > (Makefile.header) Rebuilding constituents.make

------ > (constituents.make) Rebuilding setup.make Linux-i686.make [1]
setup.make ok

------ > (constituents.make) Rebuilding library links

------ > (constituents.make) all done

------ > (constituents.make) Building Foo.make [2]

Library Foo

------ > (constituents.make) Starting Foo

------ > (Foo.make) Rebuilding ../Linux-i686/Foo_dependencies.make [3]

rebuilding ../Linux-i686/F00A.0
rebuilding ../Linux-i686/FooB.o
rebuilding library

------ > Foo : library ok

27

------ > Foo ok

Installing library libFoo.so into /home/arnault/mydev/InstallArea/Linux-i686/lib
installation done [4]

------ > (constituents.make) Foo done

all ok.

Linux-i686.make ok

gmake[2]: ‘config’ is up to date.

gmake[2]: ‘all’ is up to date.

1. Some intermediate makefile fragments are automatically built to reflect the current
effective set of Makefile macros deduced from the configuration (read from the
requirements file). These fragments are automatically rebuilt (if needed) each
time one of the requirements file changes.
2. Each component of the package (be it a partidideary or a particulaexecutable
will have its ownmakefilefragment (named

./${CMTCONFIG}/<name>.[n]mak[e]). This dedicatethakefiletakes care of
filling up the library and creating the shared library (on the systems where this is
possible).

3. The directory which is used for the binaries (i.e. the results of compilation or the
libraries) has been automatically created by a generic f@iget) which is defined
within [N]Makefile.header . A new binary directory will be created each time a
new value of th€ MTCONFI@nvironment variable is defined otaa is provided on
the command line tmake .

4. An automatic installation mechanism is applied for all successfully built binaries.

or, for nmake:

...vl/cmt> nmake /f nmake

This mechanism relies on some conventionatrosand incrementaargetsused within

the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It's quite important to understand the list of possible customization macros, since
this is the main communication medium betw&Tand the package manager. See the
completetable of those conventional macro when you want to interact with the standard

CMT behaviour.

However, it is also possibble to use a simplified and platform independent form to build a
constituent

...vl/cmt> cmt make

This syntax is identical on all platforms, and also does not requirenainyconfig nor
source setup operation

11.2 -Workingon an application

Assume we now want to add a test program to our development. Then we create a
FooTest.cxx source, and generate the associated makefile (specifying that it will be an
executable instead of a library) :

28

csh> cd ../src
csh> emacs FooTest.cxx

csh>cd ../emt
csh> vi requirements

;pplication FooTest FooTest.cxx
So that we may simply build the complete stuff by running :

> cmt make QUIET=1

------ > (Makefile.header) Rebuilding constituents.make

------ > (constituents.make) Rebuilding setup.make Linux-i686.make
setup.make ok

------ > (constituents.make) Rebuilding library links

------ > (constituents.make) all done

------ > (constituents.make) Building Foo.make

Library Foo

------ > (constituents.make) Starting Foo

------ > Foo : library ok

installation done

------ > (constituents.make) Foo done

------ > (constituents.make) Building FooTest.make

Application FooTest

------ > (constituents.make) Starting FooTest

------ > (FooTest.make) Rebuilding ../Linux-i686/FooTest_dependencies.make
rebuilding ../Linux-i686/FooTest.o

rebuilding ../Linux-i686/FooTest.exe

------ > FooTest ok

Installing application FooTest.exe into /home/arnault/mydev/InstallArea/Linux-i686/bin
installation done

------ > (constituents.make) FooTest done

all ok.

Linux-i686.make ok

gmake[2]: ‘config’ is up to date.

gmake[2]: ‘all’ is up to date.

Which shows that a prograRooTest.exe has been built from our sources. Assuming
now that this program needs to accesd-he library, we’ll just add the following
definition in the requirements file :

macro Foo_linkopts " -IFoo "\
WIN32 " $(FOOROOT)/$(Foo_tag)/Foo.lib "

TheFoo_linkopts conventional macro will be automatically inserted within the
use_linkopts macro. And the shared library location will be automatically set to the
installationareas.

It is also possible to select extra tag sets when running gmake as follows (in this example we
first cleanup the previous build and rebuild with debug options added to the compiler and
linker commands)

> cmt make clean
> cmt make CMTEXTRATAGS=debug

29

Like all other make macros used to build a componentdioelinkopts will be
specified within the requirements which gives several benefits:

e variants of the macro definition can be provided

® monitoring features AEMTsuch as themt show macro Foo_linkopts
command can be used later on

® macros defined this way may be later on inherited by client packages whicisevill
our package.

11.3 -Workingon atest or external application

It is also possible to work ontastor externalapplication, ie. when one does not wish to
configure the development for this application usidT. Even in this case, it is possible to
benefit from the packages configured usiigTby partially usingCMT, just forused
relationships.

Here, no special convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to describerggairements file
theuserelationships, as well as theake macro definitions, quite similarly to the package
entirely configured usinGMT.

Most of the options provided by tleent user interface are still available in these conditions.

12 - Defining a document gener ator

In a Unix environment, documents are built usimake (well generally itgnuflavour) or

nmake in Windows environments. The basic mechanism provid&Mirelies onrmake
fragmentpatternscontaining instructions on how to rebuild document pieces. Many such
generators are provided BMTitself so as to take care of of the most usual cases (e.g.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones providelbyThis mechanism

is very similar to the definition or re-definition ofacrosor environment variables in that every
new generator has to be first declared irgguirements file belonging to a packad€MT
actually declares all its default generators within rsquirements file), allowing all its

client packages to transparently acquire the capacity to generate documents of that sort.

CMTmanages two categories of constituents:
1. ApplicationsandLibraries are handled using pre-defined make fragments (mainly related
with languages) and behaviour.
2. Documentoffer a quite general framework for introducing completely new behaviours
through user-defined make fragments. This includes actually generating documents, but also
simply performing an operation (in which case sometimes nalogaiments produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types.

30

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes named "document-style"), which corresponds
to a dedicated make fragment of that name. Then, when specifietbauaent statement, this

make fragment will bénstanciatedonce or several times (typically once per source file) to

construct a complete and functional make fragment, containing one main target. Both the resulting
make fragment and the make target will have the name cbtistituent.

12.1 - Anexample: thetex document-style

This section discusses one simple example (the production of postscript from latex files)
available in the standar@MTdistribution Kit.

Converting a latex source file into a postcript output implies to chain two text processors,
with an intermediate d¥ormat.

The fragment described here exactly performs this sequence, taking care of intermediate file
deletion. The document style is named "tex" (the associated fragment shown here and named
"tex" is actually provided bZMTitself, and can be looked at in

${CMTROOT}/fragments/tex D

tex
${CONSTITUENT} :: ${FILEPATH}/${NAME}.ps

${FILEPATH}/${NAME}.dvi : ${FULLNAME}
cd ${doc}; latex ${FULLNAME}

${FILEPATHYS${NAME}.ps : ${FILEPATH}Y/${NAME}.dvi
cd ${doc}; dvips ${FILEPATH}/${NAME}.dvi

${CONSTITUENT]clean ::
cd $(doc); /bin/rm -f ${FILEPATH}/${NAME}.ps ${FILEPATH}/${NAME}.dvi

® They are declared in tl&MT's requirementdile as follows :
make_fragment tex -header=tex_header

where:
1. "tex" represents both the fragment name and the document style.

2. the-header=tex_header option indicates that the generated makefile
fragment will first include this header (which is actually an empty file in this case)

® A user package willing to apply this behaviour will have to include imgtpirements
file a statement similar to the following:

document tex MyDoc -s=../doc docl.tex doc2.tex

where:
1. The first parameter "tex" is the document-style
2. The second parameter "MyDoc" is used for building the constituent’s makefile

31

(under the name MyDoc.make) and for providing the make target "MyDoc".
3. The other parameters (docl.tex and doc2.tex) are the sources of the document.
Explicit location is required (since default is currently defined to be ../src)
4. The constituent’s makefile MyDoc.make is built as follows :
1. Install a copy of th§CMTROOT/fragments/make_header generic
fragment
2. Install a copy of th€éCMTROOT/fragments/tex_header fragment
3. For each of the sources, install a copy of the fragment "tex"
4. Install a copy of th&éCMTROOT/fragments/cleanup_header
fragment

The result for our example is:

——==—=—===== MyDOC,make

Document MyDoc
#

Generated by
#

help ::
@echo 'MyDoc’

docl_dependencies = ../doc/docl.tex
doc2_dependencies = ../doc/doc2.tex

MyDoc :: ../doc/docl.ps

../doc/docl.dvi : $(doc)docl.tex
cd ${doc}; latex $(doc)docl.tex

../doc/docl.ps : ../doc/docl.dvi
cd ${doc}; dvips ../doc/docl.dvi

MyDocclean ::
cd $(doc); /bin/rm -f ../doc/docl.ps ../doc/docl.dvi

MyDoc :: ../doc/doc2.ps

../doc/doc2.dvi : $(doc)doc2.tex
cd ${doc}; latex $(doc)doc2.tex

../doc/doc2.ps : ../doc/doc2.dvi
cd ${doc}; dvips ../doc/doc2.dvi

MyDocclean ::
cd $(doc); /bin/rm -f ../doc/doc2.ps ../doc/doc2.dvi

clean :: MyDocclean
cd.

MyDocclean ::

32

12.2 - Howtocreateand install a new document style

This section presents the general framework for designing a docgerarator.

1. Select a name for the document style. It should not clash with existing ones (use the
cmt show fragments for a complete list of document types currently defined).

2. A fragment exactly named after the document style name must be installed into a
subdirectory nameftagments below thecmt branch of a given package (which
becomes therovider package).

3. Optionally, two other fragments may be installed into the same subdirectory, one of
them will be theneaderof the generated complete fragment, the other will beailgr

4. Those fragmentsiustbe declared in theequirementsfile of the provider package as
follows:

make_fragment <fragment-name> [options...]

where options may be :

-suffix=<suffix> provide the suffix of the output files (without the dot)

provide another make fragment meant to be prepended t¢ the

-header=<header> . .
constituent’s make fragment.

provide another make fragment meant to be appended to|the

-trailer=<trailer> .
trailer=<trailer constituent’s make fragment.

install the automatic generation of dependencies into the

-dependencies constituent’s make fragment

Once a fragment is installed and declared, it may be used lpli@mypackage (ie a
packageausingthe provider), and queried upon using tbenmand

> cmt show fragment <fragment name>
which will show where this fragment is defined (ie. in which of the psettages).
Thecmt show fragments commands lists all declared fragments.

If a package re-defines an already declared make fragment, ie it provides a new copy of the
fragment (possibly with new copies of the header and the trailer), and declares it inside its
requirements file, then this package becomes the new provider for the dostyteent

For building a fragment, one may use pre-defined generic "templates" (which will be
substituted when a fragment is copied into the final constitueratizfile).

33

CONSTITUENT the constituent name

CONSTITUENTSUFFIX the optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)
FILENAME the complete source file name (only including the suffix)
NAME the short source file name (without directory and suffix)
FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

(only available in headers) the list of outputs, formed by a set 0
OBJS expressions :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

Templates must be enclosed betw#grand} or betweer$(and) and will be substituted
at the generation time. Thus, if a fragment contains the following text :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

then, the expanded constituent’s makefile will contain (refering to the étextiple)
$(MyDoc_output)docl.ps

Which shows that make macros may be dynamically generated.

34

———_—

.. /cmt /fragments/ B f;‘f—— __hhh"“ma
. /doc_header - Client package ~~_

v [A0C ———m—— N
——— /doc_trailer {

R

= doc (a.Ixt) | w

‘ doc header

package doc provider —
Wl

{ "T-\“‘umal:e_fragment doc_header

\ ——make fragment doc trailer

“——make fragment doc \

\ —-headgr=doc_header \

\ —trailer=doc trailer

A doc (btxt)

A doc (c.txt)

Provider package
e

‘ doe trailer

miydoc, make

-

package docjclient

document doc mydoc a.txt b.txt c.txt /
“'\-_._‘___\—_ _o—""'/

3 - The architecture of documegeneration.

12.3 - Examples
1. rootcint

It generates C++ hubs for the Cint interpreter in Root.

—======== rootcint
(src){NAME}.cc :: ${FULLNAME}
${rootcint} -f (src){NAME}.cc -c ${FULLNAME}

2. agetocxx and agetocxx_header.

It generates C++ source files (xxx.g files) from Atlas’ AGE description files.

——=—=—=—=—=== agetocxx
output=$(${CONSTITUENT}_output)

$(output) S{NAME}.cxx : $(${NAME}_cxx_dependencies)

(echo '#line 1 "${FULLNAME}"; cat ${FULLNAMEY}) > Atmp/${NAME}.gh.c

gcc -E -1$(output) $(use_includes) -D_GNU_SOURCE \
cd ${output}; $(agetocxx) -0 ${NAME} -ohd ${FILEPATH}\
-ohp ${FILEPATH} /tmp/${NAME}.gh

rm -f tmp/${NAME?}.gh /tmp/${NAME}.gh.c

cd $(bin); $(cppcomp) $(use_cppflags) $(S{CONSTITUENT} cppflags) \
$(${NAME}_cppflags) ${ADDINCLUDE} $(output)${NAME}.cxx

cd $(bin); $(ar) $(${CONSTITUENT}lib) ${NAME}.0; /bin/rm -f ${NAME}.o

35

========= agetocxx_header
${CONSTITUENT}lib = $(bin)lib${CONSTITUENT}.a
${CONSTITUENT}stamp = (bin){CONSTITUENT}.stamp
${CONSTITUENT}shstamp = (bin){CONSTITUENT}.shstamp

${CONSTITUENT} :: dirs ${CONSTITUENT}LIB
@/bin/echo ${CONSTITUENT} ok

${CONSTITUENTILIB :: $(${CONSTITUENT}ib) $(${CONSTITUENT}shstamp)
@/bin/echo ${CONSTITUENT} : library ok

$(${CONSTITUENT}ib) $(${CONSTITUENT}stamp) :: ${OBJS}
$(ranlib) $(${CONSTITUENT}ib)
cat /dev/null >$(${CONSTITUENT}stamp)

$(${CONSTITUENT}shstamp) :: $(${CONSTITUENT}stamp)
cd $(bin); $(make_shlib) $(tag) ${CONSTITUENT}\
$(${CONSTITUENT}shlibflags); \
cat /dev/null >$(${CONSTITUENT}shstamp)

It must be declared as follows :

make_fragment agetocxx -suffix=cxx -dependencies -header=agetocxx_header

13 - Thetoolsprovided by CMT

The set of conventions and tools providedddTis mainly composed of :

e the syntax of therequirements file,

e and the generamt user interface, available in thegr branch of th&€CMTpackage.
Thesetupscript found in th&CMTinstallation directory actually adds its location to the definition
of the standartNIX PATHenvironment variable in order to give direct access to the ecnatin
user interface.

The sections below will detail the complete syntax of tregjuirements file since it is the
basis of most information required to run the tools as well as the main commands available
through thecmt user interface.

