
CMT

Configuration Management Tool

Version v1r18p20051101

Christian Arnault

arnault@lal.in2p3.fr

Document revision date : 2005-10-30

General index

 1 - Presentation
This environment, based on some management conventions and comprising several utilities, is an
attempt to formalize software production and especially configuration management around a
package -oriented principle.

The notion of packages represents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for producing a system or a
framework . In such an environment, several persons are assumed to participate in the
development and the components themselves are either independent or related to each other.

The environment provides conventions (for naming packages, files, directories and for addressing
them) and tools for automating as much as possible the implementation of these conventions. It
permits the description of the configuration requirements and automatically deduce from the
description the effective set of configuration parameters needed to operate the packages (typically
for building them or using them).

CMT lays upon some organisational or managerial principles or mechanisms described below.
However, it permits in many respects the users or the managers to control , specialize and
customize these mechanisms, through parameterization, strategy control and generic
specifications.

Many such packages are produced and maintained.
Packages sets may be structured in areas implementing a project oriented organization.
The projects represent independent organisations of packages, but may be interconnected as
a direct acyclic graph of projects
The packages may or not be related with each other (defining also a direct acyclic graph of
packages - not just a single tree).
The concept of package may be extended to implement structuring or organizing patterns
such as those involved in project management.
Project management policies and behavioural patterns can be easily expressed and
automated by CMT.
Each executable application (from now on simply named applications) either belongs to a

1

particular package and/or defines its own environment and then makes use of some other
packages.
Each package can be uniquely identified within the system or the framework by a name
which is usually a short mnemonic and which may be also used for isolating its name-space
(eg. by prefixing components of the package by its mnemonic).
A package installed in this environment may be exported to a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved through the
transport, the reconstruction procedure will be preserved. Configuration specifications can be easily
provided to cope with machine, site or system specific features.
Packages are maintained consistently to their declared relationships to each other through a
version identification model based on :

a version is defined with a mnemonic comprising one to three numbers the major id,
the minor id, and the patch id
versions with different major ids are said to be incompatible,
versions with same major ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.
versions differing only by their patch id are said to be fully compatible with each other.

Projects are also referenced using a release
Version control and management schemes (eg. by using CVS) are usually consistently
operated, applying the conventions on organization and version identification.
An application that uses one or several packages managed in this environment should not
itself be constrained to be managed by CMT . The tools should only require a few exported
features (such as a few environment variables) for referencing any given package.
Similarly, a package maintained in this environment must be able to use packages that are
not managed in this environment (which are often called external packages).

Following these definitions, the basic configuration management operations involved here (and
serviced by the CMT tools) consist of :

installing the packages in conventional locations so that they can be referenced by each
other, following projects or teams structuring paradigms,
describing the configuration requirements for each package:

dependencies to other packages,
generic behavioural patterns meant to describe generic configuration items or project
specific policies.
symbols to be exported to client packages (environment variables, make macros, etc...)
parameterized configuration activities (documentation generation, deploiement,
installation, etc...)
components (also named constituents) of the packages (libraries, applications,
generated documents)
parameterization of the build and test tools
parameterization of the deployment tools
strategies that CMT should follow at run time, overriding its default ones.

deducing the effective configuration parameters from the requirements so as to automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible alternate versions of available packages).

2

 2 - The conventions
This environment relies on a set of conventions, mainly for organizing the directories where
projects and packages are maintained and developed :

Each package is installed in a standard directory structure defined at least as follows:

<some root>/<Package mnemonic>/<version mnemonic>/cmt

or (obsolescent convention)

<some root>/<Package mnemonic>/<version mnemonic>/mgr

The <version mnemonic> directory level may also be omitted, in which case the version
information will be stored inside the cmt directory in a conventional file named
version.cmt leading to the following alternate organization:

<some root>/<Package mnemonic>/cmt/version.cmt

In both cases, the cmt directory holds the main source of information needed by CMT : the
requirements file. All CMT -related operations are generally executed from this directory.

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized as a valid CMT package . Any other structuring convention will be
supported by CMT and its operations can always be customized to follow them

This structure is a central concept since all relationships between packages relies on the
package identification which unambiguously and exclusively consists in the duet [
package-name , package-version] (or package-name only when the version directory level
is omitted).

Constructing the internal structure of a package.

Many other parallel directory branches (similar to cmt) such as src , include or test
may be freely added to this list according to the specific needs of each package. In particular,
a set of such parallel branches are expected to contain binary outputs (those that compilers,
linkers, archive managers or other kinds of code or pseudo-code generators can produce).
Their name always corresponds to the particular configuration tag used to produce the
output (such as the machine or operating system type). The CMT toolkit provides, through
the cmt system utility, a default value for this token. An environment variable
(CMTCONFIG) is also assigned to this value (See the complete description of configuration
tags).

Each branch may in addition be freely structured, and there is no constraint to the
complexity of this organization.

3

1 - Structuring a package - A typical example.

Organizing a software base.

A software base is generally composed of multiple coherent sets of packages, each installed
in its specific root directory and forming different package areas or sub-projects

Package areas implement the concept of projects or sub-projects which correspond to the
practical organization of the software base.

There are no constraints on the number of such sub-projects or areas into which CMT
packages are installed. We’ll see later how the different sub-projects can be declared and
identified by CMT .

examples of such organization can be :

4

2 - Structuring a sofware base.

 3 - The architecture of the environment
This environment is based on the fact that one of its packages (named CMT) provides the basic
management tools. CMT , as a package, has very little specificities and as such itself obeys the
general conventions.

Then the complete software base is organized in terms of projects (or sub-projects), containing
consistently managed package sets. Projects are localized either globally or individually:

globally using the environment variable CMTPROJECTPATH that describes all locations
where CMT projects can be found
individually using the environment variable CMTPATH that describe all package areas where
packages can be found

Packages are localized respectively to the projects they belong to.

It should be noted that the choice of a location for installing CMT itself is totally independent of
the locations where projects are installed and managed.

5

CMT is operated through one main user interface : the cmt command, which operates the CMT
conventions and which provides a set of services for :

creating a new package. This operation will create or check the local package directory tree
and generate several minimal scripts (see the description of the create command),
describing or monitoring :

the relationships between the package and other packages
the configuration features either specified in the current package, or imported from
related (used) ones. (symbols, patterns, fragments)
the constituents of the package in terms of libraries, executables, or generated
documents.

automatically generating the reconstruction scripts (makefiles) from this description.
recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared libraries, C prototypes, management of interactions between CVS and CMT
itself, the management of a similar architecture for Windows or OS9 , setting up protections for
packages (through locks) etc...).

 3. 1 - Supported platforms

CMT has been ported and tested on a wide range of machines/operating systems, including :
DEC-Unix V4.0
HP-UX-10 (several types of platforms)
AIX-4
Solaris
IRIX
Several variants of LynxOS
All variants of Linux (RedHat, Debian, SuSe, ScientificLinux, ...)
Windows 95/98/NT/Windows2000 in various environments:

CYGWIN_NT-5.1 environment
nmake based environment
MSDev/VisualC 6 environment
MSDev/VisualC 7 environment

Darwin (Mac OS X)
This in particular means that a package developped on one platform may be re-configured
towards any of these platforms without any change to its configuration description. All
platform specific tools will be dynamically reconfigured and parameterized transparently.

 4 - Defining and managing projects
In the CMT terminology, the complete software base is composed of CMT packages. Those
packages are organized into sub-projects. The semantics of a sub-project is very opened since it’s
merely an area for grouping CMT packages. Typically sub-projects may correspond to

a structuration in software domains, such as Reconstruction, Simulation, Graphics, Core, etc.
how responsibilities or management policies are defined and assigned

6

reusing or sharing different software products from different projects

Considering the simple structuring aspects of sub-projects, two important configuration
parameters (environment variables) handled by CMT must be understood before attempting to
manage packages:

CMTPROJECTPATH for a global specification of where projects can be found. This
specification should be considered as the standard mechanism for structuring the software
base since from it, CMT can and will deduce all other localization parameters (like
CMTPATH).

CMTPATH offers a more internal mechanism for localizing packages. It’s not generally
meant to be defined manually since CMT will construct it from CMTPROJECTPATH .
However, it’s important to understand how this configuration parameter is used to locate
packages.

Projects receive detailed descriptions or specifications in a dedicated project file , always located
in a cmt directory at their top directory level, and named cmt/project.cmt . It can receive
the following specifications:

project <project-name> [1]
project-use specifications... [2]
strategy specifications... [3]

1. The project name specified here takes precedence over the project name specified in the
directory structure. However when CMTPROJECTPATH is not specified, this may cause
conflicts in the localization of projects. In this case it’s highly recommended to always use
the same naming convention in project files as in the directory hierarchy.

2. Projects are hierarchized as a directed acyclic graph. The minimal hierarchy simply
corresponds to the order of the CMTPATH items. A more complex hierarchy can be specified
through use statements between sub-projects. This hierarchy also defines a parent/child
relationship between projects. If a project A uses another project B , A is also named the
parent and B the child

3. CMT Strategies (for build or setup) are separately collected into each project. Therefore one
can apply different strategies to different sub-projects. The strategy specifications may
appear in requirements file of any package of a project or in the cmt/project.cmt
project file.

By default a project inherits the strategies of its parents. Or if it’s the top project, it follows
the default strategies defined by CMT (Refer to this appendix to see the default strategies
currently defined by CMT).

 4. 1 - The project file

The project file can be created using the command:

> cmt create_project <project-name> [<release>] [<path>]
> cmt create_project <project-name> [<release>] [<path>] [-use=<package>:<version>:<path>]...

7

This will create the complete directory hierarchy from the current directory (or, when it is
specified from the optional project path). It will also create a project file containing the project name,
and optionnally will initialize it with some use statements.

Note that the <release> argument may be left empty (or to an empty string). In this
case, the directory hierarchy will be limited to the single level of the project name.

<path>/<project-name>/<release>/cmt/project.cmt
<path>/<project-name>/cmt/project.cmt

As an example, we create the following projects:

> cmt create_project WorkArea "" /test
> cmt create_project ProjectA 1.0 /test
> cmt create_project ProjectB 1.0 /test

And we manually fill CMTPATH with:

/test/WorkArea:/test/ProjectA/1.0:/test/ProjectB/1.0

Then, when standing in the WorkArea the following projects will appear displayed from
bottom to top as

> cd /test/WorkArea
> cmt show projects
WorkArea (in /test/WorkArea) (current)
 ProjectA 1.0 (in /test/ProjectA/1.0)
 ProjectB 1.0 (in /test/ProjectB/1.0)

Of course the preferred way to characterize this software base should rather be based on
specifying the relationships between those three sub-projects, through the use statements in
the projects files.

For instance in our little example, we could add the following statement into the project file
of WorkArea:

use ProjectA 1.0

and the following statement into the project file of ProjectB:

use ProjectB 1.0

Then instead of specifying CMTPATH we’d rather simply define CMTPROJECTPATH as:

/test

This complete sequence may also be shortened as follows:

> cmt create_project ProjectB 1.0 /test
> cmt create_project ProjectA 1.0 /test -use=ProjectB:1.0
> cmt create_project WorkArea "" /test -use=ProjectA:1.0

8

 4. 2 - Projects and strategies

Few behaviours of the configuration management process can be tailored with respect to
CMT, via means of defining strategies . Then according to these strategies, CMT will
behave in well defined ways.

Every strategy setting is a boolean value, instructing CMT to activate or not a given
behaviour. As such it defines two mutually exclusive CMT tags and it activates one of them.

<project>_<have_item>
<project>_<have_not_item>

Examples

<project>_with_install_area
<project>_without_install_area
<project>_config
<project>_no_config
<project>_root
<project>_no_root
<project>_cleanup
<project>_no_cleanup
<project>_with_version_directory
<project>_without_version_directory
<project>_prototypes
<project>_no_prototypes

In the context of a hierarchy - a graph - of projects, strategies are transmitted along the
graph, according to the use relationships specified between the projects. A project transmits
its strategies to its clients except when one of them overrides those strategies.

Several mechanisms help defining project specific properties, and more specifically making
use of the strategies:

The <project> parameter is expanded in the cmtpath_pattern construct in
addition to the <path> parameter. This parameter is assigned the name of the project
associated with the running CMTPATH entry.

