
CMT

Configuration Management Tool

 2 - The conventions
This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and developed :

2 - Structuring a sofware base.

 3 - The architecture of the environment
This environment is based on the fact that one of its packages (named CMT

access rights). CMT

Therefore, we assume that some root directory has been selected by the system manager, and that
CMT is already installed there. One first has to setup

The package creation occured from the current directory, creating from there the complete

csh> cd ~/m
1 0 0dev/Foo/v1/cmt

The configuration parameter CMTPATH can be specified either in the environment variable
named CMTPATH or in .cmtrc files, which can themselves be located either in the current
directory, in the home directory of the developper or in ${CMTROOT}/mgr . In the
Windows environment, this configuration parameter may also be installed as a Registry
under either the keys:

HKEY_LOCAL_MACHINE/Software/CMT/path
HKEY_CURRENT_USER/Software/CMT/path

(A graphical tool vailable in

 orslasj
/R138 16 Tf
1 0-33 c9813.2 Td
(Winchaaactor in)t’onnot

2. /ProjectB/A/BarA/v1/cmt
3. /lal/A/BarA/v1/cmt
4. the sub-directory A within the same path as the current package,

The packages are searched assuming that the directory hierarchy below the access paths always
follow the convention :

1. there is a first directory level exactly named according to the package name (this is case
sensitive),

2. then (optionally) the next directory level is named according to the version tag,
3. then there is a branch named cmt ,
4. lastly there is a requirements file within this cmt branch.

Thus the list of access paths is searched for until these conditions are properly met.

As an example, suppose we have set up the following CMTPATH :

$HOME/work-for-A:/ProjectA:/ProjectB

The basic contents of such a package is the requirements file including

 7. 4 - The release package

This package is one particular example of the container concept, but dedicated to manage
the project-wide activities. This release package is the primary target of the project manager.
It will generally receive as its version tags the version tags assigned to the project releases
themselves.

 7. 5 - The glue or interface package

This kind of package defines an interface to an existing software product not managed in the
context of the project itself. Typical examples concern:

packages shared from external projects that don’t use CMT as their configuration tool
third party software (free software, commercial products, ...) locally installed on the
development platform.

The primary goal fo such a glue package is to convert the management conventions and

macro AnapheTOP "" \
 CERN "/afs/cern.ch/sw/lhcxx" \
 BNL "/afs/rhic/usatlas/offline/external/lhcxx" \
 LBNL "/auto/atlas/sw/lhcxx"

 9 - Configuring a package
The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file uniquely named

Other configuration parameters are also optionally inserted from the HOME and USER context
requirements files

Typical examples of these query functions are:

Tontemt
ET Q 0 Td
()Tjsetup/R136 11 Tf
26.433d
()Tj
builde: shellfigmm

be active and during the build of B , the tag named

10. 2 - Defining the user tags

The user configuration tags can generally be specified though various complementary
mechanisms:

CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

sh> export CMTSITE=CERN

11 - Working on a

------> Foo ok

> [g]make QUIET=1

------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Linux-i686.make
setup.make ok

11. 3 - Working on a test or external application

It is also possible to work on a testnal
 CMTal

Ibenefi ifromtohe packages configur d usng oal
 CMTal

 -by partially usng oal
 CMTal

Then any user wanting to access the so-called official

=========== MyDoc.make ===============================

#====================================
Document MyDoc

Generated by

#====================================

help ::
@echo ’MyDoc’

doc1_dependencies = ../doc/doc1.tex
doc2_dependencies = ../doc/doc2.tex

MyDoc :: ../doc/doc1.ps

../doc/doc1.dvi : $(doc)doc1.tex
 cd ${doc}; latex $(doc)doc1.tex

../doc/doc1.ps : ../doc/doc1.dvi
MyDoc cd ${doc}; cd= ../doc/doc2.tex

M2Doc :: ../doc/doc1.ps

../doc/do21.dvi : $(doc)doc1.tex
 cd ${docncies = ../doc/doc2.te21.6 Td
(M2Doc -21.6 Td
(M2D.ps : ../doc/doc1.dvi)Tj
0 -10.8 Td
(cd ${doc}2 cd 9n7 aec/doc2.tex)Tjclean
0 : ../doc/doc1.dvi)Tj
0 -10.cd ${; /bin/rm -f-21.6 Td
(M2. cd ${doc}2 cd 9n7 aec/doc2.teclean
0 x)Tjclean
: ../doc/doc1.dvi

3.