13.1 - Therequirementsfile

13.1.1 - Thegeneral requirements syntax

® A requirements file is made sfatements each describing one named
configuration parameter.

Statements generally occupy one single line, but may be split into several lines
using the reverse-slash character (in this case the reverse-slash charattier
the last character on the line or must be only followed by spgamacters).

36

Each statement is composed of words separated with spaebsilations.
The first word of a statement is the name of the configuratoameter.

The rest of the statement provides the value assigned to the configuration
parameter.

® \Words composing a statement are separated with space or tab characters. They
may also be enclosed in quotes when they have to include space or tab characters. Single or double
guotes may be freely used, as long as the same type of quote is used on both sidesdf the

Special characters (tabs, carriage-return and line-feed) may be inserted into the
statements using an XML-basednvention:

tabulation <cmt:tab/>
carriage-return <cmt:cr/>
line-feed <cmt:lf/>

e Comments : they start with thiecharacter and extend up to the end of the current
line.

The complete syntax specification is availabldppendix.

13. 2 - Theconceptshandled in therequirementsfile

13.2.1 - Thepackage structuring style

13.2.2 - Meta-information : author, manager

The author and manager names

13.2.3 - package, version

The package name and version. These statements areiptoetfyational.

13.2.4 - Constituents: application, library, document

Describe the composition of a constituent. Application and library correspond to the
standard meaning of an application (an executable) and a library, while document
provides for a quite generic and open mechanism for describing any type of document
that can be generated fraaurces.

Applications and libraries are assigned a name (which will correspond to a generated
make fragment, and a dedicated mtget).

37

A document is first associated with a document type (which must correspond to a
previously declared make fragment). The document name is then used to name a dedicated make

fragment and a makarget.

Various options can be used when declariegrastituent:

to

on

D
(7]

e

\1°4

S

S

on

er

option validity usage
-s= directory any switch to a new default directofg)
Y= regex an specify an exclusion regular expression
= egexp y be applied to the sourcék)
K= regex an specify a finer selection regular express
gexp y to be applied to the sourcéy
-no_share libraries do not generate the shared library
_no_static libraries QO not generate the static librgnot yet
implemented
i applications, ,
prototypes libraries do generate the prototype header files
-no_prototypes gppllgatlons, do not generate the prototype header fil¢
libraries
o generate a check target meant to execu
-check applications . o
the rebuilt application
_ install the constituent within this group
-group=<group-name> any
target
suffixe<suffix> applications, | provide a suffix to names of all object fil¢
- libraries generated for this constitueg@)
L explicitly import for this constituent the
. _ applications,
-import=<package> NS standard macros from a package that ha
libraries) .
the-no_auto_imports option set
construct a specific tag named
target ta an target_<constituent> . This tag
get_tag y will only be active during the make sess
for this constituent4)
When used in a Windows environment,
-windows applications | generates a GUI-based application (rath
than a console application)
<var-names=<var-value> any define a variable and its value to be give

to the make fragmeif8)

38

The sources of the constituents are generally specified as a set of file names with
their suffixes, and are by default expected from.#lsec directory

library A A.cxx B.cxx

Then it is possible to change the default search location as well as to use a
simplified wildcardingsyntax:

library A -s=A *.cxx -s=B *.cxx

® -s=A means that next source files should be taken searched from

..Isrc/A
® -s=B means that next source files should be taken searched from
..Isrc/B . Note that this new specificationnst relative to the previous

-s=A but relative to the default search pathrc
e *cxx indicates that all files with &xx suffix in the current search path
should be considered

It's also possible to select or exclude files using regular expressions from general
wildcardingtechniques:

library A -s=A -x=[0-9] *.cxx -s=B -k="B *.cxx

® The exclusion specificatiox=[0-9] added to the statement will exclude
all files from../src/A containing anumberin their name.

® The selection specificatiok="B added to the statement will select files
from ../src/B strictly starting with thé letter.

When several constituents need to share source files, (a typical example is for
building different libraries from the same sources but with different compiler
options), it is possible to specify an optional output suffix with the
-suffix=<suffix> option. With this option, every object file name will be
automatically suffixed by the character strirguffix> ", avoiding name
conflicts between the different targets, as in the folloveixgmple:

library AXt -suffix=Xt *.cxx
library AXaw -suffix=Xaw *.cxx

It's possible to specify in the list of parameters one or more pairs of

variable-name =variable-value (without any space characters around
the"=" character), such as in the nexample:
make_fragment doc_to_html (1)

document doc_to_html Foo output=FooA.html FooA.doc (2) (3)

1. This makefile fragment is meant to contain some text conversion actions and
defines adlocumentype nameddoc_to_html

2. This constituent exploits the document tylme to_html to convert the
sourceFooA.doc into an html file.

3. The user defined template variable narnatbut is specified and assigned

39

the valueFooA.html . If the fragmentoc_to_html contains the string
${output} , then it will be substituted to this value.

For any constituent that has tharget_tag option set, a dedicatedg named
target_<constituent> is automatically constructed by CMT. This tag
becomes active during the construction of this constituent when msikg , and
therefore can be used as any other tag to select symbol values, or other
configurationparameters.

13.2.5 - Groups

Groups permit the organization of the constituents that must be consistently built at the
same development phases or with similar constraints.

Each group is associated with a make target (of the same name) which, when used in
the make command, selectively rebuilds all constituents ofjtbigp.

The default group (into which all constituents are installed by default) is rained
therefore, running make without argument, activates the default targgt (ig.

As a typical usage of this mechanism, one may examplify the case in which one or
several constituents are making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might require a controled re-build.
This is especially useful for having these constituents only rebuilt on demand rather
than rebuilt automatically when the default make commanghis

One could, for instance specify within the requirements file
Constituents belonging to the default all group

... constituents without group specification ...
library Foo *.cxx

Constituents belonging to specific groups

library Foo-objy -group=objy < sources making use of Objectivity >
application FooGUI -group=graphics < sources making use of Qt >
application BarGUI -group=graphics < sources making use of Qt >

(Beware of the position of the -group option which must be located after the constituent
name. Any other position will be misunderstoodChyT)

Then, runninggmake all would only rebuild the un-grouped constituents, whereas
running

> gmake objy
> gmake graphics

in the context of th&oo package would rebuildbjy related ographicsrelated
constituents.

40

13.2.6 - Languages

Some computer languages are known by defaukMy(C, C ++, Fortran77
Java ,lex ,yacc). However it is possible to extend this knowledge to any other
langage.

We consider here languages that are able to produce object filesduoces.

Let's take an example. We would like to install support for Fortran90. We first have to
declarethis new language support@iTwithin therequirements file of one of

our packages (Notice that it's not at all required to mo@if§Titself since all clients of

the selected package will inherit the knowledge oflmguage).

The language support is simply nanfedran90 and is declared by the following
statement:

language fortran90 \
-suffix=f90 -suffix=F90 \ [1]
-linker=$(f90link) \ [2]
-preprocessor_command=$(ppcmd)

1. The recognized suffixes for source files will8@ andF90

2. The linker command used to build a Fortran90 application is described inside the
macro name@0link (which must defined in this requirements file but which
can also be overridden lglients)

The language support being nanfiedran90 , two associated make fragments are
expected, one under the nafodgran90 (for building application modules), the
other with the naméortran90_library (for modules meant to be archived), both
without extension.

These two fragments should be installed infthgments sub-directory of the cmt
branch of oupackage.

Due to the similarity of the example to fortran77, we may easily provide the expected
fragments simply by copying the f77 fragments foun@MmT(thus the fragments
${CMTROOT}/fragments/fortran and

${CMTROOT}/fragments/fortran_library

These fragments make use of tbemp macro, which holds the fortran77 compiler
command (through thier macro).

macro for 77\

.n.wlacro fcomp "$(for) -c $(fincludes) $(fflags) $(pp_fflags)"

We therefore simply replace these macros by new macros ri@fwanp andfo0 |,
defined adollows:

macro f90 "f90"

.rﬁ.acro f90comp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

41

Some languages (this has been seen for example in the IDL generators in Corba
environments) do provide several object files from one unique source file. It is possible to specify this

feature through the (repetitivedxtra_output_suffix option likein:
language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

where, in this case, two object files are produced for each IDL source file, one named
<name >.0 the other namedname >_skel.o

13.2.7 - Symbols

This is a generic concept supporting the notion of valued symbols. Several alternate
semantics are implemented by these symbols, all specified using the same syntactic
schema, but leading to different behaviours or interpretatio@\by.

® Theset keyword is translated into an environment variable definition.

® Themacro keyword is translated intoraake 's macro definition.

® Thepath keyword is translated into a prioritizedth-like environment variable,
which is supposed to be composed of search paths separated with colon characters
"’ (on Unix) or semi-colon characters (on Windows). It is generally
recommended to construct such a variable by iteratively concatenating individual
items one by one usimgath_append or path_prepend

® Theaction keyword is translated into a shell command definition, that can be
activated using themt do <action> command or the associatethke
target.

e Thealias keyword is translated into a shell alias definition,

Variants of these keywords are also provided for modifying already defined symbols.
This generally happens when a package needs to modify (append, prepend or subtract)
an inherited symbol (ie. which has been already defined by goas&dge).

The translations occur while running either the setup scripts (for alias, set or path) or
the make command (for macro amctions).

All these definitions follow the sanpattern:

42

symbol : symbol-typesymbol-namelefault-valug tag-exprvalue ... |
symbol-type : definition
| modification
definition © macro
| set
| path
| action
| alias
modification : macro_prepend
| macro_append
| macro_remove
| macro_remove_regexp
| macro_remove_all
| macro_remove_all_regexp
| set _prepend
| set_append
| set_remove
| set_remove_regexp
| path_prepend
| path_append
| path_remove
| path_remove_regexp

tag-expr . tag[&tag ...]

® The symbol-name identifies tlsgmbol.

® Values are generally quoted strings (using either simple or double quotes). They
may be unquoted only if they are composed of one single non-empty word, since
the general syntax parsing relies on space sepavatreld.

® The default-value is mandatory (although it can be an empty string) optionally
followed by a set of tag/value pairs, each representing an alternate value for this
symbol.

43

® Each tag-value pair describes an alternate value to be used when the corresponding
tag or tag-expression étive.

® \When several alternate values are specified through several tag-value gfiriss the
matching condition is selected. Therefore one should always specify the most contraining condition

first.

® The removal operations can be specified using either plain sub-strings or regular
rexpressions. One should notice that even fop#te_remove_regexp
operation, full regular expression are expected rather than file-system wild candiages.

e Thepath_remove keyword is slightly specialized since it removes all
individual search paths thabntainthe specifiegub-string.

Be aware that there is only one name space for all kinds of symbols. Therefore, if a
symbol was originally defined usingw@acro statement, usinget_append to
modify it will produce an undefined result (and a warnimgssage).

Thetagexpression is used to select one alternate value to replace the default value,
using the following matchingule:

® The first matching condition in the ordered list of alternate values is selected,
ignoring the following ones
® A tag expression matches when all tags in the expressi@ctare.

Examples of such definition are :

package CMT

macro cflags "\

LynxOS-VGPW2 "-X"\

insure "-std1"\

HP-UX "+Z"\

hp700_ux101 "-fpic -ansi"\

alpha "-std1" \

alphat "-std1" \

SunOS "-KPIC"\

WIN32 'Inologo /DWIN32 /MD /W3 $(includes) /c’
macro pp_cflags "\

LynxOS-VGPW2 "-DVGPW2"\

HP-UX "-D_HPUX_SOURCE"\

alphat "-DCTHREADS" \

AIX ".D_ALL_SOURCE -D_BSD"\

Linux "-Di586"
macro ccomp "$(cc) -¢ $(includes) $(cdebugflags) $(cflags) $(pp_cflags)" \

VisualC "cl.exe $(cdebugflags) $(cflags) $(pp_cflags)"
macro clinkflags

macro clink "$(cc) $(clinkflags)" \
VisualC "link.exe /nologo /machine:1X86 "

a4

13.2.7.1 - actions

Actions are one of the possible symbols. Their definition as said previously follow
the generic conventions for any symbol type, and they implement the concept of a
generic shell command.

An example of a symplaction:
action directory "Is $(dir_options)" WIN32 "dir $(dir_options)"

Like other symbols, actions can be visualized usingthieshow actions or
thecmt show action <name>command.

Some specialized mechanims are available on actions, in order to execute in
various ways the corresponding sloalimmands.

Actually two operating modes asepported:
1. Immediate mode

This can be done via tleent do command:

> cmt <action-name>

or, when the action name conflicts with a native CMT keyword,

> cmt do <action-name>

This mode immediately executes the specified command, after locally setting
all environment variables known from the currpatkage.

2. Throughmake

> cmt make <action-name>

® Actions are always associated with a make target of the same name

® Action are always defined under a constitummoupnamed
cmt_actions . This means that action targets are never activated by
default. Instead they must be explicitly called.

® Action targets can be made dependent to other make targets (or vice
versa), similarly to other constituents (libraries, applications,
documents), using thename>_dependencies macro.

Examplel

library A ...

action B ...

macro B_dependencies " A"

In this example when doimgmake B, the libraryA will be rebuilt first.

Example2

45

library A ...
action B ...
macro A_dependencies "B "

In this example when doirgmake A (or simplygmake), the actiorB
will be executed first.

13.2.8 - use

Describe the relationships with other packages; the generic syntax is

use <package> [<version> [<offset>]]

Omitting the version specification means that the most recent version (ie. the one with
highest ids) that can be found from the search path list will be automasieldtted.

Theoffsetspecification can be relative (i.e. on Unix it does not contain a leading '/’
character). In this case, this offset is systematically considered when the package is
looked for in the search path list. But it can also be absolute (ie. with a leading '/’
character on Unix), in which case this path takes precedence over the standard search
path list (sSe€CMTPATH).

Examples of such relationships are

use OnX v5r2
use CSet v2r3
use Gb v2rl

A package installed in a sub-directory one step below the root :
use CS v3rl virgo

Back to the default root :
use Cmv7r3

Get the most recent version of CERNLIB
use CERNLIB

By default, a set of standard macros, which are expected to be specified by used
packages, is automatically imported from them (seel¢tailedlist of these macros).
This automatic feature can be discarded usingrtbeauto_imports option to the
use statement, or re-activated using-théo_imports . When it is discarded, the
macros will not be transparently inherited, but rather, each individual constituent
willing to make use of them will have to explicitly import them using the
-import=< package > ogption.

When ause statement is in grivate _ section, the corresponding used package will
only be reached if whe@MToperations occur in the context of the holder package.
Otherwise (ie if the operation occurs in some upper level client package), then this
privately used package will be entirely hiddé€mhis behaviour follows a very similar
pattern to the private or public inheritance©#+). Suppose we have the following
organization:

46

package A

use Bvl
use Dvl

package B

private
use Cvl
use Dvl

® all operations done in the context of package B sei#both packages C and D
® all operations done in the context of package A s@iboth packages B and D,
but not packag€

13.2.9 - patterns

Often, similar configuration items are needed over a set of packages (sometimes over
all packages of a project). This reflects either similarities between packages or generic
conventions established by a project ¢eam.