The <project> parameter is also available for normal patterns. In this case it is
assigned the project name associated with the cmtpath parameter for the current
package.

Every project defines a tag of the same name, and the tag of the current project is
active.

The cmt_installarea_prefix macro is specialized per project and every project
may override the <project>_installarea_prefix macro. The default value of
any <project>_installarea_prefix is ${cmt_installarea_prefix}
(which itself is a global macro that receives a default value from CMT)

9

 4. 3 - CMTPROJECTPATH

This is an environment variable containing a search list, very similar to the well know Unix
or Windows PATH environment variable. It specifies a list of file paths where CMT projects
can be found. The syntax of this search list follows the standard syntax of search lists, i.e.
items are separated using a : character on Unix and a ; character on Windows.

One should understand this search list as the primary mechanism to locate sub-projects
in the software base, and therefore packages. This in particular can completely replace
the CMTPATH -based search mechanism for packages that was used before v1r18 .
However the two mechanisms are still both supported and in fact interact with each
other.

A sub-project in itself is a multi-level directory structure, located below one of the items of
this search list, and composed of:

the sub-project name
the sub-project release (which may span several directory levels)

Then, below this directory structure, we find

A project definition file in cmt/project.cmt
A set of CMT packages

A typical example of such a structure could be:

/project-area1/Reconstruction/1.0/cmt/project.cmt
 /RecA/...
 /RecB/...
/project-area1/Reconstruction/2.0/cmt/project.cmt
 /RecA/...
 /RecB/...

/project-area1/Simulation/1.0/cmt/project.cmt
 /SimA/...
 /SimB/...
/project-area1/Core/1.0/cmt/project.cmt
 /CoreA/...
 /CoreB/...

/project-area2/ProductA/1.1.2/cmt/project.cmt
 /PA_A/...
 /PA_B/...
 /PA_C/...
/project-area2/ProductB/v1r8p3/cmt/project.cmt
 /PB_A/...
 /PB_B/...
/project-area2/ProductB/v1r10/cmt/project.cmt
 /PB_A/...
 /PB_B/...

In this example:

there are two project areas, one for the main developments (/project-area1), and
another one for managing external products (/project-area1)

10

project-area1 offers three sub-projects Reconstruction , Simulation and
Core
project-area2 offers two sub-projects ProductA and ProductB
the sub-project Reconstruction is available in two releases 1.0 and 2.0
the sub-project Reconstruction offers two packages RecA and RecB
the sub-project ProductB is available in two releases v1r8p3 and v1r10

This search list is used to interpret the use statements written in the project files. This project
use statement takes the form:

project-use : use project-name project-release

Typically, in our example one could construct the project file of the Reconstruction
sub-project as follows:

use Core 1.0
use ProductA 1.1.2

Note that sub-project release identifiers are always considered using a perfect-match
principle.

Structuring the set of sub-projects comprising a software base is sufficient to permit CMT to
find all sub-projects and thus all packages in them. Defining CMTPROJECTPATH and
installing the list of use statements in all appropriate project files entirely suppress the need
of manually defining the CMTPATH search list.

 4. 4 - CMTPATH

This is an environment variable containing a search list, very similar to the well know PATH
environment variable, containing a list of file paths where CMT packages can be found. The
syntax of this search list follows the standard syntax of search lists, i.e. items are separated
using a : character on Unix and a ; character on Windows.

When the software base is organized and configured using the CMTPROJECTPATH
search list and project-use statements in the project files, this search list is
automatically and internally generated by CMT, and therefore it should not be
manually defined nor manipulated. If this is your case, you can skip this section

It is possible to manually define this search list (when CMTPROJECTPATH is not defined or
when project files are not provided)

There should be one entry per package area, and the list is ordered. The order of items is
used to prioritize the package search.

CMTPATH can be specified:

as the environment variable named CMTPATH

sh> export CMTPATH=/home/arnault/mydev:/ProjectB

11

bat> set CMTPATH=/home/arnault/mydev;/ProjectB

or (in a requirements file)

path_append CMTPATH "/home/arnault/mydev"
path_append CMTPATH "/ProjectB"

in .cmtrc files, which can be located either in the current directory, in the home
directory of the developper or in ${CMTROOT}/mgr . The syntax to use in this
configuration file is:

CMTPATH=/home/arnault/mydev:/ProjectB

In the Windows environment, this configuration parameter may also be installed as a
Registry under the alternate keys:

HKEY_LOCAL_MACHINE/Software/CMT/path
HKEY_CURRENT_USER/Software/CMT/path

The project file (i.e. the file cmt/project.cmt), when it exists for the current
package (i.e. upstream in the directory hierarchy), also provides an automatic value for
the CMTPATH search list.

 5 - Installing a new package
We consider here the installation of a user package. Installing CMT itself requires special attention
and is described in a dedicated section of this document.

Therefore, we assume that CMT is already installed in some location in the system. One first has
to setup CMT in order to gain access to the various management utilities, using for example the
shell command:

csh> source /lal/CMT/v1r18p20051101/mgr/setup.csh

or

ksh> . /lal/CMT/v1r18p20051101/mgr/setup.sh

or

dos> call \lal\CMT\v1r18p20051101\mgr\setup.bat

Obviously, this operation must be performed (once) before any other CMT action. Therefore it is
often recommended to install this setup action straight in the login script.

The setup script used in this example is a constant in the CMT environment : every
configured package will have one such setup script automatically generated and installed by
CMT . It is one important entry point to any package (and thus to CMT itself). It provides
environment variable definitions for all related (used) packages (A corresponding cleanup
script is also provided). This script contains a uniform mechanism for interpreting the
 requirements file so as to dynamically define environment variables, aliases for the
package itself and all its used packages. It is constructed once per package installation by
the cmt create command, or restored by the cmt config command (if it has been
lost).

12

It is generally good to start by immediately defining a project . This project is our first disk area
where CMT packages will be located. Remember that several such projects can be set up and
defined. The simplest way to do this is:

> cmt create_project Dev
--
Configuring environment for project Dev
CMT version v1r18p20051101.
--
Installing the cmt directory
Creating a new project file

This creates a project structure Dev/cmt/project.cmt from the current directory. Once this
project has been created we have a complete environment to start creating packages below Dev
and working out our software base.

A package is primarily defined by a name and a version identifier (this duet actually forms the
complete package identifier). These two attributes will be given as arguments to cmt create
such as in the following example :

csh> cd Dev
csh> cmt create Foo v1
--
Configuring environment for package Foo version v1.
CMT version v1r18p20051101. [1]
Root set to /home/arnault/Dev.
System is Linux-i686 [2]
--
Installing the package directory [3]
Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

1. This shows which actual CMT version you are currently using
2. This shows the current configuration tag (also available by the cmt system command). In

this example this is a Linux machine
3. This shows the detailed construction of the complete directory structure, starting from the

top directory which has the name of the package. Since we are creating a completely new
package, there will be by default only two branches below the version directory : cmt and
src .

The package creation occured from the current directory, creating from there the complete
directory tree for this new package.

In the next example, we install the package in a completely different area, by explicitly specifying
the path to it as a third argument to cmt create :

> cmt create Foo v1 /ProjectB
--
Configuring environment for package Foo version v1.
CMT version v1r18p20051101.
Root set to /ProjectB.
System is Linux-i686
--

13

Installing the path directory
Installing the package directory
Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

Several file creations occurred at this level :
a minimal directory tree for the package, including src and cmt (the other branches will be
installed when needed or generated at build time).

an empty configuration specification file (named requirements) installed in the cmt
branch.

A minimal Makefile (on Unix environments only), containing

include $(CMTROOT)/src/Makefile.header

include $(CMTROOT)/src/constituents.make

This Makefile does not need any further modification to build any of the constituents
managed by CMT . The intermediate makefile fragments will always be re-generated
transparently and automatically at build time. However (and thanks to this feature), this file
will not be modified anymore by CMT itself. Thus you may insert any particular make
statement you would feel appropriate, typically when you ask for operations that cannot be
taken - if any - into account by CMT .

A similar minimal NMake file (on Windows environments only), containing

!include $(CMTROOT)\src\NMakefile.header

!include $(CMTROOT)\src\constituents.nmake

the setup and cleanup scripts (one flavour for each shell family).
One may then setup this new package by running the setup script (which will not have much
effect yet since the requirements file is empty) :

sh> cd ~/mydev/Foo/v1/cmt
sh> . setup.sh

or

csh> cd ~/mydev/Foo/v1/cmt
csh> source setup.csh

or

dos> cd \mydev\Foo\v1\cmt
dos> call setup.bat

The FOOROOT and FOOCONFIG environment variables are defined automatically by this
operation.

It should be noted that running the setup script of a package is not always necessary for building
operations. The only situation where running this script may become useful, is when an
application is to be run, while requiring domain specific environment variables defined in one of

14

the used packages. Besides this particular situation, running the setup scripts may not be needed
at all.

Lastly, this newly created package may be removed by the quite similar remove command, using
exactly the same arguments as those used for creating the package.

csh> cd mydev
csh> cmt remove Foo v1
--
Removing package Foo version v1.
CMT version v1r18p20051101.
Root set to /home/arnault/mydev.
System is Linux-i686
--
Version v1 has been removed from /home/arnault/mydev/Foo
Package Foo has no more versions. Thus it has been removed.

or:

csh> cmt remove Foo v1 /ProjectB
--
Removing package Foo version v1.
CMT version v1r18p20051101.
Root set to /ProjectB.
System is Linux-i686
--
Version v1 has been removed from /ProjectB/Foo
Package Foo has no more versions. Thus it has been removed.

So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to work on an application or on a library for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of as follows:

csh> cd ~/mydev/Foo/v1/cmt
csh> cat >../src/FooTest.c
#include <stdio.h>

int main ()
{
 printf ("Hello Foo\n");
 return (0);
}

csh> vi requirements
...
application FooTest FooTest.c
csh> gmake
csh> source setup.csh
csh> FooTest.exe
Hello Foo

Directly running the application is possible since the application has been installed after being
built in an automatic installation area reachable through the standard PATH environment variable

This can also be integrated in the build process by providing the -check option to the application
definition:

15

csh> cd ../cmt
csh> vi requirements
...
application FooTest -check FooTest.c
csh> gmake check
Hello Foo

 6 - Localizing a package
In the next sections, we’ll see that packages reference each other by means of use relationships.
Generally packages are found in different locations, according to the project - or sub-project -
they belong to. CMT provides a quite flexible mechanism for localizing the referenced packages.

The first ingredient we need at this level is to understand how projects themselves are localized,
since packages will be found inside project areas. You should therefore refer to the section on
projects where the complete mechanism based on CMTPROJECTPATH or CMTPATH is
described.

However, there is one special case where this path list can be avoided, i.e. when only one project
is considered. In this case, the knowledge of this single project area can simply be deduced from
the detection of the project file, created at the top of its disk space.

A given version of a given package is always referred to by using a use statement within its
 requirements file. This statement should specify the package through three keys :

its name (such as Bar)
its version (such as v7r5)
optionally its expected absolute location or relative offset

use Bar v7r5 [1]

or

use Bar v7r5 A [2]

or

use Bar v7r5 /ProjectB/A [3]

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order) :

1. the absolute access path, if the use path is absolute (case #3),
2. the access paths registered in the configuration parameter CMTPATH (and in decreasing

priority, the first element being searched for first).

If the path argument is specified as a relative path (case #2 above) (ie. there is no leading slash
character or it’s not a disk on windows machines), it will be used as an offset to each search case.
The search is done starting from the list specified in the CMTPATH configuration parameter; and
the offset is appended at each searched location.

16

As an example, if the CMTPATH parameter contains:

/home/arnault/mydev:/ProjectB

Then a use statement (defined within a given package) containing :

...
use Bar v7r5
use BarA v1 A

would look for the package Bar from :
1. /home/arnault/mydev/Bar/v7r5/cmt
2. /ProjectB/Bar/v7r5/cmt

Whereas the package BarA would be searched from :
1. /home/arnault/mydev/A/BarA/v1/cmt
2. /ProjectB/A/BarA/v1/cmt

The packages are searched assuming that the directory hierarchy below the access paths always
follow the convention :

1. there is a first directory level exactly named according to the package name (this is case
sensitive),

2. then (optionally) the next directory level is named according to the version tag,
3. then there is a branch named cmt ,
4. lastly there is a requirements file within this cmt branch.