13. 1 - The requirements file

13. 1. 1 - The general requirements syntax

option validity usage

-s= directory any switch to a new default directory

Then it is possible to change the default search location as well as to use a
simplified wildcarding syntax:

library A -s=A *.cxx -s=B *.cxx

-s=A means that next source files should be taken searched from
../src/A
-s=B means that next source files should be taken searched from
../src/B . Note that this new specification is not relative to the previous
-s=A but relative to the default search path ../src
*.cxx indicates that all files with a .cxx suffix in the current search path
should be considered

It’s also possible to select or exclude files using regular expressions from general
wildcarding techniques:

library A -s=A -x=[0-9] *.cxx -s=B -k=^B *.cxx

The exclusion specification -x=[0-9] added to the statement will exclude
all files from ../src/A containing a number in their name.
The selection specification -k=^B added to the statement will select files
from ../src/B strictly starting with the B letter.

2.

When several constituents need to share source files, (a typical example is for
building different libraries from the same sources but with different compiler
options), it is possible to specify an optional output suffix with the
-suffix=<suffix>

4.

For any constituent that has the -target_tag option set, a dedicated tag named
target_<constituent> is automatically constructed by CMT. This tag
becomes active during the construction of this constituent when using make , and
therefore can be used as any other tag to select symbol values, or other
configuration parameters.

Some languages (this has been seen for example in the IDL generators in Corba
environments) do provide several object files from one unique source file. It is possible
to specify this feature through the (repetitive) -extra_output_suffix option like
in:

language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

symbol : symbol-type symbol-name default-value [tag-expr value ...]

symbol-type : definition

| modification

definition : macro

| set

| path

| action

| alias

modification : macro_prepend

| macro_append

| macro_remove

| macro_remove_regexp

| macro_remove_all

| macro_remove_all_regexp

| set_prepend

| set_append

| set_remove

| set_remove_regexp

| path_prepend

| path_append

| path_remove

| path_remove_regexp

tag-expr : tag [& tag ...]

13. 2. 7. 1 - actions

Actions are one of the possible symbols. Their definition as said previously follow
the generic conventions for any symbol type, and they implement the concept of a
generic shell command.

An example of a symple action:

13. 2. 8 - use

Describe the relationships with other packages; the generic syntax is :

use <package> [<version> [<root>]]

Omitting the version specification means that the most recent version (ie. the one with

private
use C v1
use D v1

all operations done in the context of package B will see both packages C and D
all operations done in the context of package A will see both packages B and D,
but not package C

13. 2. 9 - patterns

Often, similar configuration items are needed over a set of packages (sometimes over

In this example, an additional pattern (<other_sources>) permits the package to

ignore_pattern <name>

13. 2.10 - cmtpath_patterns

These patterns act quite similarly to the global patterns previously described, ie they
defines a set of CMT statements to be applied in a generic way. The difference is that
instead of being applied to packages , they are automatically applied to all entries in the
CMTPATH list.

Only few system parameters can be used here:

<project>_prototypes
<project>_no_prototypes
<project>_with_install_area
<project>_without_install_area
<project>_config
<project>_no_config
<project>_root
<project>_no_root
<project>_cleanup
<project>_no_cleanup

13. 2.13 - setup_script, cleanup_script

Specify user defined configuration scripts, which will be activated together with the
execution of the main setup and cleanup scripts.