Typical examples are the definition of the search path for shared libraries (through the
LD_LIBRARY_PATHenvironment variable), the systematic production of test
applicationsetc.

The concept of pattern proposed here implements this genericity. Patterns may be either
global, in which case they will be systematically applied onto every packafpeabr
(the default) in which case they will be applied on demand only bypadage.

The general principle of a pattern is to associate a templated (settoffatement(s)

with the pattern name. Then every time the pattern is applied, its associated statements
are applied as if they were directly specified in the requirements file, replacing the
template with its current value. If several statements are to be associated with a given
pattern, they will be separated with the " separator pattern (beware of really
enclosing the character between two spad®aracters).

The general syntax for defining a pattern in a requirementsfile

pattern : pattern[-global] pattern-name&mt-statement

[; cmt-statement..]

Pattern templates are names enclosed betweenahd> characters. A set of
predefined templates are automatically provide@CM:

a7

package |the name of the current package

PACKAGEthe name of the current package in upper tase

version | the version tag of the current package

path the access path of the current package

project the project name of the current package

Then, in addition, user defined templates can be installed within the pattern definitions.
Their actual value will be provided as arguments to the apply_patsement.

User defined templates that have not been assigned a value when the pattern is applied
are simply ignored (ie. replaced with an emgtiyng).

Someexamples:
1. Changing the standard include segvakh.

The standard include path is set by defaui{tqpackage>_root}/src

However, often projects need to override this default convention, and typical
example is to set it to a branch named with the package name. This convention is
easily applied by defining a pattern which will apply the include_path statement as
follows:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a package naniatkA will expand this pattern dsllows:

include_path ${PackA_root}/PackA/
2. Providing a value to theD_LIBRARY_PATHenvironmenwariable

On some operating systems (eg. Linux), shared library paths must be explicited,
through an environment variable. The following pattern can automate this
operation:

pattern Id_library_path \
path_remove LD_LIBRARY_PATH "/<package>/" ; \
path_append LD_LIBRARY_PATH ${<PACKAGE>ROOT}/${CMTCONFIG}

In this example, the pattern was not set global, so that only packages actually
providing shared libraries would be concerned. These packages will simply have
to apply the pattern dsllows:

apply_pattern Id_library_path

The schema installed by this pattern provides first a cleanup of the
LD_LIBRARY_PATHenvironment variable and then the new assignment. This
choice is useful in this case to avoid conflicting definitions from two different
versions of the sanmgackage.

48

3. Installing a systematic test application indickages

Quality assurance requirements might specify that every package should provide a
test program. One way to enforce this is to build a global pattern declaring this application. Then every

make command would naturally ensure its aghuasence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern (<other_sources>) permits the package to
specify extra source files to the test application (the pattern assumes at least one
source file<package>test.cxx).

13.2.9.1 - Applying a pattern

According to whether thaglobal qualifier was used in the pattern definition,
the aplication mode will be completely different.
1. Normalpatterns

Such patterns must be applied explicitly usingapely_pattern
construct

Doing so, it is possible to specify custmization values for user defined
templateparameters

pattern TA macro <base>AAA "AAA"

apply_pattern TA base=abc
apply_pattern TA base=def

In theapply_pattern syntax, it is even possible to simmgnmitthe
keyword itself, and thus using the pattern name as a plain CMT keyword. The
previous example becomes:

TA base=abc
TA base=def

This can be seen as a wayetdendthe CMT language. Notice that there is a
risk of a conflict between the primary CMT keywords and pattern names
then. Suppose that a pattern name is defined to be exactly a primary CMT
keyword. In this case, the syntax parser will always understand this name as
the CMT primary keyword, and thus won’t override the original syntax.

When this (not recommended) situation occurs, it is therefore required to use
the full notation with an explicapply_pattern keyword, so as to avoid

any possiblembiguity.

2. Global patterns(ie when theglobal qualifier is used

In this case, the pattern is automatically appliealitpackages that
effectively see the pattern definition, which includes all clients of the package
defining thepattern.

49

Another consequence of the automatic application of the pattern, is that it is
not possible to give values to parameters. Therefore it is not recommended to design global patterns

with user definegharameters.

Conversely it is possible to inhibit the automatic application of a global
pattern in a particular package by using the follovatagement:

ignore_pattern <name>

13.2.10 - cmtpath_patterns

These patterns act quite similarly to tiiebal patterns previously described, ie they
defines a set of CMT statements to be applied in a generic way. The difference is that
instead of being applied mackages they are automatically applied to all entries in the
CMTPATHist.

Only few system parameters can be used here:
® <path> which stands for any entry in the CMTPATH list.

® <project> which stands for the project name associated with an entry in the
CMTPATH list.

As an example suppose wefine

path CMTPATH "/ProjectA"
path_append CMTPATH "/ProjectB"

cmtpath_pattern \
macro_prepend pp_cppflags " -I<path>/InstallArea/include "

this will assemble ond option (towards the preprocessor) per entry in CMTPATH,
implementing a mechanism for a multiple installation area for header files. In the
example above the resulting macro i

-1/ProjectA/InstallArea/include -1/ProjectB/InstallArea/include

This can be combined with the standard antbmationacros(automatically setup for
all used packages)

<package>_cmtpath
<package>_offset

which provide the CMTPATH entry and the directory offset in this CMTPATH for all
usedpackages.

13.2.11 - branches

Describe the specific directory branches to be added while configuripgtkage.

branches <branch-name> ...

These branches will be created (if needed) at the same levelcasttiheanch. Typical
examples of such required branches manblede ,test ordata .

50

13.2.12 - Strategy specifications

Users can control the behaviour@Tthrough a set of strategy specifications. The
current implementation provides such control over several aspects

1. The buildstrategy
This controls some aspects of the building process.

The following keywords aravailable:

C source files will automatically produce a header file

prototypes containing a prototype of all global entry points

)

No production of automatic prototype header files for

no_prototypes sources

The installation area mechanisms are activated. This
with_installarea implies applying the cmtpath_patterns that may be
defined (eg in CMT itself)

without_installarea The installation area mechanisms are inhibited

2. The setupstrategy

This controls various actions that may be performed during the sourcing of the
setupscripts.

The following keywords aravailable:

An environment variable <PACKAGE>CONFIG will be generated for

config all packages in the dependency chain

no_config The <PACKAGE>CONFIG environment variable is not generated

An environment variable <PACKAGE>ROOT will be generated fol all

root packages in the dependency chain
no_root The <PACKAGE>ROOT environment variable is not generated

The automatic cleanup operation to the current installation area is
cleanup

launched

The automatic cleanup operation to the current installation area is|not
no_cleanup

launched

The strategy specifications are setup on a per-project basis. This means that they are
generally applicable to all packages of a given sub-project, and can be oerridden in
other sub-projecs of the same softwaase.

51

Every strategy setting defines two mutually exclusive tags and activates theenof

<project>_<have_item>
<project>_<have_not_item>

Examples

<project>_prototypes
<project>_no_prototypes
<project>_with_install_area
<project>_without_install_area
<project>_config
<project>_no_config
<project>_root
<project>_no_root
<project>_cleanup
<project>_no_cleanup

13.2.13 - setup_script, cleanup_script

Specify user defined configuration scripts, which will be activated together with the
execution of the maigetup andcleanup scripts.

The script names may be specified without any access path specification, in this case,
they are looked for in themt or mgr branch of the package itself. They may also be
specified without anycsh or.sh suffix, the appropriate suffix will be appended
accordingly when needed. Therefore, when such a user configuration script is specified,
CMTexpects that the corresponding shell scripts actually exist in the appropriate
directory (thecmt branch by default) and is provided in whatever format is appropriate
(thus suffixed bycsh and/or.sh).

13.2.14 -include _path

Override the specification for the default include search path, which is internally set
${< package >_root}/src

Specifying the valuaone (a reserved CMT keyword) means that no default include
search path is expected from CMT, and thusl n@ompiler option will be generated

by default (generally this means that user include search paths should be specified via
explicitinclude_dirs instead).

13.2.15 -include dirs

Add explicit specifications for include accesshs.

13.2.16 - make fragment

This statement specifies a specialized makefile fragment, used as a building brick to
construct the final makefile fragment dedicated to builcctirestituents.

52

There are basically three categories of such fragments :
1. some are provided bgMTitself (they correspond to its internal behaviour)
2. others handle the language support
3. and the last serve as specialized document generators.

The fragments defined @MTcanbe:

® those used to construct the application or library constituents. Their semantic is
standardized (they are all associated wildnguage statement in the CMT
requirements file).

c c_library cpp cpp_library lex lex_library fortran fortran_library yacc
yacc_library jar jar_header java java_copy java_header check_java
cleanup_java

e those used internally by CMT as primary building blocks for assembling the
makefile. (Generally developers should not see them).

cleanup_objects application constituent application_header
constituents_header buildproto protos_header 0s9_header dependencies
check_application dependencies_and_triggers check_application_header
document_header library cleanup library_header cleanup_application
library_no_share cleanup_header make_header cleanup_library

® some document generators whinhybe used if needed, but are not mandatory:

installer installer_header readme readme_header readme_trailer
readme_use dvi tex generator generator_header

® those used to generate configuration files for MSVisualC++:

dsp_windows_header dsw_all_project dsw_all_project_dependency
dsw_all project_header dsw_all_project_trailer dsw_header dsw_project
dsw_trailer dsp_all dsp_application_header dsp_contents
dsp_library_header dsp_shared_library _header dsp_trailer

Language fragments should provide two forms, one for the applications (in which case
they are named exactly after the language name eg c, cpp, fortran) and the other for the
libraries (in which case they have thiédrary suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++, Fortran, Java, Lex, Yacc) is
provided by CMT itself but it is expected that projects add new languages according to
their needs. Event if the make fragment meant to be the implementation of a language
support is declared, the language support itself must be declared too, using the
language statement

53

All make fragments are provided as (suffixless) files which must be located in the
fragments sub-directory inside the cmt/mgr branch of one package. They must also
be declared in the requirements file (throughrtfake fragment statement) so as to
bevisible.

A package declaring, and implementing a make fragment may override a fragment of

the same name when it is already declared by a used package. This implies in particular that any
packageamay freely override any make fragment provided@Titself (although in

this case a deep understanding of what the original fragment deesnsmended).

Makefile fragments may take any form convenient to the document style, and some
special pre-built templates (see #ppendix) can be used in their body to represent
running values, meant to be properly expanded at actual generatian time

CONSTITUENT the constituent name

FULLNAME the full source path

FILENAME the source file name without its path

NAME the source file name without its path and suffix

FILESUFFIX the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

13.2.17 - public, private

Thepublic orprivate keywords introduce sections containgplic or private
statements. Thisoncerns:

® the definition of symbols

® the specification of use relationships
e the declaration of make fragments

e the declaration gbatterns

Public definitions are meant to be exported to any client of the package whereas private
ones are only available for the packageeloppeie. when the current directory is
within the packagéself.

Public use relationships expose the complete sub-tree to the package clients, whereas
private ones entirely hide the sub-tree, expanding it only when the operator really acts
from within the context of the package. It should be noticed that private use
relationships are completely unvisible from clients, which implies that none of the
definitions (not only symbols) will beet.

However, themt broadcast andcmtshow uses commands are configured to
always ignore the private specification and therefore will always traverse the sub-trees
whether they are public or private (in order to ensure the hierdegggndencies)

54

13.2.17.1 - Scoping sections

By using thepublic orprivate keywords, one definegopingsections. This
sections continues until:

e another scoping statement is found, which simply switch to this new mode

e anend private orend_public keyword is found, in which case the
scoping mode is reset to the state prior to the previous matatiage or
public statement. This latter mechanisms permits in particular to define
autonomous scoping sections witipiaittern s ..

By defaultcmt commands operate according to the scoping specifications found
in the requirements files of the reachable packages. le. in the current package all
statements are considered whether being prublic or private, while in used
packages, only public statements eoasidered.

This standard behaviour though is not applied when rurgmttg broadcast or
cmt show uses , and in this case all statements public or private, are always
considered, even in usedckages.

However it is always possible to override the default behaviours by using the
-private or-public modifier to thecmt command:

® -private

Force the command to consider all definitions even those installed in private
sections

® -public

Force the command to really mask the privsgetions

13.2.18 -tag, apply_tag

Thetag keyword provides tag definitions, while thpply tag keywordactivatesa
tag.

A tag is a token which can be used to select particular valisysrdifols.

Some tags are automatically constructed by CMT according to its knowledge of the
context (see thisectionfor more details), but they may be also defined within a
requirementsile as follows:

tag Foo [1]
tag Bar Foo FooA FooB [2]
apply_tag Bar [3]

1. This simply declares a tag. This does not activate ddfgult

55

2. This construct declares that the thg® , FOoOA andFooB will become active if
Bar becomes active. Note that this statement implicilglaresFooA andFooB

3. This activates thBar tag. Tags that have been associated with it (in [2]), will all
become active asell.

Running the setup script (through gwurcesetup.[c]shor call setup.batommand)
can also receive tag specifications using-thg=tag-listoptions.