Thus the list of access paths is searched for until these conditions are properly met.

The actual complete search list can always be visualized by the command:

> cmt show path
Add path /home/arnault/dev from CMTPATH
Add path /ProjectB from CMTPATH
#
/home/arnault/dev:/ProjectB

 7 - Assigning semantics to packages. Common practices
Generally speaking, CMT makes no assumption on how or why is used a package. However past
experience has shown that packages can be categorized according to their purpose or their type of
contents.

 7. 1 - The primary package

This is the most general and basic pakage type, which provides actual pieces of software,
such as libraries or applications. Generally the main activities performed by such a package
include building the software (compiling, linking), testing, generating the documentation,
installing, ...

A typical package of that kind will contain:

a ../src directory containing the sources of the package
a directory for the include files, with a name that will depend on the structuring policies
defined for the project. Tyical examples are

17

../include/

../<packagename>/

a ../doc directory for the documentation
a ../test directory for the test programs.

The requirements file will generally contain at least library and application
statements.

 7. 2 - The policy package

This kind of package only provides conventions, working methods, general purpose shell
scripts but generally provides no software per se. It is designed to gather all policies and
management conventions for a project or a sub project.

The basic contents of such a package is the requirements file including

strategy definitions
pattern definitions
general purpose symbol definitions

In principle the idea when such a policy package is defined, is that all packages of the
project or of the sub-project will use it

Global patterns may be specified so as to automate the applying of basic policies and
conventions.

Typical examples of policies that are profitably specified in such a package are:

include search path convention (using a global pattern with the include_dir
statement)
build or setup strategies
compiler or linker generic options
defining the project-wide production tools (compiler, documentation generator, etc...)
tag associations need to describe the binary tag convention in the project

In large projects, it is even often desirable to split the policies into a set of specialized
policies and to associate one dedicated policy package with each of those.

policies for the test
policies for each programming language
policies for documentation management
policies for installation and deployment
policies for external software organisation

Then the global policy package will use them

18

 7. 3 - The container or management package

In large projects, it’s often useful to decompose the software base into specialized domains
(Core software, Graphics, Database, Online, etc...) or subsets of the software (eg per detector
in a physics experiment). Then a container package consists in constructing a simple
package with only one requirements file in it and only containing a set of use statements.

Management activities directly related with the associated sub-domain can then be
undertaken through this special package:

version management (such as CVS tagging) of packages belonging to the domain
consistently building the domain
Generally the cmt broadcast command is widely exploited to perform those
management activities.

Generally the use statements installed in a container package make use of explicit version
specification (and prohibit wild carding) since each version of this container package acts as
a reference of the set of version tags validated for the packages of the domain.

 7. 4 - The release package

This package is one particular example of the container concept, but dedicated to manage the
project-wide activities. This release package is the primary target of the project manager. It
will generally receive as its version tags the version tags assigned to the project releases
themselves.

 7. 5 - The glue or interface package

This kind of package defines an interface to an existing software product not managed in the
context of the project itself. Typical examples concern:

packages shared from external projects that don’t use CMT as their configuration tool
third party software (free software, commercial products, ...) locally installed on the
development platform.

The primary goal fo such a glue package is to convert the management conventions and
policies expected by the referenced product to the ones appropriate for the current project.

compiler and linker options
run time settings such as environment variable definitions (PATH ,
LD_LIBRARY_PATH , etc..)
data file access
specification of local installation according to the project strategy

Generally this kind of package only provides a requirements file, or make fragments used to
automate some actions (typically when document generation is expected from thie interfaced
product)

19

 8 - Managing site dependent features - The CMTSITE
environment variable

Software bases managed by CMT are often replicated to multiple geographically distant sites (as
opposed to machines connected through AFS-like WAN). In this kind of situation, some of the
configuration parameters (generally those used for instance to reference local installations of
external software) take different values.

The CMTSITE environment variable or registry in Windows environments, is entirely under the
control of the site manager and can be set with a value representing the site (typical values may
be LAL , Virgo , Atlas , LHCb , CERN , etc.).

This variable, when set, corresponds to a tag which can be used to select different values for
make macros or environment variables.

A typical use for this tag is to build up actual values for the location path of an external software
package. Here we take the example of the Anaphe utility:

macro AnapheTOP "" \
 CERN "/afs/cern.ch/sw/lhcxx" \
 BNL "/afs/rhic/usatlas/offline/external/lhcxx" \
 LBNL "/auto/atlas/sw/lhcxx"

 9 - Configuring a package
The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file uniquely named requirements and necessarily
installed in the cmt branch of the package directory tree.

An empty version of this file is automatically created the first time the package is installed, and
the package manager is expected to augment it with configuration specifications.

The primary goal of this configuration file is to specify any configuration information for this
package. There is virtually no limit to what could be specified there. And we can expect to find
exhaustive information about:

the primary constituents of the package
how to rebuild the software
how to setup and use the software
how to transport and deploy the package

Many configuration parameters are supposed to be described into this requirements file - see the
detailed syntax specifications here - namely :

the package information about its author(s) and manager(s)
the relationships with other packages
the package constituents (libraries, applications, documents, etc.)
the policy patterns to be applied by clients of this package
the parameterization of the tools used in the build process (eg. make macros)
the parameterization of the run-time activity (eg. environment variables, search paths, etc.)

20

Generally, every such appropriate parameter will be deduced on demand from the requirements
file(s) through the various query functions available from the cmt main driver. Therefore there is
no systematic package re-configuration per se, besides the very first time a package is newly installed
in its location (using the cmt create action).

Query actions (generally provided using the cmt show ... family of commands) are to be
embedded in the various productivity tools, such as the setup shell scripts, or makefile fragment
generators.

These query actions always interpret the set of requirements files obtained from the current
package and from the packages in the effective used chain. Symbols, tags and other definitions
are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Conversely one may say that parameters defined in a requirements file are meant to be exported
to the clients of the package.

Other configuration parameters are also optionally inserted from the HOME and USER context
requirements files

Typical examples of these query functions are:

cmt setup builds a shell command line for setting up environment variables
cmt show projects gives the ordered sequence of sub-projects comprising the
complete software base
cmt show macros construct the effective set of inherited make macros
cmt show uses gives the ordered and flattened set of used packages
cmt show constituents lists the package’s constituents
cmt show path lists the effective search path for packages.
cmt show strategies shows the current setup of various functional CMT strategies.
cmt show setup combines in one display the result of uses , tags and path

10 - Selecting a specific configuration
A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

the operating system (such as Linux , Windows , ...)
the platform (such as Intel , Compaq , Sun , etc...)
the sub-project into which a package is inserted
the choice of the compiler (such as g++ , egcs , CC , etc...)
options used for compiling (such as optimizer , debugger , etc...) or linking
the context specifications (selecting a particular version of a firmware, selecting a database
server, ...)
the site itself
the context of a constituent during its rebuild operation

Carefully describing this configuration is essential both for maintenance operations (so as to
remember the precise conditions in which the package was built) and when the development area
is shared between machines running different operating systems, or when a project has to be
deployed on several sites.

21

10. 1 - Describing a configuration

CMT relies on several complementary conventions or mechanisms for this description and
the associated management. All these conventions rely on the concept of configuration tags .

A tag is a symbol that describes one aspect of the configuration.
A tag can be active when the corresponding aspect of the configuration is true or
inactive otherwise
The set of active tags represents the complete configuration known by CMT, and can be
visualized with the cmt show tags command
Tags can be combined using logical expressions to form tag associations

1. Some aspects of the configuration - and their associated tags - are automatically
deduced from some standard environment variables that the user is expected to specify
(typically using shell commands):

CMTCONFIG describes the current settings for producing binary objects. One
default value is provided automatically by CMT, but generally project will
override it to apply specific conventions.

The default value is computed by CMT in the
${CMTROOT}/mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type
and the opebrating system type (using a mixing of the uname standard UNIX
command with various operating system specific definitions such as the AFS
based fs sysname command)

CMTSITE characterizes the current site. Its syntax is completely free

CMTEXTRATAGS may contain a space-separated list of additional tags to
systematically activate

Note that the CMTBIN variable which represents the current binary installation of
CMT itself does NOT correspond to any tag.

2. Some aspects of the configuration represents the implicit knowledge CMT gets of the
current context:

The value given by the uname standard Unix facility is always a valid
configuration tag. (eg. Linux)
The current major version id of CMT is a valid tag and takes the form CMTv<n>
(eg. CMTv1)
The current minor version id of CMT is a valid tag and takes the form CMTr<n>
(eg. CMTr18)
The current patch id of CMT is a valid tag and takes the form CMTp<n> (eg.
CMTp20030616)
The current sub-project to which the current package belongs, and the various tags

22

automatically generated by CMT to qualify the strategy options.
The current hardware understood as filled in the cmt_hardware macro
The current OS understood as filled in the cmt_system_version macro
The version of the C++ compiler understood as filled in the
cmt_compiler_version macro

3. During a make session, each individual target being rebuilt may define its own context,
when the -target_tag is set to the associated constituent, and this is materialized
with a dedicated tag named target_<constituent> .

For instance, a package defines a library A and an application P , both in the default
group. Both constituents have their -target_tag option set. Thus, when the
standard make command is run, then those two targets will be rebuilt successively (eg
A then B). Then, during the build of A (and only then) the tag named target_A will
be active and during the build of B , the tag named target_B will in turn be active.

library A -target_tag A.cxx
application P -target_tag P.cxx

macro_append cppflags "" target_A "-DA" target_P "-DP"

4. During the execution of an action , a specific context is created, which is
materialized with a dedicated tag named target_<action> , very similarly to the
target tags for constituents.

5. User defined tags can be explicitly or implicitly activated:

explicitly from the cmt command line, using the -tag=<tag-list> option
explictly from requirements files using the apply_tag <tag> syntax
implicitly from requirements files using the tag association syntax, when a tag is
associated with an otherwise activated tag. One example is the Unix tag
associated by CMT itself with most Unix variants

The minimal tag set available from CMT can be visualized as follows (note that the exact
output will obviously not necessarily be the one presented in this document according to the
context effectively used):

> cd ${CMTROOT}
> cmt show tags
CMTv1 (from CMTVERSION) [1]
CMTr18 (from CMTVERSION) package CMT implies [CMTr14] [1]
CMTp20040701 (from CMTVERSION) [1]
Linux (from uname) package CMT implies [Unix] [2]
i686-rh73-gcc32-opt (from CMTCONFIG) [3]
CERN (from CMTSITE) [4]
CMT_prototypes (from PROJECT) excludes [CMT_no_prototypes] [5]
CMT_with_installarea (from PROJECT) excludes [CMT_without_installarea]
CMT_setup_config (from PROJECT) excludes [CMT_setup_no_config]
CMT_setup_root (from PROJECT) excludes [CMT_setup_no_root]
CMT_setup_cleanup (from PROJECT) excludes [CMT_setup_no_cleanup]
CMTr14 (from package CMT)
i686 (from package CMT) [6]
rh73 (from package CMT) [7]
gcc32 (from package CMT) [8]
Unix (from package CMT) excludes [WIN32 Win32] [9]

1. Implicit tags deduced from the current version of CMT

23

2. Implicit tag obtained from the uname command (note that there is an associated tag
defined here)

3. The current value of CMTCONFIG
4. The current value of CMTSITE
5. The strategy tags
6. Automatic detection of the hardware
7. Automatic detection of the current OS
8. Automatic detection of the C++ compiler version
9. A indirectly activated tag (associated with another active tag)

10. 2 - Defining the user tags

The user configuration tags can generally be specified though various complementary
mechanisms:

CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

sh> export CMTSITE=CERN

CMTSITE and CMTCONFIG can alternatively be specified using the set statement in
a requirements file

set CMTSITE "CERN"
set CMTCONFIG "${CMTBIN}" sun "Solaris-CC-dbg"

Additional tags may also be associated with other tags, using the tag statement (in a
requirements file):

tag newtag tag1 tag2 tag3

which means that:
newtag defines a tag (inactive by default)
when newtag is active, then both tag1, tag2 and tag3 are simultaneously active

Tags may be declared as exclusive using the tag_exclude syntax.

tag_exclude debug optimized

This example implies that the two tags debug and optimized should never become
active simultaneously.