The script names may be specified without any access path specification, in this case,
they are looked for in the cmt or mgr branch of the package itself. They may also be
specified without any .csh or .sh suffix, the appropriate suffix will be appended
accordingly when needed. Therefore, when such a user configuration script is specified,
CMT

The fragments defined in CMT can be:

A package declaring, and implementing a make fragment may override a fragment of

Jaki.h ReadPDGtable.h Tauola_i.icc Taurad.icc polhep.inc tauola_cblk.inc
#--

dependencies This command is internally (and transparently) used by CMT
 from the constituentspecific fragment, and when the make command is run, to generate a fragmentcontaining the dependencies required by a source file. This fragment contains a set of macro definitions (one per constituent source file),each containing the set of found dependencies. library_links

 This command builds a local symbolic link towards all exported libraries from theused packages. A package exports its libraries through the <package >_libraries macro which should contain the list of constituent namescorresponding to libraries that must be exported.library Foo ...library Foo-utilsmacro Foo_libraries "Foo Foo-utils"The corresponding cmt remove library_links
 command will remove allthese links. msdev This command generates workspace (.dsw) and project (.dsp) files required for theMSDev tool. vsnet This command generates workspace and project files required for the Visual.nettool. os9_makefile This command generates external dedicated makefile
 fragments for eachindividual component of the package (ie. libraries or executable applications) to beused in OS9 context. It generates specific syntaxes for the OS9

 operating systems.The output of this tool is a set of files (named with the components’ name andsuffixed by .os9make
) that are meant to be included within the main Makefile

 that the developer has to write anyhow.The syntax of the cmt build os9_makefile utility is as follows : sh> cmt build os9_makefile <package>prototype <source-file-name>
 This command is internally (and transparently) used by CMT

 from the constituentspecific fragment, and when the make command is run, to generate prototypeheader files from C source files. 59

The prototype header files (named <file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C source file.

The effective activation of this feature is controled by the build strategy of CMT .
The build strategy may be freely and globally overridden from any requirements

13. 3. 7 - cmt cleanup [-csh|-sh]

This command generates (to the standard output) a set of shell commands (either for

The second mode explicitly provides an alternate path.

A minimal configuration is installed for this new package:

A r a m e t h . 2 6 m - 2 n f i g 7 . 3 2 9 6 1 5 7 B 9 . 5 7 8 3 1 8 2 . = ’ 2 6 m - 2 n f i g 7 . 3 2 9 6 1 5 7 8 1 7 7 5 1 7 . 2 T d
 (v a l u e 2 6 m - 2 n f i g 7 . 3 2 9 6 1 5 7) T j 9 8 i
 1 1 7 7 . 0 ’ 8 . . . / > 8 2 6 m - 2 n f i g 7 . 3 2 9 6 1 5 7 B 9 . 5 7 8 3 1 8 2 . t e x t 2 6 m - 2 n f i g 7 . 3 2 9 6 1 5 7 1 0 9 0 x p l i c i l [. . . " 7 4 1 0 1
 (A m i n i m a T) 3 l i c 0 1 - 2 2 4 2 5 4 7 4 . 6 6 p a t h .

Note that the search on clients is not performed recusively. Thus only clients

> cmt -public show uses

A typical output produced by this command is:

> cmt show uses

use GaudiPolicy v* [1]
use GaudiKernel v*
use GaudiPolicy v5r* [2]
use CLHEP v* (native_version=1.8.2.0) [3]
use ExternalLibs v4r*
#
Selection : [4]
use CMT v1r16 (/afs/cern.ch/sw/contrib)
use ExternalLibs v4r2p0 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5) [5]
use CLHEP v2r1820p0 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)
use GaudiPolicy v5r11p2 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)
use GaudiKernel v13r5p1 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)

1. The first section of the display (up to the Selection keyword) displays the

1. haeThe -no_auto_import
/R136 11 Tf
0 -2105.Td
(Sele modfibyr,)Tj

One flavour of these scripts is generated per shell family (csh , sh and bat), yielding the
following scripts :

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

Lastly, the actual behaviour of the prototype generator is defined in the standard make
macro

Then the version tag is supposed to be moved forward, either increasing its minor identifier
(in case of simple additions) or its major identifier (in case of changes).

The following actions should be undertaken then :

1. understand what is the latest version tag (typically by using the cmt cvstags
command). Let’s call it old-tag .