13. 3 - Thegeneral cmt user interface

This utility (a shell script combined withG++ application) provides a centralised access to
various commands to tl@MTsystem. The first way to usent is to run it without
argument, this will print a minimal help text showing the basic commands and their syntax :

> cmt command [option...]
command :
none
awk
broadcast [-select=list] [-exclude=list] [-local] [-global] [-begin=pattern] [-depth=n] <command> :
apply a command to [some of] the used packages
build <option> : build actions. (Try cmt help build)
build constituent_makefile <constituent> : generate constituent Makefile fragment
build constituents_makefile : generate constituents.make
build dependencies : generate dependencies
build library_links : build symbolic links towards all imported libraries

build make_setup : build a compiled version of setup scripts
build msdev : generate MSDEV files

build CMT_pacman : generate PACMAN manifest file for CMT
build vsnet : generate VS.NET files

build 0s9_makefile : generate Makefile for OS9

build prototype : generate prototype file

build readme : generate README.html

build tag_makefile : generate tag specific Makefile

build temporary_name : generate a name for a temprary file

build triggers <constituent> : generate library trigger file

build windefs <library_name> : generate def file for Windows shared libraries

check <option> : check actions. (Try cmt help check)

check configuration : check configuration

check files <old> <new> : compare two files and overrides <old> by <new> if different
check version <name> : check if a name follows a version tag syntax

co | checkout : perform a cvs checkout over a CMT package
cleanup [-csh|-sh|-bat] : generate a cleanup script
config : generate setup and cleanup scripts

create <package> <version> [<path>] : create and configure a new package
create_project <project> <name> [<path>] : create and configure a new project
cvsbranches <module> : display the subdirectories for a module
cvssubpackages <module> : display the subpackages for a module
cvssubprojects <module> : display the subprojects for a module

cvstags <module> . display the CVS tags for a module

do <action> [<param>=<value>] ... : Execute an action

expand model <model>

filter <in> <out> : filter a file against CMT macros and env. variables
help | -help | --help : display this help
load

lock [<p> <v> [<path>]] : lock a package
remove <package> <version> [<path>] : remove a package version
remove library_links : remove symbolic links towards all imported libraries

56

run '<command>’ : apply a command
run_sequence <sequence file> : execute a cmt equence file
set version <version> : generate a version file in the current package

set versions : generate version files into packages
setup [-csh|-sh|-bat] : generate a setup script

show <option> : query actions. (Try cmt help show)
show action <name> : a formatted action definition
show action_value <name> : araw action definition
show action_names : all action names

show actions . all action definitions

show all_tags . all defined tags

show applied_patterns : all patterns actually applied
show author . package author

show branches : added branches

show clients : package clients

show cmtpath_patterns : cmtpath_patterns
show constituent <name>: constituent definition
show constituent_names : constituent names

show constituents : constituent definitions
show cycles . cycles in the use graph
show fragment <name> : one fragment definition
show fragments . fragment definitions

show groups : group definitions

show include_dirs
show language <name> : language definition

show languages : language definitions
show macro <name> : a formatted macro definition
show macro_value <name> : a raw macro definition
show macro_names . all macro names
show macros . all macro definitions
show manager : package manager
show packages : packages reachable from the current context
show path . the package search list
show pattern <name> : the pattern definition and usages
show pattern_names : pattern names
show patterns . the pattern definitions
show projects . project definitions
show setup . setup definitions
show pwd . filtered current directory
show set <name> . aformatted set definition
show set_names . set names
show set_value <name> : araw set definition
show sets . set definitions
show strategies . all strategies (build & version)
show tags . all currently active tags
show use_paths <pack> : all paths to the used package
show uses : used packages
show version . version of the current package
show versions <name> : visible versions of the selected package
system : display the system tag
unlock [<p> <v> [<path>]] : unlock a package
version : version of CMT
global options :
-quiet : don't print errors
-use=<p>:<v>:<path> : set package version path
-pack=<package> : set package
-version=<version> : set version
-path=<path> : set root path
-f=<requirement-file> : set input file
-e=<statement> : add a one line statement
-tag=<tag-list> : select a new tag-set

-tag_add=<tag-list> : add specific comma-separated tag(s)

57

-tag_remove=<tag-list> : remove specific comma-separated tag(s)
-with_version_directory : reset to default structuring style
-without_version_directory : switch structuring style

-cleanup : activate install area cleanup

-no_cleanup : inhibit install area cleanup

The following sections present the detail of each available command.

13.3.1 - cmt broadcast

This command tries to repeatedly execute a shell command in the context of each of the
used package of the current package. The used packages are listed wsirtg the

show uses command, which also indicates in which order the broadcast is

performed. When thall_packages option, the set of packages reached by the
broadcast is rather the same as the one shown loynthehow packages

command, ie alCMTpackages and versions available throught the cutTtPATH

list.

Typical uses of thibroadcastoperation couldbe:

csh> cmt broadcast cmt config
csh> cmt broadcast - gmake
csh> cmt broadcast ’(cd ../; cvs -n update)’

The loop over used packages will stop at the first error occurence in the application of
the command, except if the command was preceded by a ’-' (minus) sign (similarly to
the makeconvention).

It is possible to specify a list of selection or exclusion criteria set onto the package path,
using the following options, right after theoadcast keyword. These selection
criteria may be combined (eg one may combindgnandselectmodifiers)

sh> cmt broadcast -begin=Cm gmake Q)

sh> cmt broadcast -select=Cm gmake 2

sh> cmt broadcast -select="/Cm/ /CSet/’ gmake (3)

sh> cmt broadcast -select=Cm -exclude=Cmo gmake (4)

sh> cmt broadcast -local gmake (5)
sh> cmt broadcast -depth=<n> gmake (6)
sh> cmt broadcast -global gmake)
sh> cmt broadcast -all_packages gmake (8)

According to the option, the loop will only operateato:

1. the first package which path contains the sttfdm” , and then all other
reachable packages (in case other specifiers are used)

2. the packages which path contains the stiwp"

3. the packages which path contains either the stfigy/" or the string
"ICSet/"

4. the packages which path contains the stt@ig" , but which does not contain the
string"Cmo"

5. the packages at the same level as the current package

6. the packages at the same level as the current package or among the <n> first
entries in theCMTPATHist

7. the packages at any level of the CMTPATH search list

58

8. all the packages and versions currently available througGNHEPATHist

13.3.1.1 - Specifying the shell command

A priori any Unix or DOS shell command can be specified in a boadcast
command. However, it's important to understand the order of the various parsing
actions:

1. The current shell first parses the complete command line

2. CMT catches all possible options given to the broadcast command itself

3. CMT then gets the rest of the command line and makes it the shell command
to be executed during the broadcast scan.

4. This command line may be subject to template substitution (see below) by
CMT

5. Eventually the command line is passed to the local shell (which may then
perform additional parsingctions)

Considering this complex sequence of parsing, it may be appropriate to selectively
enclose the shell command passed to the broadcast action into quotes. It may even
be sometimes useful to have two levelgobtes

13.3.1.2 - Templatesin the shell command

Similarly to what exists in thpatternmechanism, some standaemnplatedvalues

can be embedded inside the command to be executed by the broadcast action.
They take a standard form ofemplate-name> . These templates acquire

their value on each package effectively reached during the broadcast scan, and the
effective value is substituted before launching the command. The possible
templatesare:

The element in the CMTPATH search list where the

<package_cmtpath> package has been found

<package_offset> The directory offset to cmtpath
<package> The package name
<version> The version of the package

The next example shows a typical broadcast command listing the header files as
expected in the conventional locatiokxpackage>

> cmt broadcast 'Is ../<package>’

[.]

Now trying [Is ../GenzModuleEvent] in /.../GenzModuleEvent/.../cmt (149/609)
.

CVS KineHepMcmap.h

.

Now trying [Is ../Tauola_i] in /.../Tauola_i/.../cmt (150/609)
.

CVS Jaki.icc Tauola_i.h Taurad.h config.h rn_tau.h

59

Jaki.h ReadPDGtable.h Tauola_i.icc Taurad.icc polhep.inc tauola_cblk.inc
.

Now trying [Is ../NavigationEvent] in /.../NavigationEvent/.../cmt (151/609)
.

CVS INavigable.h INavigationCondition.h INavigationSelector.h
INavigationToken.h NavigationToken.h

(]

One should note that when templates are used in a broadcast command, it's
important to enclose the command in quotes so as to inhibit any possible
parsing of the<> syntax by the shell.

13.3.2 - cmt build <option>

The actions associated with the build options are generally meant for internal use only,
and users will rarely (if ever!) apply themanually

All build commands are generally meant to change the current package (some file or set
of files is generated). Therefore a check against conflicting locks (ie. a lock owned by
another user) is performed by all these commands prior to execute

® [-nmake] constituent_makefile <constituent-name >

This command is internally used B Tin the standard Makefile.header
fragment. It generates a specific makefile fragment (nafoedstituent-name
>.make) which is used to re-build this fragment.

All such constituent fragments are automatically included from the main Makefile.

Although this command is meant to be used internally (and transparen@y by
when the make command is run, a developer may find useful in very rare cases to
manually re-generate the constituent fragment, usingdnsnand.

The-nmake option (which must precede the command) provides exactly the
same features but in a Windows/nmake context. In this case, all generated
makefiles are suffixed byymake instead ofmake for Unix environments. The
main makefile is expected to be naniMidake and the standard header is named
NMakefile.header

® [-nmake] constituents_makefile

This command is internally (and transparently) use@kMin the standard
Makefile.header fragment, and when the make command is run, to generate a
specialized make fragment containing all "cmt build constituent_makefile"
commands for a given package.

The-nmake option (which must precede the command) provides exactly the
same feature but in a Windows/nmake context. In this case, all generated
makefiles are suffixed byyimake instead ofmake for Unix environments. The
main makefile is expected to be nanMdake and the standard header is named
NMakefile.header

60

dependencies

This command is internally (and transparently) use@kpfrom the constituent
specific fragment, and when the make command is run, to generate a fragment containing the

dependencies required by a source file.

This fragment contains a set of macro definitions (one per constituent source file),
each containing the set of found dependencies.

library_links

This command builds a local symbolic link towards all exported libraries from the
used packages. A package exports its libraries througiptiekage

> libraries macro which should contain the list of constituent names
corresponding to libraries that mustdogorted.

library Foo ...
library Foo-utils ...

macro Foo_libraries "Foo Foo-utils"

The correspondingmt remove library_links command will remove all
these links.
msdev

This command generates workspace (.dsw) and project (.dsp) files required for the
MSDev tool.

vsnet

This command generates workspace and project files required for the Visual.net
tool.

0s9_makefile

This command generates external dedicatallefilefragments for each individual
component of the package (ie. libraries or executable applications) to be used in
0OS9 context. It generates specific syntaxes foQB8operatingsystems.

The output of this tool is a set of files (hamed with the components’ name and
suffixed by.os9make) that are meant to becludedwithin the main
Makefile that the developer has to wraayhow.

The syntax of themt build 0s9_makefile utility is as follows :
sh> cmt build 0s9_makefile <package>

prototype <source-file-name>

This command is internally (and transparently) use@klfrom the constituent
specific fragment, and when the make command is run, to generate prototype
header files from C source files.

61

The prototype header files (named <file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C source file.

The effective activation of this feature is controled by the build strateGat
The build strategy may be freely and globally overridden from r@apirements
file, using thebuild_strategy cmt statement, providing either the
"prototypes" or the "no_prototypes" values.

In addition, any constituent may locally override this strategy using the
"-prototypes" or "-no_prototypes" modifiers.

® readme

This command generates a README.html file into the cmt branch of the
referenced package. This html file will include

O atable containing URLSs to equivalent pages for all used packages,
O a copy of the local README file (if it exists).
® tag_makefile

This command produces onto the standard output, the exhaustive list of all macros
controled byCMT, ie. those defined in the requirements files as well as the
standard macros internally built BMT, taking into account all usgrackages.

13.3.3 - cmt check configuration

This command reads the hierarchy of requirements files referenced by a package, check
them, and signals syntax errors, version conflicts or other configuration problems.

An empty output means that everything is fine.

13.3.4 - cmt check files <r eference-file> <new-file>

This command compares the reference file to the new file, and substitues the reference
file by the new one if they are different.

If substitution is performed, a copy (with additional extensiaw) is produced.

13.3.5 - cmt checkout ...

See thegparagrapton how to use cvs together witlMT, and more specifically the
details oncheckoutprations.

13.3.6 -cmt co ...

This is simply a short cut to tlent checkout command.

62

13.3.7 - cmt cleanup [-csh|-sh]

This command generates (to the standard output) a set of shell commands (either for
csh or sh shell families) meant to unset all environment variables specified in the
requirementsfiles of the used packages.

This command is internally used in the cleanup.[c]sh shell script, itself generated by the
cmt config command.

13.3.8 - cmt config

This command (re-)generates the setup scripts and the manimal Makefile (when it does
not exist yet or have bedost).

csh> cd ~/Packages/Foo/vl/cmt
csh> cmt config

To be properly operated, one mageadybe in thecmt ormgr branch of a package
(where therequirementsfile can befound).

This command also performs some cleanup operations (eg. removing all makefile
fragments previously generated). Generally speaking, one may say that this command
restores the CMT-related files to their original state (ie before any document
generation)

The situations in which it is useful to run this commanst

When the setup or cleanup scripts have been lost

When the minimal Makefile have been lost

When the version dEMTis changed

After restoring a package from CVS

After having manually changed the directory structure of a package (using a

manual copy operation, or renaming one of its parent directory, such as the version
directory)

It should be noted however that when usaatjons, such as the one defined by default
to launchmake tools neithecmt config norsource setup are required any
longer.

13.3.9 - cmt create <package> <version> [<area>|

This command creates a new package or a new versiopaakage
csh> cmt create Foo v1
or:

csh> cmt create Foo vl ~/dev

63

In the first mode (ie. without thereaargument) the package will be created in the
defaultpath.

The second mode explicitly provides an altermeati.
A minimal configuration is installed for this ngeackage:

A src and acmt branch

A very minimal requirements file
The setup and cleanup shell scripts
The minimalMakefile

13.3.10 - cmt expand model [-strict] <model-string>

This command produces on the standard outpeipansiorof the model string given
in the argument.

The expansion consisits:

® Expanding macros referenced in the model string using the standard nctétions
or${} or%%

> cmt expand model "abcd $(CMTVERSION) efgh”
abcd v1r18p20050501 efgh

® Recursivelyexpanding text files with parameters. The model string must then take
a conventional XML-based syntax:

> cmt expand model " text < file-name parameter =value .../> text
or
> cmt expand model -strict " text <cmts: file-name parameter =’ value '.../> text .."
or
> cmt expand model -strict " text <cmtv: file-name parameter = v1v2V3... > text .."
Where:

O file-nameis the name of a file declared using theke_fragment

statement

O parameter =value specifies the value of a parameter that will be
substituted in the file when referenced usingbparameter) notation.
Several such values may be specified in one model string

O the-strict form is useful to handle XML files, and file names must be
prefixed(namespacellby a special keywordmts: orcmtv:

cmts: Perform a unique substitution over one copy of the file

Perform a multiple substitution over N copies of the file, taking the N

cmtv: space-separated values specified for the parameters

64

The following examples will explain some of the mechanisms.

We consideA containing:
A$(P1)B$(P2)C
And B containing:

i<cmts:A P1="j P2="${P2}/>k

> cmt expand model "abcd <A P1=XXX/> efgh" [1]

abcd AXXXBC efgh
> cmt expand model -strict "abcd <cmts:A P1="XXX' P2="YYY'/> efgh" [2]

abcd AXXXBYYYC efgh
> cmt expand model -strict "abcd <cmts:A P1="XXX'/> <cmts:B P2="YYY’/> efgh" [3]

abcd AXXXBC iAjBYYYCk efgh

> cmt expand model -strict "abcd <cmtv:A P1="X Y Z' P2="YYY'/> efgh" [4]
abcd AXBYYYCAYBCAZBC efgh
> cmt expand model -strict "abcd <cmtv:A P1="X Y Z' P2="\"\" <cmt:null/> ZZZ'/> efgh" [5]

abcd AXBCAYBCAZBZZZC efgh

1. A simple expansion using the non-strict model syrdxis substituted, but
$(P2) becomes empty

2. The same using the strict model. Here P2 is valued.

3. A more complex model, using a recursive expansion descritli2dhowing
how parameter values are transmitted

4. A model showing the multiple expansion. Hexereceives 3 value®2 has
only one value. The largest vector (3 values) dictates the number of copies.
smaller vectors are completed by empty values.