Tags are assigned priorities according to the way they have been defined. The priority
is particularly useful for specifying exclusion. The tag association promotes the priority
of the associated tags to the priority of the defining tag. The following decreasing
priorities are currently defined by CMT:

1. tag specified in the command line using the -tag=<tag-list> option
2. tag deduced from CMTCONFIG
3. tag defined in a requirements file using the tag syntax
4. tag deduced from CMTSITE
5. tag deduced from uname

24

6. tags deduced from the version of CMT

10. 3 - Activating tags

By default, CMTCONFIG , uname and CMTSITE (also named system tags) are always
active.

The tag associated with the current project name as well as those describing the strategy
properties of all projects are also always active.

The target tags associated with constituents (when the -target_tag option was set on
them) or with actions are automatically activated during the build of the constituent or
during the execution of the action.

It is possible to activate other tags through the following arguments to any cmt command:

-tag=<tag-list>

will cleanup the complete current tag set, and activate the new tags (the system tags are
restored).

-tag_add=<tag-list>

will add to the current tag set the tags specified in the comma separated list

-tag_remove=<tag-list>

will remove from the current tag set the tags specified in the comma separated list

Beware that giving these arguments generally make the selected tag set active only
during the selected command. Therefore two different CMT commands run with
different tag sets will generally yield different results.

However it’s often useful to state that a given tag or tag set should be active. This can be
obtained by the following mechanisms:

1. Forcing a tag in a requirements file using the apply_tag syntax

Eg the following syntax installed in a requirements file will force the tag foo :

tag_apply foo

> cmt show tags
CMTv1 (from CMTVERSION)
CMTr18 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)
Default (from Default)
foo (from package Foo)

2. Implying a tag from another one using the tag association syntax

25

tag Linux foo

> cmt show tags
CMTv1 (from CMTVERSION)
CMTr18 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname) package Foo implies [foo]
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)
Default (from Default)
foo (from package Foo)

3. Through conventionally encoded values of CMTCONFIG

tag Linux-foo Linux foo

> export CMTCONFIG=Linux-foo
> cmt show tags
CMTv1 (from CMTVERSION)
CMTr18 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-foo (from CMTCONFIG) package Foo implies [Linux foo]
A (From PROJECT)
Default (from Default)
Linux-i686 (from package CMT) package CMT implies [Linux]
foo (from package Foo)

The current active tag set can always be visualized using the cmt show tags command.

> cmt show tags
CMTv1 (from CMTVERSION)
CMTr18 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)
Default (from Default)
> cmt -tag_add=tag1,tag2,tag3 show tags
CMTv1 (from CMTVERSION)
CMTr18 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
A (From PROJECT)
tag1 (from arguments)
tag2 (from arguments)
tag3 (from arguments)
Default (from Default)

Typical usages of those extra tags are:

when using special compiler options (e.g. optimization, debugging, ...)
for switching to different compilers (e.g. gcc versus the native compiler)
when one uses a special debugging environment such as Insure or Purify
when using special system specific features (such as whether one uses thread-safe
algorithms or not)

26

All symbol definitions providing specific values triggered by the active selectors will be
selected, such as in:

macro_append cppflags "" \
 debug " -g "

11 - Working on a package
In this section, we’ll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are continuing the example of the Foo
package already used in this document.

11. 1 - Working on a library

Let’s assume, as a first example, that the Foo package is originally composed of one library
libFoo.a itself made from two sources : FooA.c and FooB.c . A shared flavour of the
library libFoo.so or libFoo.sl or libFoo.dll) is also foreseen.

The minimal set of branches provided by CMT (once the cmt create operation has been
performed) for a package includes src for the sources and cmt for the Makefiles and other
scripts.

The various tools CMT provide will be fully exploited if one respects the roles these branches
have to play. However it is always possible to extend the default understanding CMT gets on
the package by appropriate modifiers (typically by overriding standard macros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a software package.

We first have to create the two source files into the src branch (typically using our
favourite text editor). Then a description of the expected library (ie. built from these two
source files) will be entered into the requirements file. The minimal syntax required in
our example will be :

csh> cd ../cmt
csh> vi requirements (1)
library Foo FooA.cxx FooB.cxx

1. the requirements file located in the cmt branch of the package receives the
description of this library component. This is done using one library statement.

The cmt create command had generated a simple Makefile (or NMake file) which is
generaly sufficient for all standard operations, since CMT continuously and transparently
manages the automatic reconstruction of all intermediate makefile fragments. We therefore
simply and immediately execute gmake as follows:

...v1/cmt> gmake QUIET=1
------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Linux-i686.make [1]
setup.make ok
------> (constituents.make) Rebuilding library links
------> (constituents.make) all done

27

------> (constituents.make) Building Foo.make [2]
Library Foo
------> (constituents.make) Starting Foo
------> (Foo.make) Rebuilding ../Linux-i686/Foo_dependencies.make [3]
rebuilding ../Linux-i686/FooA.o
rebuilding ../Linux-i686/FooB.o
rebuilding library
------> Foo : library ok
------> Foo ok
Installing library libFoo.so into /home/arnault/mydev/InstallArea/Linux-i686/lib
installation done [4]
------> (constituents.make) Foo done
 all ok.
Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
gmake[2]: ‘all’ is up to date.

1. Some intermediate makefile fragments are automatically built to reflect the current
effective set of Makefile macros deduced from the configuration (read from the
 requirements file). These fragments are automatically rebuilt (if needed) each
time one of the requirements file changes.

2. Each component of the package (be it a particular library or a particular executable)
will have its own makefile fragment (named
../${CMTCONFIG}/<name>.[n]mak[e]). This dedicated makefile takes care of
filling up the library and creating the shared library (on the systems where this is
possible).

3. The directory which is used for the binaries (i.e. the results of compilation or the
libraries) has been automatically created by a generic target (dirs) which is defined
within [N]Makefile.header . A new binary directory will be created each time a
new value of the CMTCONFIG environment variable is defined or a tag is provided on
the command line to make .

4. An automatic installation mechanism is applied for all successfully built binaries.
or, for nmake:

...v1/cmt> nmake /f nmake

This mechanism relies on some conventional macros and incremental targets used within
the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It’s quite important to understand the list of possible customization macros, since
this is the main communication medium between CMT and the package manager. See the
complete table of those conventional macro when you want to interact with the standard
CMT behaviour.

However, it is also possibble to use a simplified and platform independent form to build a
constituent

...v1/cmt> cmt make

This syntax is identical on all platforms, and also does not require any cmt config nor
source setup operation

28

11. 2 - Working on an application

Assume we now want to add a test program to our development. Then we create a
FooTest.cxx source, and generate the associated makefile (specifying that it will be an
executable instead of a library) :

csh> cd ../src
csh> emacs FooTest.cxx
...
csh> cd ../cmt
csh> vi requirements
...
application FooTest FooTest.cxx

So that we may simply build the complete stuff by running :

> cmt make QUIET=1

------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Linux-i686.make
setup.make ok
------> (constituents.make) Rebuilding library links
------> (constituents.make) all done
------> (constituents.make) Building Foo.make
Library Foo
------> (constituents.make) Starting Foo
------> Foo : library ok
------> Foo ok
installation done
------> (constituents.make) Foo done
------> (constituents.make) Building FooTest.make
Application FooTest
------> (constituents.make) Starting FooTest
------> (FooTest.make) Rebuilding ../Linux-i686/FooTest_dependencies.make
rebuilding ../Linux-i686/FooTest.o
rebuilding ../Linux-i686/FooTest.exe
------> FooTest ok
Installing application FooTest.exe into /home/arnault/mydev/InstallArea/Linux-i686/bin
installation done
------> (constituents.make) FooTest done
 all ok.
Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
gmake[2]: ‘all’ is up to date.

Which shows that a program FooTest.exe has been built from our sources. Assuming
now that this program needs to access the Foo library, we’ll just add the following
definition in the requirements file :

...
macro Foo_linkopts " -lFoo " \
 WIN32 " $(FOOROOT)/$(Foo_tag)/Foo.lib "
...

The Foo_linkopts conventional macro will be automatically inserted within the
use_linkopts macro. And the shared library location will be automatically set to the
installation areas.

29

It is also possible to select extra tag sets when running gmake as follows (in this example we
first cleanup the previous build and rebuild with debug options added to the compiler and linker
commands) :

> cmt make clean
> cmt make CMTEXTRATAGS=debug

Like all other make macros used to build a component, the Foo_linkopts will be
specified within the requirements which gives several benefits:

variants of the macro definition can be provided
monitoring features of CMT such as the cmt show macro Foo_linkopts
command can be used later on
macros defined this way may be later on inherited by client packages which will use
our package.

11. 3 - Working on a test or external application

It is also possible to work on a test or external application, ie. when one does not wish to
configure the development for this application using CMT . Even in this case, it is possible to
benefit from the packages configured using CMT by partially using CMT , just for used
relationships.

Here, no special convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to describe in a requirements file
the use relationships, as well as the make macro definitions, quite similarly to the package
entirely configured using CMT .

Most of the options provided by the cmt user interface are still available in these conditions.

12 - Defining a document generator
In a Unix environment, documents are built using make (well generally its gnu flavour) or
nmake in Windows environments. The basic mechanism provided in CMT relies on make
fragment patterns containing instructions on how to rebuild document pieces. Many such
generators are provided by CMT itself so as to take care of of the most usual cases (e.g.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones provided by CMT . This mechanism
is very similar to the definition or re-definition of macros or environment variables in that every
new generator has to be first declared in a requirements file belonging to a package (CMT
actually declares all its default generators within its requirements file), allowing all its
client packages to transparently acquire the capacity to generate documents of that sort.

CMT manages two categories of constituents:
1. Applications and Libraries are handled using pre-defined make fragments (mainly related

with languages) and behaviour.
2. Documents offer a quite general framework for introducing completely new behaviours

through user-defined make fragments. This includes actually generating documents, but also

30

simply performing an operation (in which case sometimes no real document is produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types.

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes named "document-style"), which
corresponds to a dedicated make fragment of that name. Then, when specified in a document
statement, this make fragment will be instanciated once or several times (typically once per
source file) to construct a complete and functional make fragment, containing one main target.
Both the resulting make fragment and the make target will have the name of the constituent.

12. 1 - An example : the tex document-style

This section discusses one simple example (the production of postscript from latex files)
available in the standard CMT distribution kit.

Converting a latex source file into a postcript output implies to chain two text processors,
with an intermediate dvi format.

The fragment described here exactly performs this sequence, taking care of intermediate file
deletion. The document style is named "tex" (the associated fragment shown here and named
"tex" is actually provided by CMT itself, and can be looked at in
${CMTROOT}/fragments/tex .) :

============ tex =====================================
${CONSTITUENT} :: ${FILEPATH}/${NAME}.ps

${FILEPATH}/${NAME}.dvi : ${FULLNAME}
 cd ${doc}; latex ${FULLNAME}

${FILEPATH}/${NAME}.ps : ${FILEPATH}/${NAME}.dvi
 cd ${doc}; dvips ${FILEPATH}/${NAME}.dvi

${CONSTITUENT}clean ::
 cd $(doc); /bin/rm -f ${FILEPATH}/${NAME}.ps ${FILEPATH}/${NAME}.dvi

==

They are declared in the CMT ’s requirements file as follows :

make_fragment tex -header=tex_header

where:

1. "tex" represents both the fragment name and the document style.

2. the -header=tex_header option indicates that the generated makefile
fragment will first include this header (which is actually an empty file in this case)

31

A user package willing to apply this behaviour will have to include in its requirements
file a statement similar to the following:

document tex MyDoc -s=../doc doc1.tex doc2.tex

where:
1. The first parameter "tex" is the document-style
2. The second parameter "MyDoc" is used for building the constituent’s makefile

(under the name MyDoc.make) and for providing the make target "MyDoc".
3. The other parameters (doc1.tex and doc2.tex) are the sources of the document.