2. select (according to the foreseen amount of changes) what will be the next version tag.
Let’s call it new-tag .

3. check the most refch-22. check theonfigurthe -304o0mantls me, is trebuiert1405 -24 Tf
529 0 T99 T21en t (ah> cd <dj
/R13> /6.4 0 Tdd
10hen t (ah> cv.4 onfigu 0 Tdd
10hen t (ah> csur ce setup.csh 0 Tdd
10hen t (ah> c[g]m : 0 TdET Q93 i0 T w
7 T 4894 m Td4T 4894 l
S
6 w
82T 4579 m 127T 4579 l
S
10 0 0 cm BT
/R136 11 Tf
12 15 1 93 743.8 82 459cvsthe 14. 5 11 Tf
-0 15 1 94heck the - Gettns shpacrticular0 -1gd, using
puges) 0 Td
82.06eck theCVS 11 Tf
-306.57 -1316.06e(The followingprevious exationspountntmoveingt is er changewasigesne gets/R140 11 Tf
3806.57 -302 T.)Tj
-1Tj2ic0 Td
3.529

provide a nickname for this external package,
adapt the version tag convention consistently to the project, hiding the version tag

${CMTROOT}/mgr/cmt_install_action.sh
${CMTROOT}/mgr/cmt_uninstall_action.sh
${CMTROOT}/mgr/cmt_install_action.bat
${CMTROOT}/mgr/cmt_uninstall_action.bat

The default architecture of this installation scheme is by default set for each
CMTPATH entry to:

<path>/InstallationArea/$(tag)/bin/... [1]
 /$(tag)/lib/... [2]
 /include/<package>/... [3]
 /share/bin/... [4]
 /share/lib/... [5]
 /... [6]
 /doc/<package>/... [7]
 /... [8]

1. Platform dependent executables
2. Platform dependent libraries
3.

http://www.cmtsite.org/

17. 2

http://www.cmtsite.org/

This software is governed by the CeCILL license under French law and abiding by the rules
of distribution of free software. You can use, modify and/ or redistribute the software under
the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following
URL

http://www.cecill.info/

These targets have to be specified as follows :

sh> gmake clean
sh> gmake Foo

18. 3 - Standard macros predefined in CMT

18. 3. 1 - CMT static

18. 3. 3 - Language related macros

These macros are purely conventional. They are expected in the various make
fragments available from CMT itself for providing the various building actions.

During the mechanism of new language declaration and definition available in the CMT
syntax, developers are expected to define similar conventions for corresponding
actions.

Their default values are originally defined inside the requirements file of the CMT
package itself but can be redefined by providing a new definition in the package’s
requirements file using the macro statement. The original definition can be completed

 staactione macromacromacroCMTC60.390.373 mentC C60.390.373 mentC CMTC36 statement. The original destat a 1 6.6R136 136 23-36 13s.Th-36mathe.7364.Th$(cc) -c -I$(inc) $(includes) 13s.

macro usage

macro usage

<package
>_native_version

specifies the native version of the external package referenced
by this interface package.
When this macro is provided, its value is displayed by the cmt
show uses command

<package
>_export_paths

specifies the list of files or directories that should be exported
during the deployment process for this package. Generally this
is only useful for glue packages refering to external software

<package >_home
specifies the base location for external software described in
glue packages. This macro is generally used to specify the
previous one

previouslangurencedla -1s geR d. 3.2 Td
(previoThBy)Ttvesiext,0 -1y ribed t , efixe

<type
>_<constituent
>_cflags

specific C flags

<type
>_<constituent
>_pp_cflags

specific C preprocessor flags

<type
>_<constituent
>_cppflags

specific C++ flags

<type
>_<constituent
>_pp_cppflags

specific C++ preprocessor flags

<type
>_<constituent
>_fflags

specific Fortran flags

<type
>_<constituent
>_pp_fflags

specific Fortran preprocessor flags

<constituent
>linkopts

provides additional linker options to the application. It is
complementary to - aooptions ._ould not be tuefused withptiplic140 11 Tf
72.6 0T -13.2035 13.2 Td
(specific Fortran flags)Tj
/R-c Fortran ic C flags