5. A model showing the multiple expansion with empty values in a vector. Here
P1 receives 3 value®2 has also 3 values, but only one non-empty. This
examples show the two possible means of specifying empty vector values:
using eithek"\" or the reserved keywortmt:null/>

® The file expansion is recursive. This means that files specified in model elements
will themselves be considered as model texts (ie following the same syntax), and
be expanded in turn. This processus is entirely recursive, with no limit to the
depth. Thestrict option, when selected is propagated during¢eearsion.

13.3.11 - cmt filter <in-file> <out-file>

This command reads <in-file>, substitutes all occurences of macro references (taking
either the forn$(macro-name) or${ macro-name }) by values deduced from
corresponding macro specifications found in teguirementsfiles, and writes the

result into <out-file>.

This mechanism is widely internally used ®MT, especially for instanciating make
fragments. Then, users may use it for any kind of document, including maual
generation of MSDev configuration files, etc...

65

13.3.12 -cmt help | --help

This command shows the list of options of ¢net driver.

13.3.13 - cmt lock [<package> <version> [<area>]]

This command tries to set a lock onto the current package (or onto the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then install a small text file naméxtk.cmt into thecmt/mgr branch
of the package, containing the following text:

locked by <user-name> date <now>

3. Run a shell command described in the macro ndaskd command meant to
install physical locks onto all files for this version of this package. A typical
definition for this macro could be:

macro lock_command "chmod -R a-w ../*"\
WIN32 “attrib /S /D +R ../*"

13.3.14 - cmt remove <package> <version> [<area>]

This command removes one version of the specified package. If the package does not
contain a conflicting lock, and if the user is granted enough access rights to remove
files, all files below the version directory will be definitively removed. Therefore this
command should be used with as much care as possible.

The arguments needed to reach the package version to be removed are the same as the
ones whic had been used to create

If the removed version is the last version of this package, (and only if its directory is
really empty) the package directory itself will heleted.

13.3.15 -cmtremovelibrary links

This command removes symbolic links towards all imported libraries which had been
installed using themt build library_links command. This command is
generally transparently executed when one gimake clean

13.3.16 - cmt run [shell-command]
This command runs any shell command, in the context of the current package.

In particular all environment variables defined in requirements file are first set before
running the command. This may be seen as a generic applicatiaher.

66

This may be combined with the global optiepack= package |,
-version= version , -path="access-path , to give a direct access to any
package context.

13.3.17 - cmt set version <version>

This command creates and/or fills in tregsion.cmt file for a package structured
without the version directory.

This command has no effect when run in the context of a package struweitiréte
versiondirectory

This command must be run while being in the context of one gatkage.

13.3.18 -cmt set versions

This command applies recursively ttrat set version ... command onto all
used packages using a broadcast operation.

Packages reached during the broadcast scan acquire their version from the original use
statement. This is this specified version which will be stored insidestiséon.cmt
files

13.3.19 - cmt setup [-csh|-sh]-bat]

This command generates (to the standard output) a set of shell commands (either for
csh, sh or bat shell families) meant to set all environment variables specified in the
requirementdiles of the used packages.

This command is internally used in thetup.[c]sh orsetup.bat shell script,
itself generated by themt config command.

13.3.20 - cmt show <option>
® all_tags
This command displays all currently defined tags, even when not cuaeivg
® applied_patterns
This command displays all patterns actually applied in the cyseskiage
® author
® branches

® clients <package> [<version>]

67

This command displays all packages that express an exjshgtatement onto
the specified package. If no version is specified on the argument list, then all uses of that package are

displayed.

Note that the search on clientsst performed recusively. Thus only clients
explicitly using the specified package will displayed.

constituent_names
constituents
cycles

This command displays all cycles in the use graph of the current package.
Although CMT smoothly accepts such cycles, it is generally a bad practice to have cycles in a use
graph, because CMT can never decide on the prefered entry point in the cycle, leading to somewhat

unpredictable results, eg in constructinguke_linkopts macro.

fragment <name>

This command displays the actual location where the specified make fragment is
currently found byCMT, taking into account possible overridd#afinitions.

fragments
Display the effective location of all declared make fragments
groups

This command displays all groups possibly defined in constituents of the current
package (using th@roup=< group-name > option).

languages
Display al languages declared using ldreguage keyword

macro <name>
set <name>
action <name>

This set of commands displays a quite detailed explanation on the value assigned
to the symbol (macro, set or action) specified as the additional argument. It presents in particular each
intermediate assignments made to this symbol by the hierarchy of used statements, as well as the final

result of these assignment operations.

By adding atag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a machine or an operating

system where this configuration is defined.

macro_value <name>
set_value <name>
action_value <name>

68

This set of commands displays the raw value assigned to the symbol (macro, set or
action) specified as the additional argument. It only presents the final result of the assignment

operations performed by used packages.

By adding atag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a machine or an operating

system where this configurationdsfined.

The typical usage of thehow macro_value command is to get at the shell
level (rather than within Makefile) the value of a macro definition, providing
means of accessing them (quite similarly to an environment variable) :

csh> set compiler=‘cmt show macro_value cppcomp'
csh> ${compiler}

macros
sets
actions

This set of commands extracts from tlrequirements file(s) the complete
set of symbol (macro, set or action) definitions, selects the apprdagate
definition (or uses the one provided in Heg=<tag> option) and displays the
effective symbol values corresponding to this tag.

This command is typically used to show the effective list of macros used when
running make and can be also used to build, as an argument list, the make
command as follows :

csh> eval make ‘cmt show macros’

This use otmt show macros is directly installed within the default target
provided in the standatdakefile.header file. Therefore if this file is

included into the packageMakefile , macro definitions provided in the
requirementsfiles (the one of the currently built package as well as the ones of
the used packages) will be expanded and provided as arguments to make.

By adding atag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without atcually going to a
machine or an operating system where this configuration is defined.

manager
packages

This command displays all packages (and all versions of them) currently reachable
through the currerdccesgathdefinition (which can be displayed using tiret
show path command).

path

This command displays the complete and effeaneespathcurrently defined
using any possible alternatey.

69

® pattern <name>

This command displays how and where the specified pattern is defined, and which
packages do apply

® patterns
This command displays all pattedefinitions.
® projects

This command displays the current knowledge of sub-project definitions and
settings. It shows the project names and their location (ie the corresponding item in
CMTPATH

> cmt show projects

PA (in C:\Arnault\test\tprojects\PC) (current)
Projectl (in C:\Arnault\test\tprojects\PB)

PA (in C:\Arnault\test\tprojects\PA\1.1)
Project2 (in C:\Arnault\test\tprojects\P0)
CMT (in C:\Arnault)

e pwd

This command displays a filtered version of the stangauadiunix command. The
applied filter takes into account the set of aliases installed in the standard
configuration file located iS{CMTROOT}/mgr/cmt_mount_filter

This configuration file contains a set of path aliases (one per line) each proposing a
translation for non-portable file paths (imposed by mount constraints on some
contexts).

e setup

This command combines in one go the outgut

> cmt show uses
> cmt show tags
> cmt show path

® strategies
® tags

This command displays all currentygtivetags, and what part of the configuration
actually activatethem

® uses

This command displays the use graph fo the current package. Private sections of
used packages are reached and considered. This behavior can be changed to
effectively hide the private sections in used packages by usinguhkc

modifier

70

> cmt -public show uses

A typical output produced by this commaisd

> cmt show uses

use GaudiPolicy v* [1]

use GaudiKernel v*

use GaudiPolicy v5r* [2]

use CLHEP v* (native_version=1.8.2.0) [3]

use ExternalLibs v4r*

#

Selection : [4]

use CMT v1r18p20050501 (/afs/cern.ch/sw/contrib)

use ExternalLibs v4r2p0 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5) [5]
use CLHEP v2r1820p0 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)
use GaudiPolicy v5r11p2 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)
use GaudiKernel v13r5pl (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)

1. The first section of the display (up to tBelection keyword) displays the
hierarchical use graph.

Use statements as specified in the requirements files are displayed, rather than
the result of the effective selection performedadT

2. Sub-uses are expanded only once and indented according to the depth in the
graph

3. Various precisions on the use statements are shown in the first section, such
as the scoping section, theo_auto_imports modifier, and theative
versionof this package, (when<package> native_version macro
has beemlefined)

4. The second section shows the effective ordered set of use statements resolved
by CMT according to the combined us@ecifications.

5. On every line the effective location of the found packagiisislayed.

The-quiet option may be used to remove the first section from the output so as
to only display a simple list of used packages, starting from the demgsst

® use_paths <target-package>

This command displays all possible paths between the current package and the
specified used targptickage.

In particular this will detect if a package has no access to another one, due to
private usestatements

® version
This command displays the version tag of the cuipankage.

® versions <name>

71

This command displays the reachable versions of the specified package, looking at
the current accesmths.

13.3.21 - cmt system

This command displays the current value assigned by default GMAEONFIG
environment variable.

13.3.22 - cmt unlock [<package> <version> [<area>] |

This command tries to remove a lock from the current package (or from the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then remove the text file namiedk.cmt from thecmt/mgr branch of
the package.

3. Run a shell command described in the macro nambxtk_command meant
to remove physical locks from all files for this version of this package. A typical
definition for this macro could be:

macro unlock_command "chmod -R g+w ../*" \
WIN32 "attrib /S /D -R ../*"

13.3.23 -cmtversion | --version

This command shows the current veriorCOAT, including (if applicable) the actual
patch level. This always corresponds to the corresponding CVS tag assigié to
sources.

13.3.24 - cmt cvstags <module>

(see the section drow tu useCVStogether withCMT for more details on this
command)

13.3.25 - cmt cvsbranches <module>

13.3.26 - cmt cvssubpackages <module>

13.3.27 - cmt cvssubprojects <module>

72

13.4 - Thesetup and cleanup scripts

They are produced by tlent config command and their contents is built according to
the specifications stored in theequirements file.

One flavour of these scripts is generated per shell fgesly , sh andbat), yielding the
following scripts:

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

The main sections installed within a setup script are :

1. Connection to the current version of tB¥Tpackage.
2. Setting the set of user defined public variables specified imgbairementsfile
(including those defined by all used packages). This is achieved by runnimgtthe
setup utility into a temporary file and running this temporary file.
3. Activation of the user defined setup and cleanup scripts (those specified using the
setup_script andcleanup_script statements).
It should be noted that these setup scriptaa@ontain machine specific information (due
to the online use of themt setup command). Therefore, it is perfectly possible to use the
same setup script on various platforms (as soon as they share the directories) and this also
shows that the configuration operation (tmet config command) is required only once
for a set of multiple platforms sharing a development area.

13.5 -cmt build prototype

This command is only provided for developmenCahodules. It generatesGheader file
containing the set of prototype statements for all public functions of a given module. Its
output is a file with the same name as the input source (given as the argument) and suffixed
with .ph .

The generated prototype header file is meant to be included whereever it is needed (in the
module file itself for instance).

A typical example of the use ot build prototype could be :

csh>cd ../src
csh> cmt build prototype FooA.c
Building FooA.ph

Runningcmt build prototype will only produce a new prototype header file if the
output is actually different from the existing one (if it exists) in order to avoid confusing
makechecks.

The effective use of this facility (which may not be appropriate in all projects) is controlled
by one option of the build strategy, which can take one of thedues:

73

build_strategy prototypes
build_strategy no_prototypes

In addition to this global strategy specification, each application or library may individually
override it using theprototypes or-no_prototypes options.

Lastly, the actual behaviour of the prototype generator is defined in the standard make macro
build_prototype (which default to call themt build prototype = command,
allowing a user defined behavious to tldature)

14 - Using cvstogether with CMT

Nothing special is apriori required IBMTwith respect to the use GVS. Nevertheless, one may
advertize some well tested conventions and practices which turned out to ensure a good level of
consistency between the twidlities.

Although none of these are required, ¢h&t general command provides a few utilities so as to
simplify the use of these practices. It should be noted that the added features provided by cmt rely
on the possibility tmueryCVS about the existinGMTpackages and the possible tags setup for

these packages. CVS does not by default permit such query operations (since they require to scan
the physical CVS repository). Therefa@® Tprovides a hook to CVS (based upon standard CVS
features - not patches) for this. This hook can be installed following a recipe explained in the
dedicatecappendix

14.1 - Importing a packageinto a cvsrepository

Generally, everything composing a package (belowéhsiondirectory and besides the

binary directories) is relevant to be imported. Then choosicgsamodulename is

generally done on the basis of the package name. Taking the previous examples, one could
import theFoo package as follows

csh>cd/Foolvl
csh> cvs import -m "First import" -1 alpha -1 hp9000s700 Foo LAL v1

In this example,

® we have ignored the currently existing binary directories (akptea and
hp9000s700)

® thecvs module name is identical to the package néroe)

® the original symbolic insertion tag is identical to the version identitr)

The choice of the module name can generally be identical to the package name. However,
some site specific management issues may lead to different choices (typically, a top
directory where groups of packages are gathered mimgéeed).

Conversely, using symbolic tags identical to version identifiers appears to be a very good
practice. The only constraint induceddws is that the symbolic tags may not contdat
characterg.”), whereas no restriction exist fradMTitself. Thus version identifiers like
v3r2 will be preferred to the3.2 form.

74

14. 2 - Checking a package out from a cvsrepository

Assuming the previous conventions on module name and version identifier have been
selected when importing a package, the following operations will naturally intervene when
one need to check a package out (typically to work on it or to install it on some platform) :

csh> cd <some root> Q)
csh> mkdir Foo)
csh> cd Foo

csh> cvs checkout -d vl Foo (3)
csh> cd vl/cmt

csh> cmt config 4)
csh> source setup.csh (5)
csh> [g]make (6)

1. one always have to select a root directory where to settle down this copy of the
extracted package. This may either be the so-cdééaliltroot or any other
appropriate directory. In both cases, the mext config operation will
automatically take care of this effective location.

2. creating a base directory with the package name is mandatory herenatigken into
account bycvs during thechaeckoubperation since one wants to insertykesion
branch in between.

3. the package is checked out into a directory named with the expected version identifier
exactly corresponding to the version currently stored i¥serepository.

4. then using themt config command (from themt branch) will update the setup
scripts against theequirements file and the effective current package location.

5. using this updated version of the setup script provides the appropriate set of
environment variables

6. lastly, rebuilding the entire package is possible simply usinfgiheake command.

The actions decribed just above (from number 2 to number 4 included) can also be
performed using themt checkout command.

> cd <some work area>
> cmt checkout [modifier ...] <package> ...

modifier :

-l Do not process used packages (default).

-R Process used packages recursively.

-rrev Check out version tag. (is sticky)

-d dir Check out into dir instead of module name.
-0 offset Offset in the CVS repository

-n Simulation mode on

-V Verbose mode on

-help Print this help

Thus the previous example would become:

csh> cd <some root>
csh> cmt checkout Foo
csh> cd Foo/vl/cmt
csh> source setup.csh
csh> [g]make

75

14.3 - Querying CVSabout someimportant infos

It is possible, using the commands :
® cmt cvstags <module>
® cmt cvsbranches <module>
® cmt cvssubpackages <module>
® cmt cvssubprojects <module>

to query theCVSrepository about the existing tags installed onto a géd8module, the
subdirectories and the subpackages (ilthEmeaning, i.e. when@@quirements file
exists).