Explicit location is required (since default is currently defined to be ../src)
4. The constituent’s makefile MyDoc.make is built as follows :

1. Install a copy of the $CMTROOT/fragments/make_header generic
fragment

2. Install a copy of the $CMTROOT/fragments/tex_header fragment
3. For each of the sources, install a copy of the fragment "tex"
4. Install a copy of the $CMTROOT/fragments/cleanup_header

fragment

The result for our example is:

=========== MyDoc.make ===============================

#====================================
Document MyDoc

Generated by

#====================================

help ::
@echo ’MyDoc’

doc1_dependencies = ../doc/doc1.tex
doc2_dependencies = ../doc/doc2.tex

MyDoc :: ../doc/doc1.ps

../doc/doc1.dvi : $(doc)doc1.tex
 cd ${doc}; latex $(doc)doc1.tex

../doc/doc1.ps : ../doc/doc1.dvi
 cd ${doc}; dvips ../doc/doc1.dvi

MyDocclean ::
 cd $(doc); /bin/rm -f ../doc/doc1.ps ../doc/doc1.dvi

MyDoc :: ../doc/doc2.ps

../doc/doc2.dvi : $(doc)doc2.tex
 cd ${doc}; latex $(doc)doc2.tex

../doc/doc2.ps : ../doc/doc2.dvi
 cd ${doc}; dvips ../doc/doc2.dvi

MyDocclean ::
 cd $(doc); /bin/rm -f ../doc/doc2.ps ../doc/doc2.dvi

32

clean :: MyDocclean
 cd .

MyDocclean ::
==

12. 2 - How to create and install a new document style

This section presents the general framework for designing a document generator.

1. Select a name for the document style. It should not clash with existing ones (use the
cmt show fragments for a complete list of document types currently defined).

2. A fragment exactly named after the document style name must be installed into a
subdirectory named fragments below the cmt branch of a given package (which
becomes the provider package).

3. Optionally, two other fragments may be installed into the same subdirectory, one of
them will be the header of the generated complete fragment, the other will be its trailer

4. Those fragments must be declared in the requirements file of the provider package as
follows:

make_fragment <fragment-name> [options...]

where options may be :

-suffix=<suffix> provide the suffix of the output files (without the dot)

-header=<header>
provide another make fragment meant to be prepended to the
constituent’s make fragment.

-trailer=<trailer>
provide another make fragment meant to be appended to the
constituent’s make fragment.

-dependencies
install the automatic generation of dependencies into the
constituent’s make fragment

Once a fragment is installed and declared, it may be used by any client package (ie a
package using the provider), and queried upon using the command

> cmt show fragment <fragment name>

which will show where this fragment is defined (ie. in which of the used packages).

The cmt show fragments commands lists all declared fragments.

If a package re-defines an already declared make fragment, ie it provides a new copy of the
fragment (possibly with new copies of the header and the trailer), and declares it inside its
requirements file, then this package becomes the new provider for the document style.

33

For building a fragment, one may use pre-defined generic "templates" (which will be
substituted when a fragment is copied into the final constituent’s makefile).

CONSTITUENT the constituent name

CONSTITUENTSUFFIX the optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)

FILENAME the complete source file name (only including the suffix)

NAME the short source file name (without directory and suffix)

FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

OBJS
(only available in headers) the list of outputs, formed by a set of expressions :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

Templates must be enclosed between ${ and } or between $(and) and will be substituted
at the generation time. Thus, if a fragment contains the following text :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

then, the expanded constituent’s makefile will contain (refering to the "tex" example)

$(MyDoc_output)doc1.ps

Which shows that make macros may be dynamically generated.

34

3 - The architecture of document generation.

12. 3 - Examples

1. rootcint

It generates C++ hubs for the Cint interpreter in Root.

========= rootcint ===
(src){NAME}.cc :: ${FULLNAME}
 ${rootcint} -f (src){NAME}.cc -c ${FULLNAME}
==

2. agetocxx and agetocxx_header.

It generates C++ source files (xxx.g files) from Atlas’ AGE description files.

========= agetocxx ===
output=$(${CONSTITUENT}_output)

$(output)${NAME}.cxx : $(${NAME}_cxx_dependencies)
 (echo ’#line 1 "${FULLNAME}"’; cat ${FULLNAME}) > /tmp/${NAME}.gh.c
 gcc -E -I$(output) $(use_includes) -D_GNU_SOURCE \
 cd ${output}; $(agetocxx) -o ${NAME} -ohd ${FILEPATH} \
 -ohp ${FILEPATH} /tmp/${NAME}.gh
 rm -f /tmp/${NAME}.gh /tmp/${NAME}.gh.c
 cd $(bin); $(cppcomp) $(use_cppflags) $(${CONSTITUENT}_cppflags) \
 $(${NAME}_cppflags) ${ADDINCLUDE} $(output)${NAME}.cxx
 cd $(bin); $(ar) $(${CONSTITUENT}lib) ${NAME}.o; /bin/rm -f ${NAME}.o
==

35

========= agetocxx_header ==================================
${CONSTITUENT}lib = $(bin)lib${CONSTITUENT}.a
${CONSTITUENT}stamp = (bin){CONSTITUENT}.stamp
${CONSTITUENT}shstamp = (bin){CONSTITUENT}.shstamp

${CONSTITUENT} :: dirs ${CONSTITUENT}LIB
 @/bin/echo ${CONSTITUENT} ok

${CONSTITUENT}LIB :: $(${CONSTITUENT}lib) $(${CONSTITUENT}shstamp)
 @/bin/echo ${CONSTITUENT} : library ok

$(${CONSTITUENT}lib) $(${CONSTITUENT}stamp) :: ${OBJS}
 $(ranlib) $(${CONSTITUENT}lib)
 cat /dev/null >$(${CONSTITUENT}stamp)

$(${CONSTITUENT}shstamp) :: $(${CONSTITUENT}stamp)
 cd $(bin); $(make_shlib) $(tag) ${CONSTITUENT} \
 $(${CONSTITUENT}shlibflags); \
 cat /dev/null >$(${CONSTITUENT}shstamp)

==

It must be declared as follows :

make_fragment agetocxx -suffix=cxx -dependencies -header=agetocxx_header

13 - The tools provided by CMT
The set of conventions and tools provided by CMT is mainly composed of :

the syntax of the requirements file,
and the general cmt user interface, available in the mgr branch of the CMT package.

The setup script found in the CMT installation directory actually adds its location to the definition
of the standard UNIX PATH environment variable in order to give direct access to the main cmt
user interface.

The sections below will detail the complete syntax of the requirements file since it is the
basis of most information required to run the tools as well as the main commands available
through the cmt user interface.

13. 1 - The requirements file

13. 1. 1 - The general requirements syntax

A requirements file is made of statements , each describing one named
configuration parameter.

Statements generally occupy one single line, but may be split into several lines
using the reverse-slash character (in this case the reverse-slash character must be
the last character on the line or must be only followed by space characters).

36

Each statement is composed of words separated with spaces or tabulations.

The first word of a statement is the name of the configuration parameter.

The rest of the statement provides the value assigned to the configuration
parameter.

Words composing a statement are separated with space or tab characters. They
may also be enclosed in quotes when they have to include space or tab characters. Single or double
quotes may be freely used, as long as the same type of quote is used on both sides of the word.

Special characters (tabs, carriage-return and line-feed) may be inserted into the
statements using an XML-based convention:

tabulation <cmt:tab/>

carriage-return <cmt:cr/>

line-feed <cmt:lf/>

Comments : they start with the # character and extend up to the end of the current
line.

The complete syntax specification is available in Appendix .

13. 2 - The concepts handled in the requirements file

13. 2. 1 - The package structuring style

Packages are installed in a directory structure that can optionnally include a version
directory (just after the top directory of the package name). This is controlled through
the structuring style or structuring strategy parameters specified using one of the
following means:

1. Through the environment variable CMTSTRUCTURINGSTYLE taking one of the
alternate values:

with_version_directory
without_version_directory

2. Through the command line options -with_version_directory or
-without_version_directory

3. Through the structure_strategy specification entered into the project file
of the current project, using the alternate values:

with_version_directory
without_version_directory

It should be noted that the command line option will take precedence over the strategy
specification, in case of conflict.

37

13. 2. 2 - Meta-information : author, manager

The author and manager names

13. 2. 3 - package, version

The package name and version. These statements are purely informational.

13. 2. 4 - Constituents : application, library, document

Describe the composition of a constituent. Application and library correspond to the
standard meaning of an application (an executable) and a library, while document
provides for a quite generic and open mechanism for describing any type of document
that can be generated from sources.

Applications and libraries are assigned a name (which will correspond to a generated
make fragment, and a dedicated make target).

A document is first associated with a document type (which must correspond to a
previously declared make fragment). The document name is then used to name a
dedicated make fragment and a make target.

Various options can be used when declaring a constituent:

option validity usage

-s= directory any switch to a new default directory (1)

-x= regexp any specify an exclusion regular expression to be applied to the sources (1)

-k= regexp any specify a finer selection regular expression to be applied to the sources (1)

-no_share libraries do not generate the shared library

-no_static libraries do not generate the static library (not yet implemented)

-prototypes applications, libraries do generate the prototype header files

-no_prototypes applications, libraries do not generate the prototype header files

-check applications generate a check target meant to execute the rebuilt application

-group=<group-name> any install the constituent within this group target

-suffix=<suffix> applications, libraries provide a suffix to names of all object files generated for this constituent (2)

-import=<package> applications, libraries explicitly import for this constituent the standard macros from a package that has the -no_auto_imports option set

-target_tag any construct a specific tag named target_<constituent> . This tag will only be active during the make session for this constituent. (4)

-windows applications When used in a Windows environment, generates a GUI-based application (rather than a console application)

<var-name>=<var-value> any define a variable and its value to be given to the make fragment (3)

38

1.

The sources of the constituents are generally specified as a set of file names with
their suffixes, and are by default expected from the ../src directory

library A A.cxx B.cxx

Then it is possible to change the default search location as well as to use a
simplified wildcarding syntax:

library A -s=A *.cxx -s=B *.cxx

-s=A means that next source files should be taken searched from
../src/A
-s=B means that next source files should be taken searched from
../src/B . Note that this new specification is not relative to the previous
-s=A but relative to the default search path ../src
*.cxx indicates that all files with a .cxx suffix in the current search path
should be considered

It’s also possible to select or exclude files using regular expressions from general
wildcarding techniques:

library A -s=A -x=[0-9] *.cxx -s=B -k=^B *.cxx

The exclusion specification -x=[0-9] added to the statement will exclude
all files from ../src/A containing a number in their name.
The selection specification -k=^B added to the statement will select files
from ../src/B strictly starting with the B letter.

2.

When several constituents need to share source files, (a typical example is for
building different libraries from the same sources but with different compiler
options), it is possible to specify an optional output suffix with the
-suffix=<suffix> option. With this option, every object file name will be
automatically suffixed by the character string "<suffix> ", avoiding name
conflicts between the different targets, as in the following example:

library AXt -suffix=Xt *.cxx
library AXaw -suffix=Xaw *.cxx

3.

It’s possible to specify in the list of parameters one or more pairs of
variable-name =variable-value (without any space characters around
the "=" character), such as in the next example:

make_fragment doc_to_html (1)

document doc_to_html Foo output=FooA.html FooA.doc (2) (3)

1. This makefile fragment is meant to contain some text conversion actions and
defines a document type named doc_to_html .

2. This constituent exploits the document type doc_to_html to convert the

39

source FooA.doc into an html file.
3. The user defined template variable named output is specified and assigned

the value FooA.html . If the fragment doc_to_html contains the string
${output} , then it will be substituted to this value.

4.

For any constituent that has the -target_tag option set, a dedicated tag named
target_<constituent> is automatically constructed by CMT. This tag
becomes active during the construction of this constituent when using make , and
therefore can be used as any other tag to select symbol values, or other
configuration parameters.

13. 2. 5 - Groups

Groups permit the organization of the constituents that must be consistently built at the
same development phases or with similar constraints.

Each group is associated with a make target (of the same name) which, when used in
the make command, selectively rebuilds all constituents of this group.