<type
>_<constituent

<PACKAGE >ROOT The access path of the package (including the version branch)

<package >_root

use_cflags C compiler flags

use_pp_cflags Preprocessor flags for the C language

use_cppflags C++ compiler flags

use_pp_cppflags Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use_pp_fflags Preprocessor flags for the Fortran language

use_libraries List of library names

use_linkopts Linker options

use_stamps Dependency stamps

use_requirements The set of used requirements

use_includes
The set of include search paths options for the preprocessor from
the used packages

use_fincludes
The set of include search paths options for the fortran preprocessor
from the used packages

includes The overall set of include search paths for the preprocessor

fincludes
The overall set of include search paths options for the fortran
preprocessor

make_hosts

The list of

tag name

CONSTITUENT
name of the
constituent

<language > java jar make_header jar_header java_header
library_header application_header protos_header
library_no_share library application dependencies
cleanup_header cleanup_library cleanup_application
check_application document_header <document> trailer
dsw_all_project_dependency dsw_project
dsp_library_header dsp_shared_library_header

PROTOTARGET
prototype
target

<

|

| -prototypes

| -preprocessor_command=preprocessor_command

| -fragment=fragment

| -output_suffix=output-suffix

| -extra_output_suffix=extra-output-suffix

library : library library-name [constituent-option ...]

 [source ...]

action : action action-name [

| set_append

| set_prepend

| set_remove

| set_remove_regexp

tag : tag tag-name [tag-name ...]

tag_exclude : tag_exclude tag-name [tag-name ...]

tag-expr : tag-name [& tag-name ...]

use : use package-name [version-tag [access-path]]

 [use-option]

version : version version-tag

version-tag : key version-number

 [key release-number [

http://www.cvshome.org/docs/manual/index.html

1. Find a location for working with temporary files. This is generally deduced from the
${TMPDIR} environment variable or in /tmp

 7. 5 The glue or interface package

 8 Managing site dependent features - The CMTSITE environment variable

 9 Configuring a package

10 Selecting a specific configuration

10. 1 Describing a configuration

10. 2 Defining the user tags

10. 3 Activating tags

11 Working on a package

11. 1 Working on a library

11. 2 Working on an application

11. 3 Working on a test or external

11.c21.06nnal
11

package

13. 2. 9. 1

13. 3.17 cmt set version <version>

13. 3.18

18. 3. 2 Structural macros

18. 3. 3 Language related macros

18. 3. 4 Package customizing macros

18. 3. 5 Constituent specific customizing macros

18. 3. 6 Source specific customizing macros

18. 3. 7 Generated macros

18. 3. 8 Macros related with the installation area mechanisms

18. 3. 9 Utility macros

18. 4 Standard tags generated by CMT

18. 5 Standard templates for makefile fragments

18. 6 Makefile generation sequences

18. 7 The complete requirements syntax

18. 8 The internal mechanism of cmt cvs operations

	CMT Configuration Management Tool
	Version v1r16 Christian Arnault arnault@lal.in2p3.fr
	General index
	€1 - Presentation
	€2 - The conventions
	€3 - The architecture of the environment
	€3.€1 - Supported platforms

	€4 - Installing a new package
	€5 - Localizing a package
	€6 - The concept of project
	€7 - Assigning semantics to packages. Common practices
	€7.€1 - The primary package
	€7.€2 - The policy package
	€7.€3 - The container or management package
	€7.€4 - The release package
	€7.€5 - The glue or interface package

	€8 - Managing site dependent features - The CMTSITE environment variable
	€9 - Configuring a package
	10 - Selecting a specific configuration
	10.€1 - Describing a configuration
	10.€2 - Defining the user tags
	10.€3 - Activating tags

	11 - Working on a package
	11.€1 - Working on a library
	11.€2 - Working on an application
	11.€3 - Working on a test or external application
	11.€4 - Construction of a global environment

	12 - Defining a document generator
	12.€1 - An example : the tex document-style
	12.€2 - How to create and install a new document style
	12.€3 - Examples