> cmt cvstags Cm

V7ré v7rS v7rd vir3 virl v7
> cmt cvstags Co

v3r7 v3r6 v3

One should notice here that ttstags command can give informations about any type
of module, even if it is not managed in BB Tenvironment.

However, in order to let this mechanism operate, it is required to install some elements into
the physicalCVSrepository(which may require some access rights ibfo This

installation procedure (to be done only once in the life of the repositiory) can be achieved
through the followingcommand:

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

However, the details of the procedure is listed below (this section is preferably reserved for
system managers and can easily be skipped by stamskns):

1. copy thecmt_buildcvsinfos2.sh shell script into the management directory
${CVSROOT}/CVSROOTas follows :

sh> cp ${CMTROOT}mgr/cmt_buildcvsinfos2.sh ${CVSROOT}CVSROOT
2. install one special statement in fbginfo administrative file as follows :
sh>cd ...
sh> cvs checkout CVSROOT
sh>cd CVSROOT

sh> vi loginfo

.cmtcvsinfos $CVSROOT/CVSROOT/cmt_buildcvsinfos2.sh
sh> cvs commit -m "set up commitinfo for CMT"

14. 4 - Working on a package, creating a new release
This section presents the way to instanciate a new release of a given package, which happens

when the foreseen modifications will yield additions or changes to the application
programming interface of the package.

76

Then the version tag is supposed to be moved forward, either increasing its minor identifier
(in case of simple additions) or its major identifier (in case of changes).

The following actions should be undertaken then :

1. understand what is the latest version tag (typically by usingrtite cvstags
command). Let’s call ibld-tag

2. select (according to the foreseen amount of changes) what will be the next version tag.
Let's call itnew-tag

3. check the most recent version of the package in your development area :

sh> cd <development area>
sh> cvs checkout -d <new-tag> <package>

4. configure this new release, and rebuild it :

sh> cd <new-tag>/cmt
sh> cmt config

sh> source setup.csh
sh> [g]make

14.5 - Getting a particular tagged version out of CVS

The previous example presented the standard case where one guisttheentversion of
a given package. The procedure is only slightly modified when one wants to extract a
previously tagged version. Let's imagine thatFHo® package has evolved by several
iterations, leading to several tagged releases iovherepository (say2 andv3). If the

v2 release is to be used (e.g. for understanding and fixing a problem discovered in the
running version) one will operate as follows

csh> cd <some root>

csh> mkdir Foo

csh> cd Foo

csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt

csh> cmt config

csh> source setup.csh

csh> make

15 - Interfacing an external packagewith CMT

Very often, external packages (typically commercial products, or third party software) are to be
used by packages developped in the context dEM&environment. Although this can obviously
done simply by specifying compiler or linker options internally to the client packages, it can be
guite powerful to interface these so-caledernalpackages t€MTby defining aglue package,
where configuration specifications for this external packagdetedled.

Using this approach, one may :

i

e provide anicknamefor this external package,
® adapt the version tag convention consistently to the project, hiding the version tag
specificities of eg. commercial packages.
® provide compiler options using the the standard make mapaxskage>_cflags :
<package>_cppflags or <package>_fflags ,
® specify a set of search paths for the include files, usinopthede dirs statement,
® provide linker options using the the standard make magraskage>_linkopts
Let's consider the example of tPACSackage. This package is provided outside ok
environment. Providing a directory tree following Bl Tconventions (ie. a branch named after
the version identifier, then aimt branch) then arequirements file, containing (among
other statements not shown for the sake of clarity) :

package OPACS

include_dirs ${Wo_root}/include ${Co_root}/include ${Xx_root}/include \
${Ho_root}/include ${Go_root}/include ${Xo_root}/include

public
macro OPACS_cflags ~ "-DHAS_XO -DHAS_XM"
macro OPACS_cppflags " $(OPACS_cflags) "

macro OPACS_linkopts "$(Wo_linkopts) $(Xo_linkopts) $(Go_linkopts) \
$(Glo_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(Htmlo_linkopts) \
$(W3o_linkopts) $(Co_linkopts) $(X_linkopts)"

Then every package or application, client of DBACSackage would have just to provide a
use statement like :

use OPACS v3

This procedure gives the complete benefit of the use relationships between packages (a client
application transparently inherits all configuration specifications) while keeping unchanged the
original referenced package, allowing to apply this approach even to commercial products so that
they may be integrated in resource usage surveys similarly to local packages.

16 - Theinstallation area mechanism

CMT proposes and implements a flexible architecture for installation areas, meant to group the
results of the build process or any other information belonging to packages into shared disk
spaces. The typical usage of such installation areas is classical and expect to make only visible to
the clients of a given (sub-)project the results of the build process while hiding the details of the
packagesources.

the basics of the mechanisms supported by CMT ar®lbeving:
1.

All mechanisms are customizable on a per-project basis, so as to easily follow the project
specific conventions

78

However CMT proposes a minimal default behaviour based on the concrete experience in
large projects, as well as frequently met practices

A typical well supported convention is to map the set of installation areas onto the set of
CMTPATH entries, associating the concept of CMTPATH splitting with the sub-project organization

A typical consequence of this approach is that many configuration parameters need to be set
according to the list of CMTPATH items. Eg on a Unix system, if one expects to find shared libraries
in every installation area, each of them being created in a corresponding CMTPATH entry, one also
expects to have LD_LIBRARY_PATH entries accordingly. The mechanism of
cmtpath_pattern is exactly designed for that.

The mechanism easily supports the extension for installing binary files (libraries,
applications, java classes), runtime files, documentation and Hdasler

16.1 - Thedefault implementation

It is provided in termsf

1.

A set ofcmtpath_pattern s defined in the CMT requirements file. This can be
displayed using the command

> cmt show cmtpath_patterns

A consistent set of actions added to the following make_fragments

application applications
library shared libraries
library_no_share static libraries
java_header Java applications

jar Java libraries

One shell script for installing or uninstalling filesdirectories

${CMTROOT}/mgr/cmt_install_action.sh
${CMTROOT}/mgr/cmt_uninstall_action.sh
${CMTROOT}/mgr/cmt_install_action.bat
${CMTROOT}/mgr/cmt_uninstall_action.bat

79

The default architecture of this installation scheme is by default set for each
CMTPATH entryto:

<path>/InstallationArea/$(tag)/bin/... [1]
1$(tag)/lib/... [2]
/include/<package>/... [3]
/share/bin/... [4]
/share/lib/... [5]

/... [6]
/doc/<package>/... [7]
l.. [8]

Platform dependent executables

Platform dependent libraries

Public header files

Platform independent applications (eg Java applications)
Platform independent libraries (eg Java libraries)

other platform independent files

package specific documentations

project-wide documentation

©ONOoOGkWNE

The cmtpath_patterns are designed in this implementation for constructing a proper and
consistent sequence of system specific environment variables (eg PATH,
LD_LIBRARY_PATH, CLASSPATH) as well as compiler or linker options so as to
transparently refer to the installation area only when it is appropriate to ovverride the local
patterns.

16. 2 - Tuningtheinstallation area mechanisms

First of all every individual sub-project may activate or inhibit the installation area
mechanisms using thmiild_strategy statement, with eithewith_installarea
or without_installarea option.

Then a dedicated tag materializes the selected strategy:
<project>_with_installarea or <project>_without_installarea

This tag set will be used in various macro or set definitions to produce or not the appropriate
values

CMT manipulate some standard macros or environment variables according to the effective
strategy:

80

name purpose default

The default
cmt_installarea_prefix prefix for | InstallArea
all projects

The prefix
<project>_installarea_prefix for a given | $(cmt_installarea_prefix)
sub-project]

The regexp
pattern to
cleanup
symbols

<project>_installarea_prefix_remove $(<project>_installarea_prefix)

Implicit
linker
options due
to the
installation
area

cmt_installarea_linkopts

Accessing
the

PATH _executable 5...
in the
installation

area

Accessing
the shared
libraries in
the
installation
area

LD_LIBRARY_PATH

Accessing
the jar files
CLASSPATH in the
installation
area

17 - Installing CMT for thefirst time

These sections are of interest onlZMTis not yet installed on your site, of if you need a private
installation.

81

The first question you need to answer is the location where to iG84dll This location is
typically a disk area where most of packages managed in your project will be located.

Then, you have to fetch the distribution kit from the Wehttt//www.cmtsite.org You must
get at least the primary distribution kit containing the basic configuration information and the
CMTsources. This operation results in a set of directories hanging bel@iffreot and the
version directory. The src branch contains the sourc€d/df, the fragments branch contains the
makefile fragments and the mgr branch contains the scripts needed to build or GpErate

17.1 -InstallingCMT on your Unix site

The very first operation after dowloadi@MTconsists in running theNSTALL shell script.
This will build the setup scripts required by abMTuser.

Then you may either decide to buliM Tby yourself or fetch a pre-built binary from the
same Web location. The prebuilt binary versions may not exist for the actual platform you
are working on. You will see on the distribution page the precise configurations used for
building those binaries.

In case you have to buildMTyourself, you need a C++ compiler capable of handling
templates (although the support for STL is not required). There is a Makefile provided in the
distribution kit which takes g++ by default as the compiler. If you need a specific C++
compiler you will override the cpp macro as follows:

sh> gmake cpp=CC
Thecppflags macro can also be used to override the behaviour of the compilation.

Another important concern is the waMTwill identify the platform.CMTbuilds a

configuration tag per each type of platform, and uses this tag for naming the directory where
all binary files will be stored. As such this tag has to be defined prior to everCiiiid

itself.

CMTbuilds the default configuration by running the cmt_system.sh script found in the mgr
branch ofCMT. Run it manually to see what is the default value provided by this script. You
might consider changing its algorithm for your own convenience.

A distribution kit may be obtained at the following URL :

http://www.cmtsite.org
Once thaar file has been downloaded, the following operations must be achieved :

1. Select a root directory where to inst@WT. Typically this will correspond to a
development area or a public distribution area.

Import the distribution kit mentioned above.

Uncompress and untar it.

ConfigureCMT.

CMT is ready to be used for developing packages.

arown

82

http://www.cmtsite.org/

A typical corresponding session could look like :

csh> cd /Packages

csh> <get the tar file from the Web>
csh> tar xzf CMTv1r18p20050501.tar.gz
csh> cd CMT/v1r18p20050501/mgr
csh> ./INSTALL

csh> source setup.csh

csh> gmake

17.2 -InstallingCMT on aWindowsor Windows NT site

You first have to fetch the distribution kit from the Welhtip://www.cmtsite.org You

must get at least the primary distribution kit containing the basic configuration information
and theCMTsources. This operation results in a set of directories hanging bel@\ithe

root and the version directory. The binary kit provided for Windows environments will
generally fit your needs.

You should consider getting the pre-compiled (for a Windows environment) applications,
and especially the\VisualC\install.exe application, which interactively
configures the registry entries as described in thepsagraph.

The next operation consists in defining a few registries (typically using the standard RegEdit

facility or theinstall.exe special application):

e HKEY_ LOCAL_MACHINE/Software/CMT/root will contain the root directory where
CMTis installed (eg. "e:").

e HKEY_LOCAL_MACHINE/Software/CMT/version will contain the current version
tag of CMT("v1r18p20050501" for this version).

e HKEY_LOCAL_MACHINE/Software/CMT/path/ may optionally contain a set of text
values corresponding to the different package global access paths.

e HKEY_LOCAL_MACHINE/Software/CMT/site will contain the conventional site
name.

e HKEY_ CURRENT_USER/Software/CMT/path/ may contain a set of text of text

values corresponding to the different package private access paths.

CMT can also be configured to run on DOS-based environments usingéhe facility.
In this case, the installation procedure is very similar to the Giméx

A typical corresponding session could look like :

dos> cd Packages

dos> <get the tar file from the Web>
dos> cd CMT\v1r18p20050501\mgr
dos> call INSTALL

dos> call setup.bat

dos> nmake /f nmake

83

http://www.cmtsite.org/

18 - Appendices

18.1 - Copyright
Copyright LAL and Christian Arnault LAL-Orsay CNRS
arnault@Ilal.in2p3.fr

This software is a computer program whose purpose is to describe and manage software
configurationactivities.

This software is governed by the CeCILL license under French law and abiding by the rules
of distribution of free software. You can use, modify and/ or redistribute the software under
the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following
URL

http://www.cecill.info

As a counterpart to the access to the source code and rights to copy, modify and redistribute
granted by the license, users are provided only with a limited warranty and the software’s
author, the holder of the economic rights, and the successive licensors have only limited
liability.

In this respect, the user’s attention is drawn to the risks associated with loading, using,
modifying and/or developing or reproducing the software by the user in light of its specific
status of free software, that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced professionals having
in-depth computer knowledge. Users are therefore encouraged to load and test the software’s
suitability as regards their requirements in conditions enabling the security of their systems
and/or data to be ensured and, more generally, to use and operate it in the same conditions as
regards security.

The fact that you are presently reading this means that you have had knowledge of the
CeCILL license and that you accepttisms.

18. 2 - Standard maketargetspredefined in CMT

These targets can always be listed through the following command :

sh> gmake help

84

http://www.cecill.info/

target usage
help Get the list of possible make target for this package.
all build all components of this package.
clean remove everything that can be rebuilt by make
binclean completely remove the/$(tag) binary directory
configclean remove all intermediate makefile fragments
install install binaries of this package to the current installation area
uninstall uninstall binaries of this package from the current installation area
check run all applications defined with the -check option
only build this particular component (as opposed tathe target that tries
component-name : .
to build all components of this package)
build all constituents belonging to this group (ie. those defined using th
group-name _ :
same -group=<group-name> option)

D

These targets have to be specified as follows :

sh> gmake clean
sh> gmake Foo

18. 3 - Standard macros predefined in CMT

18.3.1 - CMT static macros

These macros provide static data about CMT itself. They cannot be modified by the

user.
macro usage defaultvalue
CMTrelease | gives the current release numbeCoT 18
CMTVERSIONgives the current complete version tagcdi T | vir1l8p20050501
18.3.2 - Structural macros

These macros describe the structural conventions follow&Mly They receive a
conventional default value from ti@MTrequirements file. However, they can be
overridden in any package for its own needs.

85

visible C++ compiler

macro usage defaultvalue

tag gives the binaryag ${CMTCONFIG}
src the srcbranch ..Isrc/
inc the includebranch ..Isrc/
mgr the cmt or mgbranch Jemt/ or../mgr/
bin the branch fobinaries .I1$(<package>_tag)/
javabin the branch for javalasses | ../classes/
doc the docbranch ../doc/
cmt hardware the description of the current<none>

- hardware
cmt_system_version the version of the curre@S | <none>
cmt_compiler_version the version of the currently <none>

18.3.3

- Language related macros

These macros are purely conventional. They are expected in the various make
fragments available frol@MTitself for providing the various building actions.

During the mechanism of new language declaration and definition availableGivithe
syntax, developers are expected to define similar conventions for corresponding

actions.