The default group (into which all constituents are installed by default) is named all ,
therefore, running make without argument, activates the default target (ie. all).

As a typical usage of this mechanism, one may examplify the case in which one or
several constituents are making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might require a controled re-build.
This is especially useful for having these constituents only rebuilt on demand rather
than rebuilt automatically when the default make command is run.

One could, for instance specify within the requirements file :

Constituents belonging to the default all group

... constituents without group specification ...
library Foo *.cxx

Constituents belonging to specific groups

library Foo-objy -group=objy < sources making use of Objectivity >

application FooGUI -group=graphics < sources making use of Qt >
application BarGUI -group=graphics < sources making use of Qt >

(Beware of the position of the -group option which must be located after the constituent
name. Any other position will be misunderstood by CMT)

Then, running gmake all would only rebuild the un-grouped constituents, whereas
running

> gmake objy
> gmake graphics

40

in the context of the Foo package would rebuild objy related or graphics related
constituents.

13. 2. 6 - Languages

Some computer languages are known by default by CMT (C , C ++, Fortran77 ,
Java , lex , yacc). However it is possible to extend this knowledge to any other
langage.

We consider here languages that are able to produce object files from sources.

Let’s take an example. We would like to install support for Fortran90. We first have to
declare this new language support to CMT within the requirements file of one of
our packages (Notice that it’s not at all required to modify CMT itself since all clients of
the selected package will inherit the knowledge of this language).

The language support is simply named fortran90 and is declared by the following
statement:

language fortran90 \
 -suffix=f90 -suffix=F90 \ [1]
 -linker=$(f90link) \ [2]
 -preprocessor_command=$(ppcmd)

1. The recognized suffixes for source files will be f90 and F90
2. The linker command used to build a Fortran90 application is described inside the

macro named f90link (which must defined in this requirements file but which
can also be overridden by clients)

The language support being named fortran90 , two associated make fragments are
expected, one under the name fortran90 (for building application modules), the
other with the name fortran90_library (for modules meant to be archived), both
without extension.

These two fragments should be installed in the fragments sub-directory of the cmt
branch of our package.

Due to the similarity of the example to fortran77, we may easily provide the expected
fragments simply by copying the f77 fragments found in CMT (thus the fragments
${CMTROOT}/fragments/fortran and
${CMTROOT}/fragments/fortran_library

These fragments make use of the fcomp macro, which holds the fortran77 compiler
command (through the for macro).

macro for "f77" \
...
macro fcomp "$(for) -c $(fincludes) $(fflags) $(pp_fflags)"

We therefore simply replace these macros by new macros named f90comp and f90 ,
defined as follows:

41

macro f90 "f90"
...
macro f90comp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

Some languages (this has been seen for example in the IDL generators in Corba
environments) do provide several object files from one unique source file. It is possible
to specify this feature through the (repetitive) -extra_output_suffix option like
in:

language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

where, in this case, two object files are produced for each IDL source file, one named
<name >.o the other named <name >_skel.o .

13. 2. 7 - Symbols

This is a generic concept supporting the notion of valued symbols. Several alternate
semantics are implemented by these symbols, all specified using the same syntactic
schema, but leading to different behaviours or interpretations by CMT:

The set keyword is translated into an environment variable definition.
The macro keyword is translated into a make ’s macro definition.
The path keyword is translated into a prioritized path -like environment variable,
which is supposed to be composed of search paths separated with colon characters
’:’ (on Unix) or semi-colon characters ’;’ (on Windows). It is generally
recommended to construct such a variable by iteratively concatenating individual
items one by one using path_append or path_prepend
The action keyword is translated into a shell command definition, that can be
activated using the cmt do <action> command or the associated make
target.
The alias keyword is translated into a shell alias definition,

Variants of these keywords are also provided for modifying already defined symbols.
This generally happens when a package needs to modify (append, prepend or subtract)
an inherited symbol (ie. which has been already defined by a used package).

The translations occur while running either the setup scripts (for alias, set or path) or
the make command (for macro and actions).

All these definitions follow the same pattern:

42

symbol : symbol-type symbol-name default-value [tag-expr value ...]

symbol-type : definition

| modification

definition : macro

| set

| path

| action

| alias

modification : macro_prepend

| macro_append

| macro_remove

| macro_remove_regexp

| macro_remove_all

| macro_remove_all_regexp

| set_prepend

| set_append

| set_remove

| set_remove_regexp

| path_prepend

| path_append

| path_remove

| path_remove_regexp

tag-expr : tag [& tag ...]

The symbol-name identifies the symbol.

Values are generally quoted strings (using either simple or double quotes). They
may be unquoted only if they are composed of one single non-empty word, since
the general syntax parsing relies on space separated words.

The default-value is mandatory (although it can be an empty string) optionally
followed by a set of tag/value pairs, each representing an alternate value for this
symbol.

43

Each tag-value pair describes an alternate value to be used when the corresponding
tag or tag-expression is active.

When several alternate values are specified through several tag-value pairs the first
matching condition is selected. Therefore one should always specify the most contraining condition

first.

The removal operations can be specified using either plain sub-strings or regular
rexpressions. One should notice that even for the path_remove_regexp
operation, full regular expression are expected rather than file-system wild carding syntaxes.

The path_remove keyword is slightly specialized since it removes all
individual search paths that contain the specified sub-string.

Be aware that there is only one name space for all kinds of symbols. Therefore, if a
symbol was originally defined using a macro statement, using set_append to
modify it will produce an undefined result (and a warning message).

The tag expression is used to select one alternate value to replace the default value,
using the following matching rule:

The first matching condition in the ordered list of alternate values is selected,
ignoring the following ones
A tag expression matches when all tags in the expression are active.

Examples of such definition are :

package CMT

macro cflags "" \
 LynxOS-VGPW2 "-X" \
 insure "-std1" \
 HP-UX "+Z" \
 hp700_ux101 "-fpic -ansi" \
 alpha "-std1" \
 alphat "-std1" \
 SunOS "-KPIC" \
 WIN32 ’/nologo /DWIN32 /MD /W3 $(includes) /c’

macro pp_cflags "" \
 LynxOS-VGPW2 "-DVGPW2" \
 HP-UX "-D_HPUX_SOURCE" \
 alphat "-DCTHREADS" \
 AIX "-D_ALL_SOURCE -D_BSD" \
 Linux "-Di586"

macro ccomp "$(cc) -c $(includes) $(cdebugflags) $(cflags) $(pp_cflags)" \
 VisualC "cl.exe $(cdebugflags) $(cflags) $(pp_cflags)"

macro clinkflags ""

macro clink "$(cc) $(clinkflags)" \
 VisualC "link.exe /nologo /machine:IX86 "

44

13. 2. 7. 1 - actions

Actions are one of the possible symbols. Their definition as said previously follow
the generic conventions for any symbol type, and they implement the concept of a
generic shell command.

An example of a symple action:

action directory "ls $(dir_options)" WIN32 "dir $(dir_options)"

Like other symbols, actions can be visualized using the cmt show actions or
the cmt show action <name> command.

Some specialized mechanims are available on actions, in order to execute in
various ways the corresponding shell commands.

Actually two operating modes are supported:

1. Immediate mode

This can be done via the cmt do command:

> cmt <action-name>

or, when the action name conflicts with a native CMT keyword,

> cmt do <action-name>

This mode immediately executes the specified command, after locally setting
all environment variables known from the current package.

2. Through make

> cmt make <action-name>

Actions are always associated with a make target of the same name
Action are always defined under a constituent group named
cmt_actions . This means that action targets are never activated by
default. Instead they must be explicitly called.
Action targets can be made dependent to other make targets (or vice
versa), similarly to other constituents (libraries, applications,
documents), using the <name>_dependencies macro.

Example 1

library A ...
action B ...
macro B_dependencies " A "

In this example when doing gmake B , the library A will be rebuilt first.

Example 2

45

library A ...
action B ...
macro A_dependencies " B "

In this example when doing gmake A (or simply gmake), the action B
will be executed first.

13. 2. 8 - use

Describe the relationships with other packages; the generic syntax is :

use <package> [<version> [<offset>]] [-no_auto_imports=<package> ...]

Omitting the version specification means that the most recent version (ie. the one with
highest ids) that can be found from the search path list will be automatically selected.

The offset specification can be relative (i.e. on Unix it does not contain a leading ’/’
character). In this case, this offset is systematically considered when the package is
looked for in the search path list. But it can also be absolute (ie. with a leading ’/’
character on Unix), in which case this path takes precedence over the standard search
path list (see CMTPATH).

The additional -no_auto_imports options suppress the automatic inheritance of
some standard parameters from the specified used packages, such as include paths,
compiler flags, ...

Examples of such relationships are :

use OnX v5r2
use CSet v2r3
use Gb v2r1

A package installed in a sub-directory one step below the root :
use CS v3r1 virgo

Back to the default root :
use Cm v7r3

Get the most recent version of CERNLIB
use CERNLIB

By default, a set of standard macros, which are expected to be specified by used
packages, is automatically imported from them (see the detailed list of these macros).
This automatic feature can be discarded using the -no_auto_imports option to the
use statement, or re-activated using the -auto_imports . When it is discarded, the
macros will not be transparently inherited, but rather, each individual constituent
willing to make use of them will have to explicitly import them using the
-import=< package > option .

When a use statement is in a private section, the corresponding used package will
only be reached if when CMT operations occur in the context of the holder package.
Otherwise (ie if the operation occurs in some upper level client package), then this
privately used package will be entirely hidden. (This behaviour follows a very similar
pattern to the private or public inheritance of C++). Suppose we have the following

46

organization:

package A

use B v1
use D v1

package B

private
use C v1
use D v1

all operations done in the context of package B will see both packages C and D
all operations done in the context of package A will see both packages B and D,
but not package C

13. 2. 9 - patterns

Often, similar configuration items are needed over a set of packages (sometimes over
all packages of a project). This reflects either similarities between packages or generic
conventions established by a project or a team.

Typical examples are the definition of the search path for shared libraries (through the
LD_LIBRARY_PATH environment variable), the systematic production of test
applications, etc.

The concept of pattern proposed here implements this genericity. Patterns may be either
global , in which case they will be systematically applied onto every package, or local
(the default) in which case they will be applied on demand only by each package.

The general principle of a pattern is to associate a templated (set of) cmt statement(s)
with the pattern name. Then every time the pattern is applied, its associated statements
are applied as if they were directly specified in the requirements file, replacing the
template with its current value. If several statements are to be associated with a given
pattern, they will be separated with the " ; " separator pattern (beware of really
enclosing the ; character between two space characters).

The general syntax for defining a pattern in a requirements file is:

pattern : pattern [-global] pattern-name cmt-statement

 [; cmt-statement ...]

Pattern templates are names enclosed between the < and > characters. A set of
predefined templates are automatically provided by CMT :

47

package the name of the current package

PACKAGE the name of the current package in upper case

version the version tag of the current package

path the access path of the current package

project the project name of the current package

Then, in addition, user defined templates can be installed within the pattern definitions.
Their actual value will be provided as arguments to the apply_pattern statement.

User defined templates that have not been assigned a value when the pattern is applied
are simply ignored (ie. replaced with an empty string).

Some examples:

1. Changing the standard include search path.

The standard include path is set by default to ${<package>_root}/src .
However, often projects need to override this default convention, and typical
example is to set it to a branch named with the package name. This convention is
easily applied by defining a pattern which will apply the include_path statement as
follows:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a package named PackA will expand this pattern as follows:

include_path ${PackA_root}/PackA/

2. Providing a value to the LD_LIBRARY_PATH environment variable

On some operating systems (eg. Linux), shared library paths must be explicited,
through an environment variable. The following pattern can automate this
operation:

pattern ld_library_path \
 path_remove LD_LIBRARY_PATH "/<package>/" ; \
 path_append LD_LIBRARY_PATH ${<PACKAGE>ROOT}/${CMTCONFIG}

In this example, the pattern was not set global, so that only packages actually
providing shared libraries would be concerned. These packages will simply have
to apply the pattern as follows:

apply_pattern ld_library_path

The schema installed by this pattern provides first a cleanup of the
LD_LIBRARY_PATH environment variable and then the new assignment. This
choice is useful in this case to avoid conflicting definitions from two different
versions of the same package.