	13 - The tools provided by CMT
	13.€1 - The requirements file
	13.€1.€1 - The general requirements syntax

	13.€2 - The concepts handled in the requirements file
	13.€2.€1 - The package structuring style
	13.€2.€2 - Meta-information : author, manager
	13.€2.€3 - package, version
	13.€2.€4 - Constituents : application, library, document
	13.€2.€5 - Groups
	13.€2.€6 - Languages
	13.€2.€7 - Symbols
	13.€2.€7.€1 - actions

	13.€2.€8 - use
	13.€2.€9 - patterns
	13.€2.€9.€1 - Applying a pattern

	13.€2.10 - cmtpath_patterns
	13.€2.11 - branches
	13.€2.12 - Strategy specifications
	13.€2.13 - setup_script, cleanup_script
	13.€2.14 - include_path
	13.€2.15 - include_dirs
	13.€2.16 - make_fragment
	13.€2.17 - public, private
	13.€2.17.€1 - Scoping sections

	13.€2.18 - tag, apply_tag

	13.€3 - The general cmt user interface
	13.€3.€1 - cmt broadcast
	13.€3.€1.€1 - Specifying the shell command
	13.€3.€1.€2 - Templates in the shell command

	13.€3.€2 - cmt build <option>
	13.€3.€3 - cmt check configuration
	13.€3.€4 - cmt check files <reference-file> <new-file>
	13.€3.€5 - cmt checkout ...
	13.€3.€6 - cmt co ...
	13.€3.€7 - cmt cleanup [-csh|-sh]
	13.€3.€8 - cmt config
	13.€3.€9 - cmt create <package> <version> [<area>]
	13.€3.10 - cmt expand model [-strict] <model-string>
	13.€3.11 - cmt filter <in-file> <out-file>
	13.€3.12 - cmt help | --help
	13.€3.13 - cmt lock [<package> <version> [<area>]]
	13.€3.14 - cmt remove <package> <version> [<area>]
	13.€3.15 - cmt remove library_links
	13.€3.16 - cmt run [shell-command]
	13.€3.17 - cmt set version <version>
	13.€3.18 - cmt set versions
	13.€3.19 - cmt setup [-csh|-sh|-bat]
	13.€3.20 - cmt show <option>
	13.€3.21 - cmt system
	13.€3.22 - cmt unlock [<package> <version> [<area>]]
	13.€3.23 - cmt version | --version
	13.€3.24 - cmt cvstags <module>
	13.€3.25 - cmt cvsbranches <module>
	13.€3.26 - cmt cvssubpackages <module>

	13.€4 - The setup and cleanup scripts
	13.€5 - cmt build prototype

	14 - Using cvs together with CMT
	14.€1 - Importing a package into a cvs repository
	14.€2 - Checking a package out from a cvs repository
	14.€3 - Querying CVS about some important infos
	14.€4 - Working on a package, creating a new release
	14.€5 - Getting a particular tagged version out of CVS

	15 - Interfacing an external package with CMT
	16 - The installation area mechanism
	16.€1 - The default implementation
	16.€2 - Tuning the installation area mechanisms

	17 - Installing CMT for the first time
	17.€1 - Installing CMT on your Unix site
	17.€2 - Installing CMT on a Windows or Windows NT site

	18 - Appendices
	18.€1 - Copyright
	18.€2 - Standard make targets predefined in CMT
	18.€3 - Standard macros predefined in CMT
	18.€3.€1 - CMT static macros
	18.€3.€2 - Structural macros
	18.€3.€3 - Language related macros
	18.€3.€4 - Package customizing macros
	18.€3.€5 - Constituent specific customizing macros
	18.€3.€6 - Source specific customizing macros
	18.€3.€7 - Generated macros
	18.€3.€8 - Macros related with the installation area mechanisms
	18.€3.€9 - Utility macros

	18.€4 - Standard tags generated by CMT
	18.€5 - Standard templates for makefile fragments
	18.€6 - Makefile generation sequences
	18.€7 - The complete requirements syntax
	18.€8 - The internal mechanism of cmt cvs operations

	Contents