Their default values are originally defined inside tieguirementsfile of theCMT
package itself but can bedefinedby providing a new definition in the package’s
requirements file using theacro statement. The original definition can dmmpleted
using themacro_append ormacro_prepend statements.

macro usage defaultvalue

cc The Ccompiler cc

ccomp The C compiling $(cc) -c -I1$(inc) $(includes)
command $(cflags)

clink The C linkingcommand| $(cc) $(clinkflags)

cflags The C compilatiorilags | none
The preprocessor flags

pp_cflags for C none

clinkflags The C linkflags none

86

cpp The C++compiler g++
preproc The C++preprocessor | g++ -MD -c

The C++ compiling $(cpp) -c -I1$(inc) $(includes)
chpcomp command $(cppflags)

. The C++ linking .
cpplink command $(cpp) $(cpplinkflags)
cooflags The C++ compilation none

bpriag flags
The preprocessor flags
pp_cppflags for C++4 none
cpplinkflags The C++ linkflags none
for The Fortrarcompiler fr7
¢ The Fortran compiling $(for) -c -1$(inc) $(includes)
comp
command $(fflags)
. The Fortran linking .
flink command $(for) $(clinkflags)
The Fortran compilation
fflags none
flags
The preprocessor flags for
pp_fflags fortran none
flinkflags The Fortran linklags none
emd The include file command i
PP for Fortran
javacomp | The java compilingommand javac
jar The java archivecommand | jar
lex The Lexcommand |lex $(lexflags)
lexflags The Lexflags none
yacc The Yacccommand | yacc $(yaccflags)
yaccflags The Yacdflags none
ar The archivecommand ar -clr
ranlib The ranlibcommand | ranlib

87

18.3.4 - Package customizing macros

These macros do not receive default values. They are all prefixed by the package name.
They are meant to provide specific variant to the corresponding generic language
related macros.

They are automatically and by default concatenatedMyto fill in the corresponding
globalusemacros (see appendix generatedanacros). However, this concatenation
mechanism is discarded when the_auto_imports option is specified in the
corresponding usstatement.

88

ess
hport

macro usage

ipgﬁzgge specific C flags

<package -

> pp._cflags specific C preprocessor flags

ipgggﬁggs specific C++ flags

ingkiggﬂags specific C++ preprocessor flags

ip;:;k;ge specific Fortran flags

ipggk?f?;gs specific Fortran preprocessor flags

<package gives the (space separated) list of library names exported by this

>plibrar?es package. This list is typically used in ttmt build

- library_links command.

provide the linker options required by any application willing to acg
the different libraries offered by the package. This may include su

<package for several libraries per package.

> linkopts , ,
A typical example of how to define such a macro could be :
macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -ICm -Im"
may contain a list astampfile names (or make targets). Whenever
library is modified, one dedicated stamp file is re-created, simply t
mark the reconstruction date. The name of this stamp file is
conventionally<library >.stamp . Thus, a typical definition for
this macro could be :

ip:fakr?"gi macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp”

Then, these stamp file references are accumulated into the standa
macro namedse_stamps which is always installed within the
dependency list for applications, so that whenever one of the libra
used from the hierarchy of used packages changes, the applicatio
be automaticallyebuilt.

o

\rd

fies
in will

The following macros are not subject to automatic concatenation (and therefore are not
hidden by theno_auto_imports modifier).

89

macro

usage

<package
> native_version

specifies the native version of the external package referer]
by thisinterfacepackage.

When this macro is provided, its value is displayed bythe
show uses command

ced

<package
> export_paths

specifies the list of files or directories that should be export
during the deployment process for this package. Generally
is only useful for glue packages refering to external softwa

ed
this
e

<package > home

specifies the base location for external software described
glue packages. This macro is generally used to specify the
previous one

n

18.3.5 - Constituent specific customizing macr os

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each constituent, specific variants to the corresponding generic

language related macros.

By convention, they are all prefixed by the constituent name. But macros used for
defining compiler options are in addition prefixed by the constituent type (&iither

,app_ ordoc_).

They are used in the various make fragments for fine customization of the build

commanqaarameters.

90

<type
> <constituent
> cflags

specific C flags

<type
> <constituent
> pp_cflags

specific C preprocessor flags

<type
> <constituent
> cppflags

specific C++ flags

<type
> <constituent

> pp_cppflags

specific C++ preprocessor flags

174

D

b Of

<type
> <constituent specific Fortran flags
> fflags
<type
>_<constituent specific Fortran preprocessor flags
> pp_fflags
provides additional linker options to the application. It is
: complementary to - and should not be confused with - the
<constituent ,) :
; <package >_linkopts macro, which provides exported
>linkopts
linker options required by clients packages to use the packags
libraries.
provides additional linker options used when building a sharec
library. Generally, a simple shared library does not need any
. external reference to be resolved at build time (it is in this cas
<constituent :
: supposed to get its unresolved references from other shared
> shlibflags .) : . . i
libraries). However, (typically when one builds a dynamic loading
capable component) it might be desired to statically link it with
other libraries (making them somewhat private).
provides user defined dependency specifications for each
constituent. The typical use of this macro is fill it with the nam
<constituent the list of some other constituents whicweto be rebuilt first

> dependencies

(since each constituent is associated with a target with the sa
name). This is especially needed when one want to use the p
gmake (ie. the -j option of gmake).

ne
hrallel

<group
> dependencies

provides user defined dependency specifications for each gro
The typical use of this macro is fill it with the name of the list g
some other constituents whibhaveto be rebuilt first (since each
constituent is associated with a target with the same name). T
especially needed when one want to use the parallel gmake (
-j option of gmake).

LIp.
f
his is
e. the

91

18.3.6 - Source specific customizing macr os

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each source file, specific variants to the corresponding generic
language related macros.

By convention, they are all prefixed by the source file name followed by the source file
suffix (either_c ,_cxx ,_f ,etc.)

They are used in the various make fragments for fine customization of the build
commandoarameters.

<constituent > <suffix > cflags specific C flags

<constituent > <suffix > cppflags specific C++ flags

<constituent > <suffix > fflags specific Fortran flag
18.3.7 - Generated macros

These macros are automaticajgneratedvhen any cmt connand is run (and thus
whenmake is run).

The first set of them provide constant values correspondi@iyiitbased information.

They are not meant to be overridden by the user, since they serve as a communication
mean betwee@MTand theuser.

92

<PACKAGE>ROOT | The access path of the package (including the version branch)
The access path of the package (including the version branch)| This
<package >_root macro is very similar to thePACKAGE>ROOTmacro except that
it tries to use a relative path instead of an absolute one.

<PACKAGE .

SVERSION The used version of the package

PACKAGE ROOT The access path of the current package (including the version

- branch)

package The name of the current package

version The version tag of the current package

package_offset The directory offset of the current package

package_cmtpath The package area where the current package has been found
<package . . .)

> project The project name to which the corresponding package belongg
<package .

> cmtpath The package area where the corresponding package has beern found
<package , .

> offset The directory offset of the corresponding package
The second set is deduced from the context and from the requirements file of the
package. They can be overridden by the user so as to customidthehaviour.

The specific configuration tag for the package. By default jt is

<package > tag

set to $(tag) but can be freely overridden

constituents

option

<group-name>
_constituents

The ordered set of all constituents declared using a
group=<group-name> option

The third set of generated macros areglobal usemacros. They correspond to the
concatenation of the corresponding package specific customizing options that can be
deduced from the ordered setuskstatements found in the requirements file (taking
into account the complete hierarchy of used packages with the exception of those

specified with the
-no_auto_imports

option in their use statement)

93

The ordered set of constituents declared without any group

use_cflags

C compiler flags

use_pp_cflags

Preprocessor flags for the C language

use_cppflags

C++ compiler flags

use_pp_cppflags

Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use_pp_fflags Preprocessor flags for the Fortran language
use_libraries List of library names

use_linkopts Linker options

use_stamps Dependency stamps

use_requirements

The set of used requirements

use_includes

The set of include search paths options for the preprocessor fr
the used packages

use_fincludes

The set of include search paths options for the fortran preprocs
from the used packages

PSSOr

includes The overall set of include search paths for the preprocessor
, The overall set of include search paths options for the fortran
fincludes
preprocessor
18.3.8 - Macrosrelated with theinstallation area mechanisms

These macros contain the parameterisation of the installation area mechanisms.

macro

usage defaultvalue

cmt_installarea_command

cmt_uninstallarea_command

cmt_install_action

$(CMTROOT)\mgr\cmt_install_action.bat

cmt_installdir_action

$(CMTROOT)\mgr\cmt_installdir_action.bat

cmt_uninstall_action

$(CMTROOT)\mgr\cmt_uninstall_action.bat

cmt_uninstalldir_action

$(CMTROOT)\mgr\cmt_uninstalldir_action.bat

cmt_installdir_excludes

$(CMTROOT)\mgr\cmt_installdir_excludes.txt

cmt_installarea_prefix

InstallArea

<project>_installarea_prefix

$(cmt_installarea_prefix)

CMTINSTALLAREA

C:\Arnault\test\tprojects\PC\InstallArea

cmt_installarea_paths

cmt_installarea_linkopts

94

18.3.9

- Utility macros

These macros are used to specify the behaviour of various actions in CMT.

macro

usage

default onUnix

X11_cflags

compilation
flags forxX11

-llusr/include

Xm_cflags

compilation
flags for
Motif

-llusr/include

X_linkopts

Link options
for
XWindows
(andMotif)

make_shlib

The
command
used to
generate the
shared
library from
the statioone

${CMTROOT}mgr/cmt_make_shlib_common.sh

extract

shlibsuffix

The system
dependent
suffix for
shared
libraries

SO

shlibbuilder

The loader
used to build
the shared
library

g++

shlibflags

The
additional
options
given to the
shared
library
builder

-shared

application_suffix

The default
extension for
applications

.exe

library_prefix

The default
name prefix
of libraries

lib

library_suffix

The default
name suffix
of libraries

95

The
command
symlink usedto \inin s

install a
symbolic
link

The
command
used to
remove a
symbolic
link

/bin/rm -f

The
command
used to
generate the
C prototype
build_prototype header file | $(cmtexe) build prototype
(default to
the internal
cmt
dedicated
command)

The
command
used to
generate
dependencies$(cmtexe) -quiet -tag=$(tags) build
(defaultto | dependencies

the internal
cmt
dedicated
command)

build_dependencies

The
command
lock_command used_ to chmod-Ra-w ./*
physically
lock a
package

The
command
used to
physically
unlock a
package

unlock_command chmod -R g+w ./*

96

make_hosts

The list of
remote host
names which
exactly
require the
make
command

gmake_hosts

The list of
remote host
names which
exactly
require the
gmake
command

18.4 - Standard tagsgenerated by CMT

97

tag name

usage

CMTv<n> Primary version id of CMT
CMTr<n> Secondary version id of CMT
CMTp<n> Patch id of CMT

‘uname’ The basic platform id

<project-name>

The current project name

<project>_prototypes

<project>_no_prototypes

The prototypes strategy for each project

<project>_with_installarea

<project>_without_installarea

The installation area strategy for each proje

<project>_setup_config

<project>_setup_no_config

The strategy for generatird®>CONFIGfor
each project

<project>_setup_root

<project>_setup_no_root

The strategy for generatird®>ROOTor each
project

<project>_setup_cleanup

<project>_setup_no_cleanup

The installation area cleanup strategy for e3
project

ch

18.5 - Standard templatesfor makefile fragments

—

templatename usage used infragment
additional .
ADDINCLUDE includepath <language> java
<language> java jar make_header jar_header java_headgr
library_header application_header protos_header
library_no_share library application dependencies
name of the cleanup_header cleanup_library cleanup_application
CONSTITUENT . check_application document_header <document> trailer
constituent))
dsw_all_project_dependency dsw_project
dsp_library_header dsp_shared_library _header
dsp_windows_header dsp_application_header dsp_traile
constituent check_application_header
DATE now make_header

98

file name

D

FILENAME without path buildproto<language><document
FILEPATH file path buildproto<language><document
file suffix
FILESUFFIX (without <language>
dot)
file suffix
FILESUFFIX (with dot) <document
complete
FULLNAME file path and <language> cleanup<document> dsp_contents
name
GROUP groupname | constituents_header
LINE sourcefiles | <language> dependencies constituent
LINKMACRO link macro | application
file name
NAME without path| buildproto<language> java<document
andsuffix
OBJS objectfiles jar_hea(_jer java_hea_der jar library_no_share Ilprary
application cleanup_java document_header trailer
OUTPUTNAME | Outputfile .. o
name
current <language> dsw_header dsw_all_project
PACKAGE package dsw_all_project_trailer dsw_trailer dsp_all readme_head
name readme readme_use readme_trailer
current
PACKAGEPATH | package readme_use
location
PROTOSTAMPS PrOtOWPe |05 header
stampfiles
PROTOTARGET prototype library _header application_header
targetname
SUFFIX document | 4 cument
suffix
title for
TITLE make make_header
header
USER username | make_header

99

current
VERSION package
versiontag

readme_header readme readme_use

18. 6 - Makefile generation sequences

This section describes the various makefile generation sequences provickeld by
Each sequence description shows the precise setkdfragmentsaused during the

operation.

Generatednakefile

description

used makéragments

constituents.make

the main entry poin
point for all
constituentargets

—t

. constituents_header
. constituent
. check_application_header

<constituent
> make

application or
library specific
makefragment

N = WN P

g b~ w

© 00N O

. make_header
. java_header | jar_header | library_heal

| application_header

. protos_header
. buildproto
. jar | library | library_no_share |

application

. dependencies

. <language> | <language>_library | jav
. cleanup_header

. cleanup

10.
11.
12.
13.
14.

cleanup_application
cleanup_objects
cleanup_java
cleanup_library
check_application

der

o

<constituent
> make

document specific
makefragment

OOk, WN P

. make_header

. document_header
. dependencies

. <document>

. <document-trailer>

. cleanup_header

100

<package>.dsw

Visual workspace
configurationfiles

dsw_header
dsw_all_project_header
dsw_all_project_dependency
dsw_all_project_trailer
dsw_project

dsw_trailer

dsp_all

<constituent>.dsp

Visual project
configurationfiles

Pl NoOokrwDdhRE

dsp_library _header |
dsp_shared_library _header |
dsp_windows_header |
dsp_application_header
dsp_contents

dsp_trailer

README

PONPE)WON

readme_header
readme
readme_use
readme_trailer

18. 7 - Thecomplete requirements syntax

The syntax of specification statements that can be installeceguaements

cmt-statement

application

| apply_pattern

| apply_tag

| author

| branches

file are :

build_strate
cleanup_script

cmtpath _pattern

document

ignore_pattern
include_dirs
include_path
language
library
make_fragment

101

| manager

| package

| pattern

| private

| public

| setup_script

| setup_strategy
| symbol

| tag

| tag_exclude

| use
| version
alias . aliasalias-namedefault-valud tag-exprvalue ...]

application . applicationapplication-namg constituent-option...]