48

3. Installing a systematic test application in all packages

Quality assurance requirements might specify that every package should provide a
test program. One way to enforce this is to build a global pattern declaring this application. Then every

make command would naturally ensure its actual presence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern (<other_sources>) permits the package to
specify extra source files to the test application (the pattern assumes at least one
source file <package>test.cxx).

13. 2. 9. 1 - Applying a pattern

According to whether the -global qualifier was used in the pattern definition,
the aplication mode will be completely different.

1. Normal patterns

Such patterns must be applied explicitly using the apply_pattern
construct

Doing so, it is possible to specify custmization values for user defined
template parameters

pattern TA macro <base>AAA "AAA"

apply_pattern TA base=abc
apply_pattern TA base=def

In the apply_pattern syntax, it is even possible to simply ommit the
keyword itself, and thus using the pattern name as a plain CMT keyword. The
previous example becomes:

TA base=abc
TA base=def

This can be seen as a way to extend the CMT language. Notice that there is a
risk of a conflict between the primary CMT keywords and pattern names
then. Suppose that a pattern name is defined to be exactly a primary CMT
keyword. In this case, the syntax parser will always understand this name as
the CMT primary keyword, and thus won’t override the original syntax.
When this (not recommended) situation occurs, it is therefore required to use
the full notation with an explicit apply_pattern keyword, so as to avoid
any possible ambiguity.

2. Global patterns (ie when the -global qualifier is used

In this case, the pattern is automatically applied to all packages that
effectively see the pattern definition, which includes all clients of the package
defining the pattern.

49

Another consequence of the automatic application of the pattern, is that it is
not possible to give values to parameters. Therefore it is not recommended to design global patterns

with user defined parameters.

Conversely it is possible to inhibit the automatic application of a global
pattern in a particular package by using the following statement:

ignore_pattern <name>

13. 2.10 - cmtpath_patterns

These patterns act quite similarly to the global patterns previously described, ie they
defines a set of CMT statements to be applied in a generic way. The difference is that
instead of being applied to packages , they are automatically applied to all entries in the
CMTPATH list.

Only few system parameters can be used here:
<path> which stands for any entry in the CMTPATH list.
<project> which stands for the project name associated with an entry in the
CMTPATH list.

As an example suppose we define

path CMTPATH "/ProjectA"
path_append CMTPATH "/ProjectB"

cmtpath_pattern \
 macro_prepend pp_cppflags " -I<path>/InstallArea/include "

this will assemble one -I option (towards the preprocessor) per entry in CMTPATH,
implementing a mechanism for a multiple installation area for header files. In the
example above the resulting macro will be

 -I/ProjectA/InstallArea/include -I/ProjectB/InstallArea/include

This can be combined with the standard and automatic macros (automatically setup for
all used packages)

<package>_cmtpath
<package>_offset

which provide the CMTPATH entry and the directory offset in this CMTPATH for all
used packages.

13. 2.11 - branches

Describe the specific directory branches to be added while configuring the package.

branches <branch-name> ...

These branches will be created (if needed) at the same level as the cmt branch. Typical
examples of such required branches may be include , test or data .

50

13. 2.12 - Strategy specifications

Users can control the behaviour of CMT through a set of strategy specifications. The
current implementation provides such control over several aspects :

1. The build strategy

This controls some aspects of the building process.

The following keywords are available:

prototypes C source files will automatically produce a header file containing a prototype of all global entry points

no_prototypes No production of automatic prototype header files for C sources

with_installarea The installation area mechanisms are activated. This implies applying the cmtpath_patterns that may be defined (eg in CMT itself)

without_installarea The installation area mechanisms are inhibited

2. The setup strategy

This controls various actions that may be performed during the sourcing of the
setup scripts.

The following keywords are available:

config An environment variable <PACKAGE>CONFIG will be generated for all packages in the dependency chain

no_config The <PACKAGE>CONFIG environment variable is not generated

root An environment variable <PACKAGE>ROOT will be generated for all packages in the dependency chain

no_root The <PACKAGE>ROOT environment variable is not generated

cleanup The automatic cleanup operation to the current installation area is launched

no_cleanup The automatic cleanup operation to the current installation area is not launched

The strategy specifications are setup on a per-project basis. This means that they are
generally applicable to all packages of a given sub-project, and can be oerridden in
other sub-projecs of the same software base.

Every strategy setting defines two mutually exclusive tags and activates one of them.

<project>_<have_item>
<project>_<have_not_item>

Examples

51

<project>_prototypes
<project>_no_prototypes
<project>_with_install_area
<project>_without_install_area
<project>_config
<project>_no_config
<project>_root
<project>_no_root
<project>_cleanup
<project>_no_cleanup

13. 2.13 - setup_script, cleanup_script

Specify user defined configuration scripts, which will be activated together with the
execution of the main setup and cleanup scripts.

The script names may be specified without any access path specification, in this case,
they are looked for in the cmt or mgr branch of the package itself. They may also be
specified without any .csh or .sh suffix, the appropriate suffix will be appended
accordingly when needed. Therefore, when such a user configuration script is specified,
CMT expects that the corresponding shell scripts actually exist in the appropriate
directory (the cmt branch by default) and is provided in whatever format is appropriate
(thus suffixed by .csh and/or .sh).

13. 2.14 - include_path

Override the specification for the default include search path, which is internally set to
${< package >_root}/src .

Specifying the value none (a reserved CMT keyword) means that no default include
search path is expected from CMT, and thus no -I compiler option will be generated
by default (generally this means that user include search paths should be specified via
explicit include_dirs instead).

Note that this behaviour is expected to become obsolete in some next release of
CMT. The default include search path of ../src will then simply disappear, and
the include_path statement will become meaningless. When this happens,
include search paths will always have to be explicitly specified using the
include_dirs statement. In order to anticipate this evolution, it is suggested to
always use include_path none and add all include search directories using
the include_dirs statement.

13. 2.15 - include_dirs

Add explicit specifications for include access paths. The value may be provided
through a macro reference.

The statement is sensitive to private scoping.

52

13. 2.16 - make_fragment

This statement specifies a specialized makefile fragment, used as a building brick to
construct the final makefile fragment dedicated to build the constituents.

There are basically three categories of such fragments :
1. some are provided by CMT itself (they correspond to its internal behaviour)
2. others handle the language support
3. and the last serve as specialized document generators.

The fragments defined in CMT can be:

those used to construct the application or library constituents. Their semantic is
standardized (they are all associated with a language statement in the CMT
requirements file).

c c_library cpp cpp_library lex lex_library fortran fortran_library yacc
yacc_library jar jar_header java java_copy java_header check_java
cleanup_java

those used internally by CMT as primary building blocks for assembling the
makefile. (Generally developers should not see them).

cleanup_objects application constituent application_header
constituents_header buildproto protos_header os9_header dependencies
check_application dependencies_and_triggers check_application_header
document_header library cleanup library_header cleanup_application
library_no_share cleanup_header make_header cleanup_library

some document generators which may be used if needed, but are not mandatory:

installer installer_header readme readme_header readme_trailer
readme_use dvi tex generator generator_header

those used to generate configuration files for MSVisualC++:

dsp_windows_header dsw_all_project dsw_all_project_dependency
dsw_all_project_header dsw_all_project_trailer dsw_header dsw_project
dsw_trailer dsp_all dsp_application_header dsp_contents
dsp_library_header dsp_shared_library_header dsp_trailer

Language fragments should provide two forms, one for the applications (in which case
they are named exactly after the language name eg c, cpp, fortran) and the other for the
libraries (in which case they have the _library suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++, Fortran, Java, Lex, Yacc) is

53

provided by CMT itself but it is expected that projects add new languages according to
their needs. Event if the make fragment meant to be the implementation of a language support is
declared, the language support itself must be declared too, using the language
statement

All make fragments are provided as (suffixless) files which must be located in the
fragments sub-directory inside the cmt/mgr branch of one package. They must also
be declared in the requirements file (through the make_fragment statement) so as to
be visible.

A package declaring, and implementing a make fragment may override a fragment of
the same name when it is already declared by a used package. This implies in particular that any
package may freely override any make fragment provided by CMT itself (although in
this case a deep understanding of what the original fragment does is recommended).

Makefile fragments may take any form convenient to the document style, and some
special pre-built templates (see the appendix) can be used in their body to represent
running values, meant to be properly expanded at actual generation time :

CONSTITUENT the constituent name

FULLNAME the full source path

FILENAME the source file name without its path

NAME the source file name without its path and suffix

FILESUFFIX the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

13. 2.17 - public, private

The public or private keywords introduce sections containing public or private
statements. This concerns:

the definition of symbols
the specification of use relationships
the declaration of make fragments
the declaration of patterns
the declaration of include search paths (via the include_dirs statement)

Public definitions are meant to be exported to any client of the package whereas private
ones are only available for the package developper ie. when the current directory is
within the package itself.

Public use relationships expose the complete sub-tree to the package clients, whereas
private ones entirely hide the sub-tree, expanding it only when the operator really acts
from within the context of the package. It should be noticed that private use
relationships are completely unvisible from clients, which implies that none of the

54

definitions (not only symbols) will be set.

However, the cmt broadcast and cmt show uses commands are configured to
always ignore the private specification and therefore will always traverse the sub-trees whether they
are public or private (in order to ensure the hierarchy dependencies)

13. 2.17. 1 - Scoping sections

By using the public or private keywords, one defines scoping sections. This
sections continues until:

another scoping statement is found, which simply switch to this new mode

an end_private or end_public keyword is found, in which case the
scoping mode is reset to the state prior to the previous matching private or
public statement. This latter mechanisms permits in particular to define
autonomous scoping sections within pattern s .

By default cmt commands operate according to the scoping specifications found
in the requirements files of the reachable packages. Ie. in the current package all
statements are considered whether being prublic or private, while in used
packages, only public statements are considered.

This standard behaviour though is not applied when running cmt broadcast or
cmt show uses , and in this case all statements public or private, are always
considered, even in used packages.

However it is always possible to override the default behaviours by using the
-private or -public modifier to the cmt command:

-private

Force the command to consider all definitions even those installed in private
sections

-public

Force the command to really mask the private sections

13. 2.18 - tag, apply_tag

The tag keyword provides tag definitions, while the apply_tag keyword activates a
tag.

A tag is a token which can be used to select particular values of symbols.

Some tags are automatically constructed by CMT according to its knowledge of the
context (see this section for more details), but they may be also defined within a
requirements file as follows :

55

tag Foo [1]
tag Bar Foo FooA FooB [2]
apply_tag Bar [3]

1. This simply declares a tag. This does not activate it by default

2. This construct declares that the tags Foo , FooA and FooB will become active if
Bar becomes active. Note that this statement implicitly declares FooA and FooB

3. This activates the Bar tag. Tags that have been associated with it (in [2]), will all
become active as well.

Running the setup script (through the source setup.[c]sh or call setup.bat command)
can also receive tag specifications using the -tag=tag-list options.