[source ...]

constituent-option . -no_share

| -no_static

| -prototypes

| -no_prototypes

| -check

| -target_tag

| -group=group-name

| -suffix=output-suffix

| -import=package-name

| variable-name= variable-value

| -OS9

| -windows
source © name.suffix

| *.suffix

| * *

102

apply_pattern

apply_tag
author
branches
build_strategy

build-strategy-name

cleanup_script

cmtpath_pattern

document

ignore_pattern
include_dirs
include_path
language

language-option

library

-s=new-search-path
-k=selection-regexp

-x=exclusion-regexp

apply_patterrpattern-namd template-name value ...

]
apply_tagtag-nam¢ tag-name...]
authorauthor-name
branchedranch-name...
build_strategypuild-strategy-name
prototypes
no_prototypes
with_installarea
without_installarea
cleanup_scripscript-name
cmtpath_patteromt-statement

[; cmt-statement..]

documentlocument-namg constituent-option... |

[source ...]
ignore_pattermpattern-name
include_dirssearch-path
include_patlsearch-path

languagdanguage-namé language-option...]

-suffix=suffix

-linker=linker-command

-prototypes
-preprocessor_commanpreprocessor_command
-fragmentfragment

-output_suffix=output-suffix
-extra_output_suffixextra-output-suffix

library library-name[constituent-option...]

[source ...]

103

action

macro
macro_append
macro_prepend

macro_remove
macro_remove_regexp
macro_remove_all
macro_remove_all_regexp :

make_fragment

fragment-option

manager

package

path

path_append
path_prepend
path_remove
path_remove_regexp

pattern

private
public

set
set_append
set_prepend
set_remove

set_remove_regexp

actionaction-namd tag-exprvalue ...]
macromacro-namg tag-exprvalue ...]
macro_appendhacro-namd tag-exprvalue ... |
macro_prepenchacro-namd tag-exprvalue ... |
macro_removenacro-namdg tag-exprvalue ...]

macro_remove_regexpacro-namg tag-exprvalue ...

]

macro_remove_athacro-namd tag-exprvalue ...]

macro_remove_all_regexpacro-namg tag-exprvalue

-]
make_fragmenfragment-nam¢ fragment-option... |
-suffix=suffix
-dependencies
-headerfragment
-trailer=fragment
managemanager-name
packageackage-name
pathpath-namq tag-exprvalue ...]
path_appengath-namq tag-exprvalue ...]
path_prepengath-namd tag-exprvalue ...]
path_removeath-namq tag-exprvalue ...]
path_remove_regexmath-namq tag-exprvalue ...]
pattern[-global] pattern-namemt-statement

[; cmt-statement..]
private
public
setset-namg tag-exprvalue ... |
set_appendet-namd tag-exprvalue ...]
set_prependet-namg tag-exprvalue ...]
set_removeet-namd tag-exprvalue ...]

set_remove_regexget-namd tag-exprvalue ...]

104

setup_script . setup_scripscript-name
setup_strategy . setup_strateggetup-strategy-name
setup-strategy-name . config

| no_config

| root

| no_root

| cleanup

| no_cleanup
symbol : alias

| action

| macro

| macro_append
| macro_prepend

| macro_remove

| macro_remaove_regexp

| macro_remove_all

| macro_remove_all_regexp

| path

| path_append
| path_prepend
| path_remove

| path_remove_regexp

| set

| set_append
| set_prepend

| set_remove

| set remove regexp

tag . tagtag-namd tag-name... |
tag_exclude . tag_excludd¢ag-nam¢g tag-name...]

tag-expr . tag-namq & tag-name...]

105

use : usepackage-name version-tag[access-path]]

[use-option]

version . versionyversion-tag
version-tag . keyversion-number

[keyrelease-numbef keypatch-number]]
use-option : -no_auto_imports
| -auto_imports

key o letter ...

18.8 - Thedefault strategiesdefinedin CMT

DefaultPrototypesStrategy = Prototypes,
DefaultinstallAreaStrategy = WithoutlnstallArea

18.9 - Theinternal mechanism of cmt cvs operations

Generally, CVS does not handle queries upon the repository (such as knowing all installed
modules, all tags of the modules etc..). Various tools such as CVSWeb, LXR etc. provide
very powerful answers to this question, but all through a Web browser.

CMTprovides a hook that can be installed within a CVS repository, based on a helper script
that will be activated upon a particular CVS command, and that is able to perform some
level of scan within this repository and return filtered information.

More precisely, this helper script (found in

${CMTROOT}mgr/cmt_buildcvsinfos2.sh) is meant to be declared within the
loginfo management file (see tk&/S manualfor more details) as one entry named
.cmtcvsinfos , able to launch the helper script. This installation can be operated at once
using the followingsequence:

sh> cd ${CMTROOT}mgr
sh> gmake installcvs

This mechanism is thus fully compatible with standard remote accessréptsitory.

Once the helper script is installed, the mechanism operates as follows (this actually describes
the algorithms installed in tHévsimplementation::show_cvs_infos method

available incmt_cvs.cxx and is transparently run when one usesthe cvs Xxx

commands):

1. Find a location for working with temporary files. This is generally deduced from the
${TMPDIR} environment variable or itmp (or in the current directory if none of
these methods apply).

2. There, install a directory nameditcvs/< unique-name >/.cmtcvsinfos

3. Then, from this directory, try to run a fake import command built as follows:

106

http://www.cvshome.org/docs/manual/index.html

cvs -Q import -m cmt .cmtevsinfos/< package-name > CMT v1

Obviously this command is fake, since no file exist in the temporary directory we have
just created. However,

. This action actually triggers theent_buildcvsinfos2.sh script, which simply

receives in its argument the module name onto which we need information. This
information is obtained by scanning the files into the repository, and an answer is built
with the following syntax:

[error= error-text] Q)
tags= tag ... (2)
branches= branch ... 3)
subpackages= sub-package ... (4)

1. In case of error (typically when the requested module is not found in the
repository) a text explaining the error condition is returned

2. The list of tags found on the requirements file

3. The list of branches defined in this packages (ie subdirectories not containing a
requirements file)

4. The list of subpackages (ie subdirectories containing a requirements files)

Contents

NN N N N o oA AR AR ® W N R

A W ON P

A W N P

Presentation

Theconventions

The architecture of thenvironment

Supportedlatforms

Defining and managingrojects

The projecfile

Projects andtrategies

CMTPROJECTPATH

CMTPATH

Installing a newpackage

Localizing apackage

Assigning semantics to packages. Commpattices

The primarypackage

The policypackage

The container or managemegackage

The releaspackage

107

NNNNMD NN DD NN R
© © ©® N N o a0~ w N e

The qglue or interfacpackage

Managing site dependent features - The CMTSITE environwagistble

Configuring apackage

Selecting a specificonfiguration

Describing aconfiguration

Defining the usetags

Activatingtags

Working on apackage

Working on dibrary

Working on ampplication

Working on a test or externapplication

Defining a documenenerator

An example : the tedocument-style

How to create and install a new documsiyte

Examples
The tools provided b€MT

The requirementfile

The general requiremerggntax

The concepts handled in the requiremdites

The package structuring style

Meta-information : authomanager

packageyersion

Constituents : application, librargocument

Groups
Languages
Symbols

actions

se

patterns
Applying apattern

108

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

2.17.

2.18

0 N o A W N R R R

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

cmtpath _patterns

branches

Strategyspecifications

setup_scriptcleanup_script

include_path
include_dirs
make_fragment
public, private

Scopingsections

tag.apply_tag

The general cmt usarterface

cmtbroadcast

Specifying the shetommand

Templates in the shadbmmand

cmt build<option>

cmt checkconfiguration

cmt check files <reference-filexnew-file>

cmt checkout..
cmt co...

cmt cleanug-csh|-sh]

cmtconfig

cmt create <package> <versioarea>]

cmt expand model [-stricBmodel-string>

cmit filter <in-file> <out-file>

cmt help F-help

cmt lock [<package> <version> [<ared>]

cmt remove <package> <versiofxarea>]

cmt removdibrary links

cmt run[shell-command]

cmt set versiogversion>

109

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

14

14,
14.
14,
14,
14.

15
16

16.
16.

17

17.
17.

18

18.
18.
18.
18.

3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

gaa A W N P

cmt setversions

cmt setud-csh|-sh|-bat]

cmt show<option>

cmtsystem

cmt unlock [<package> <version> [<ared>]

cmt version }-version

cmt cvstagsmodule>

cmt cvsbranchesmodule>

cmt cvssubpackagesnodule>

cmt cvssubprojectsmodule>

The setup and cleanggripts

cmt buildprototype

Using cvs together wittMT

Importing a package into a ckepository

Checking a package out from a ecepository

Querying CVS about some importantos

Working on a package, creating a nehease

Getting a particular tagged version ouG\dS

Interfacing an external package Wi&EiMT

The installation aremechanism

The defaulimplementation

Tuning the installation araaechanisms

Installing CMT for the firstime

Installing CMT on your Unixsite

Installing CMT on a Windows or Windows Nsite

Appendices

Copyright
Standard make targets predefinedMT

Standard macros predefined@MT

CMT staticmacros

110

18.3.2 Structuralmacros

18.3.3 Language relatethacros

18.3. 4 Package customizinmacros

18.3.5 Constituent specific customizirmgacros
18.3.6 Source specific customizingacros
18.3.7 Generatednacros

18.3.8 Macros related with the installation am@@chanisms
18.3.9 Utility macros

18.4 Standard tags generated ®MT

18.5 Standard templates for makefflagments
18.6 Makefile generatiosequences

18.7 The complete requiremenggntax

18.8 The default strategies defined@MT

18.9 The internal mechanism of cmt coperations
| mages

1 Structuring a package - A typicakample.

2 Structuring a sofwarbase.

3 The architecture of documegéneration.

Christian Arnault

111

	CMT Configuration Management Tool
	Version v1r18p20050501 Christian Arnault arnault@lal.in2p3.fr
	General index
	€1 - Presentation
	€2 - The conventions
	€3 - The architecture of the environment
	€3.€1 - Supported platforms

	€4 - Defining and managing projects
	€4.€1 - The project file
	€4.€2 - Projects and strategies
	€4.€3 - CMTPROJECTPATH
	€4.€4 - CMTPATH

	€5 - Installing a new package
	€6 - Localizing a package
	€7 - Assigning semantics to packages. Common practices
	€7.€1 - The primary package
	€7.€2 - The policy package
	€7.€3 - The container or management package
	€7.€4 - The release package
	€7.€5 - The glue or interface package

	€8 - Managing site dependent features - The CMTSITE environment variable
	€9 - Configuring a package
	10 - Selecting a specific configuration
	10.€1 - Describing a configuration
	10.€2 - Defining the user tags
	10.€3 - Activating tags

	11 - Working on a package
	11.€1 - Working on a library
	11.€2 - Working on an application
	11.€3 - Working on a test or external application

	12 - Defining a document generator
	12.€1 - An example : the tex document-style
	12.€2 - How to create and install a new document style
	12.€3 - Examples

	13 - The tools provided by CMT
	13.€1 - The requirements file
	13.€1.€1 - The general requirements syntax

	13.€2 - The concepts handled in the requirements file
	13.€2.€1 - The package structuring style
	13.€2.€2 - Meta-information : author, manager
	13.€2.€3 - package, version
	13.€2.€4 - Constituents : application, library, document
	13.€2.€5 - Groups
	13.€2.€6 - Languages
	13.€2.€7 - Symbols
	13.€2.€7.€1 - actions

	13.€2.€8 - use
	13.€2.€9 - patterns
	13.€2.€9.€1 - Applying a pattern

	13.€2.10 - cmtpath_patterns
	13.€2.11 - branches
	13.€2.12 - Strategy specifications
	13.€2.13 - setup_script, cleanup_script
	13.€2.14 - include_path
	13.€2.15 - include_dirs
	13.€2.16 - make_fragment
	13.€2.17 - public, private
	13.€2.17.€1 - Scoping sections

	13.€2.18 - tag, apply_tag

	13.€3 - The general cmt user interface
	13.€3.€1 - cmt broadcast
	13.€3.€1.€1 - Specifying the shell command
	13.€3.€1.€2 - Templates in the shell command

	13.€3.€2 - cmt build <option>
	13.€3.€3 - cmt check configuration
	13.€3.€4 - cmt check files <reference-file> <new-file>
	13.€3.€5 - cmt checkout ...
	13.€3.€6 - cmt co ...
	13.€3.€7 - cmt cleanup [-csh|-sh]
	13.€3.€8 - cmt config
	13.€3.€9 - cmt create <package> <version> [<area>]
	13.€3.10 - cmt expand model [-strict] <model-string>
	13.€3.11 - cmt filter <in-file> <out-file>
	13.€3.12 - cmt help | --help
	13.€3.13 - cmt lock [<package> <version> [<area>]]
	13.€3.14 - cmt remove <package> <version> [<area>]
	13.€3.15 - cmt remove library_links
	13.€3.16 - cmt run [shell-command]
	13.€3.17 - cmt set version <version>
	13.€3.18 - cmt set versions
	13.€3.19 - cmt setup [-csh|-sh|-bat]
	13.€3.20 - cmt show <option>
	13.€3.21 - cmt system
	13.€3.22 - cmt unlock [<package> <version> [<area>]]
	13.€3.23 - cmt version | --version
	13.€3.24 - cmt cvstags <module>
	13.€3.25 - cmt cvsbranches <module>
	13.€3.26 - cmt cvssubpackages <module>
	13.€3.27 - cmt cvssubprojects <module>

	13.€4 - The setup and cleanup scripts
	13.€5 - cmt build prototype

	14 - Using cvs together with CMT
	14.€1 - Importing a package into a cvs repository
	14.€2 - Checking a package out from a cvs repository
	14.€3 - Querying CVS about some important infos
	14.€4 - Working on a package, creating a new release
	14.€5 - Getting a particular tagged version out of CVS

	15 - Interfacing an external package with CMT
	16 - The installation area mechanism
	16.€1 - The default implementation
	16.€2 - Tuning the installation area mechanisms

	17 - Installing CMT for the first time
	17.€1 - Installing CMT on your Unix site
	17.€2 - Installing CMT on a Windows or Windows NT site

	18 - Appendices
	18.€1 - Copyright
	18.€2 - Standard make targets predefined in CMT
	18.€3 - Standard macros predefined in CMT
	18.€3.€1 - CMT static macros
	18.€3.€2 - Structural macros
	18.€3.€3 - Language related macros
	18.€3.€4 - Package customizing macros
	18.€3.€5 - Constituent specific customizing macros
	18.€3.€6 - Source specific customizing macros
	18.€3.€7 - Generated macros
	18.€3.€8 - Macros related with the installation area mechanisms
	18.€3.€9 - Utility macros

	18.€4 - Standard tags generated by CMT
	18.€5 - Standard templates for makefile fragments
	18.€6 - Makefile generation sequences
	18.€7 - The complete requirements syntax
	18.€8 - The default strategies defined in CMT
	18.€9 - The internal mechanism of cmt cvs operations

	Contents