13. 3 - The general cmt user interface

This utility (a shell script combined with a C++ application) provides a centralised access to
various commands to the CMT system. The first way to use cmt is to run it without
argument, this will print a minimal help text showing the basic commands and their syntax :

> cmt command [option...]

 command :
 none
 awk
 broadcast [-select=list] [-exclude=list] [-local] [-global] [-begin=pattern] [-depth=n] <command> :
 apply a command to [some of] the used packages
 build <option> : build actions. (Try cmt help build)
 build constituent_makefile <constituent> : generate constituent Makefile fragment
 build constituents_makefile : generate constituents.make
 build dependencies : generate dependencies
 build library_links : build symbolic links towards all imported libraries
 build make_setup : build a compiled version of setup scripts
 build msdev : generate MSDEV files
 build CMT_pacman : generate PACMAN manifest file for CMT
 build vsnet : generate VS.NET files
 build os9_makefile : generate Makefile for OS9
 build prototype : generate prototype file
 build readme : generate README.html
 build tag_makefile : generate tag specific Makefile
 build temporary_name : generate a name for a temprary file
 build triggers <constituent> : generate library trigger file
 build windefs <library_name> : generate def file for Windows shared libraries
 check <option> : check actions. (Try cmt help check)
 check configuration : check configuration
 check files <old> <new> : compare two files and overrides <old> by <new> if different
 check version <name> : check if a name follows a version tag syntax
 co | checkout : perform a cvs checkout over a CMT package
 cleanup [-csh|-sh|-bat] : generate a cleanup script
 config : generate setup and cleanup scripts
 create <package> <version> [<path>] : create and configure a new package
 create_project <project> <name> [<path>] : create and configure a new project
 cvsbranches <module> : display the subdirectories for a module
 cvssubpackages <module> : display the subpackages for a module
 cvssubprojects <module> : display the subprojects for a module
 cvstags <module> : display the CVS tags for a module
 do <action> [<param>=<value>] ... : Execute an action
 expand model <model> :

56

 filter <in> <out> : filter a file against CMT macros and env. variables
 help | -help | --help : display this help
 load
 lock [<p> <v> [<path>]] : lock a package
 remove <package> <version> [<path>] : remove a package version
 remove library_links : remove symbolic links towards all imported libraries
 run ’<command>’ : apply a command
 run_sequence <sequence file> : execute a cmt equence file
 set version <version> : generate a version file in the current package
 set versions : generate version files into packages
 setup [-csh|-sh|-bat] : generate a setup script
 show <option> : query actions. (Try cmt help show)
 show action <name> : a formatted action definition
 show action_value <name> : a raw action definition
 show action_names : all action names
 show actions : all action definitions
 show all_tags : all defined tags
 show applied_patterns : all patterns actually applied
 show author : package author
 show branches : added branches
 show clients : package clients
 show cmtpath_patterns : cmtpath_patterns
 show constituent <name>: constituent definition
 show constituent_names : constituent names
 show constituents : constituent definitions
 show cycles : cycles in the use graph
 show fragment <name> : one fragment definition
 show fragments : fragment definitions
 show groups : group definitions
 show include_dirs :
 show language <name> : language definition
 show languages : language definitions
 show macro <name> : a formatted macro definition
 show macro_value <name> : a raw macro definition
 show macro_names : all macro names
 show macros : all macro definitions
 show manager : package manager
 show packages : packages reachable from the current context
 show path : the package search list
 show pattern <name> : the pattern definition and usages
 show pattern_names : pattern names
 show patterns : the pattern definitions
 show projects : project definitions
 show setup : setup definitions
 show pwd : filtered current directory
 show set <name> : a formatted set definition
 show set_names : set names
 show set_value <name> : a raw set definition
 show sets : set definitions
 show strategies : all strategies (build & version)
 show tags : all currently active tags
 show use_paths <pack> : all paths to the used package
 show uses : used packages
 show version : version of the current package
 show versions <name> : visible versions of the selected package
 system : display the system tag
 unlock [<p> <v> [<path>]] : unlock a package
 version : version of CMT
 global options :
 -quiet : don’t print errors
 -use=<p>:<v>:<path> : set package version path
 -pack=<package> : set package

57

 -version=<version> : set version
 -path=<path> : set root path
 -f=<requirement-file> : set input file
 -e=<statement> : add a one line statement
 -tag=<tag-list> : select a new tag-set
 -tag_add=<tag-list> : add specific comma-separated tag(s)
 -tag_remove=<tag-list> : remove specific comma-separated tag(s)
 -warnings : display various warnings
 -with_version_directory : reset to default structuring style
 -without_version_directory : switch structuring style

The following sections present the detail of each available command.

13. 3. 1 - Global options of the cmt command

These options of the general form -<option> or -<option>=<value> should be
provided before the command itself. They give special hints to cmt onto how to
perform the command.

Some options have meaning over all commands (such as the -quiet option) while
some others only have a meaning in the context of some specialized commands (such as
the -with_version_directory option which is only useful for the create or
co commands)

The following table describes the various global options of the cmt tool:

58

option effect commands

-quiet don’t print errors all

-use=<p>:<v>:<path>
set current package version and
path in one option

all

-pack=<package>
set current package, version and
root path

all -version=<version>

-path=<path>

-f=<requirement-file> override input file all

-e=<statement> add a one line statement all

-tag=<tag-list> select a new tag-set all

-tag_add=<tag-list>
add specific comma-separated
tag(s)

all

-tag_remove=<tag-list>
remove specific
comma-separated tag(s)

all

-warnings
displays various warnings, such
as invalid PATH items

broadcast

run

setup

-with_version_directory reset to default structuring style
create

co

-without_version_directory switch structuring style
create

co

13. 3. 2 - cmt broadcast

This command tries to repeatedly execute a shell command in the context of each of the
used package of the current package. The used packages are listed using the cmt
show uses command, which also indicates in which order the broadcast is
performed. When the all_packages option, the set of packages reached by the
broadcast is rather the same as the one shown by the cmt show packages
command, ie all CMT packages and versions available through the current CMTPATH
list.

Typical uses of this broadcast operation could be:

59

csh> cmt broadcast cmt config
csh> cmt broadcast - gmake
csh> cmt broadcast ’(cd ../; cvs -n update)’

The loop over used packages will stop at the first error occurence in the application of
the command, except if the command was preceded by a ’-’ (minus) sign (similarly to
the make convention).

It is possible to specify a list of selection or exclusion criteria set onto the package path,
using the following options, right after the broadcast keyword. These selection
criteria may be combined (eg one may combine the begin and select modifiers)

sh> cmt broadcast -begin=Cm gmake (1)
sh> cmt broadcast -select=Cm gmake (2)
sh> cmt broadcast -select=’/Cm/ /CSet/’ gmake (3)
sh> cmt broadcast -select=Cm -exclude=Cmo gmake (4)
sh> cmt broadcast -local gmake (5)
sh> cmt broadcast -depth=<n> gmake (6)
sh> cmt broadcast -global gmake (7)
sh> cmt broadcast -all_packages gmake (8)

According to the option, the loop will only operate onto:

1. the first package which path contains the string "Cm" , and then all other
reachable packages (in case other specifiers are used)

2. the packages which path contains the string "Cm"
3. the packages which path contains either the string "/Cm/" or the string

"/CSet/"
4. the packages which path contains the string "Cm" , but which does not contain the

string "Cmo"
5. the packages at the same level as the current package
6. the packages at the same level as the current package or among the <n> first

entries in the CMTPATH list
7. the packages at any level of the CMTPATH search list
8. all the packages and versions currently available through the CMTPATH list

The environment variables as specified in the requirements files of the use graph are
internally pre-set before running the specified shell command. Thus it’s not required to
source the setup scripts before using the broadcast command

13. 3. 2. 1 - Specifying the shell command

A priori any Unix or DOS shell command can be specified in a boadcast
command. However, it’s important to understand the order of the various parsing
actions:

1. The current shell first parses the complete command line
2. CMT catches all possible options given to the broadcast command itself
3. CMT then gets the rest of the command line and makes it the shell command

to be executed during the broadcast scan.
4. This command line may be subject to template substitution (see below) by

CMT

60

5. Eventually the command line is passed to the local shell (which may then
perform additional parsing actions)

Considering this complex sequence of parsing, it may be appropriate to selectively
enclose the shell command passed to the broadcast action into quotes. It may even
be sometimes useful to have two levels of quotes

13. 3. 2. 2 - Templates in the shell command

Similarly to what exists in the pattern mechanism, some standard templated values
can be embedded inside the command to be executed by the broadcast action.
They take a standard form of <template-name> . These templates acquire
their value on each package effectively reached during the broadcast scan, and the
effective value is substituted before launching the command. The possible
templates are:

<package_cmtpath>
The element in the CMTPATH search list where the
package has been found

<package_offset> The directory offset to cmtpath

<package> The package name

<version> The version of the package

The next example shows a typical broadcast command listing the header files as
expected in the conventional location ../<package> :

> cmt broadcast ’ls ../<package>’

[...]
#--
Now trying [ls ../GenzModuleEvent] in /.../GenzModuleEvent/.../cmt (149/609)
#--
CVS KineHepMcmap.h
#--
Now trying [ls ../Tauola_i] in /.../Tauola_i/.../cmt (150/609)
#--
CVS Jaki.icc Tauola_i.h Taurad.h config.h rn_tau.h
Jaki.h ReadPDGtable.h Tauola_i.icc Taurad.icc polhep.inc tauola_cblk.inc
#--
Now trying [ls ../NavigationEvent] in /.../NavigationEvent/.../cmt (151/609)
#--
CVS INavigable.h INavigationCondition.h INavigationSelector.h
INavigationToken.h NavigationToken.h
[...]

One should note that when templates are used in a broadcast command, it’s
important to enclose the command in quotes so as to inhibit any possible
parsing of the <> syntax by the shell.

61

13. 3. 3 - cmt build <option>

The actions associated with the build options are generally meant for internal use only,
and users will rarely (if ever!) apply them manually

All build commands are generally meant to change the current package (some file or set
of files is generated). Therefore a check against conflicting locks (ie. a lock owned by
another user) is performed by all these commands prior to execute it.

[-nmake] constituent_makefile <constituent-name >

This command is internally used by CMT in the standard Makefile.header
fragment. It generates a specific makefile fragment (named <constituent-name
>.make) which is used to re-build this fragment.

All such constituent fragments are automatically included from the main Makefile.

Although this command is meant to be used internally (and transparently) by CMT
when the make command is run, a developer may find useful in very rare cases to
manually re-generate the constituent fragment, using this command.

The -nmake option (which must precede the command) provides exactly the
same features but in a Windows/nmake context. In this case, all generated
makefiles are suffixed by .nmake instead of .make for Unix environments. The
main makefile is expected to be named NMake and the standard header is named
NMakefile.header

[-nmake] constituents_makefile

This command is internally (and transparently) used by CMT in the standard
Makefile.header fragment, and when the make command is run, to generate a
specialized make fragment containing all "cmt build constituent_makefile"
commands for a given package.

The -nmake option (which must precede the command) provides exactly the
same feature but in a Windows/nmake context. In this case, all generated
makefiles are suffixed by .nmake instead of .make for Unix environments. The
main makefile is expected to be named NMake and the standard header is named
NMakefile.header

dependencies

This command is internally (and transparently) used by CMT from the constituent
specific fragment, and when the make command is run, to generate a fragment
containing the dependencies required by a source file.

This fragment contains a set of macro definitions (one per constituent source file),
each containing the set of found dependencies.

62

CMT is able to recursively compute the dependencies implied by the include
statements found in the source files. However it’s also possible to make plain use of the standard

mechanisms provided by some standard tools like cpp -M . In this case, it will be
required to format the output produced by the selected tool so as to let CMT parse
it and properly deduce the dependencies. Formatting the output of external tools may require to
interface the tool itself e.g. using a shell script.

The standard CMT macro $(build_dependencies) must be used to specify
an alternate dependency builder. The default value is:

$(cmtexe) -quiet -tag=$(tags) build dependencies

The expected output format from any dependency builder is as follows:

Each file corresponds to one single dependency line in the output
A dependency line should be formatted as follows:

<file-name>_<file_suffix>_dependencies = <source> <file> ...

Where:

<file-name> is given without the file suffix
<file_suffix> is given without the dot
<source> is the path to the source file
the list of <file> paths corresponds to the effective list of dependent
files. This is a list of reative or absolute file paths.

A Unix shell script in ${CMTROOT}/mgr/cmt_build_deps.sh is offered as
an example of how to interface the standard cpp -M command with CMT. It can
be declared as a substitute to the internal mechanism as follows:

macro build_dependencies "${CMTROOT}/mgr/cmt_build_deps.sh"

Of course this shell script should be considered as an example and might have to
be adapted for other dependency builders, or for Windows.

library_links

This command builds a local symbolic link towards all exported libraries from the
used packages. A package exports its libraries through the <package
>_libraries macro which should contain the list of constituent names
corresponding to libraries that must be exported.

library Foo ...
library Foo-utils ...
...
macro Foo_libraries "Foo Foo-utils"

The corresponding cmt remove library_links command will remove all
these links.
msdev

63

This command generates workspace (.dsw) and project (.dsp) files required for the
MSDev tool.

vsnet

This command generates workspace and project files required for the Visual.net
tool.

os9_makefile

This command generates external dedicated makefile fragments for each individual
component of the package (ie. libraries or executable applications) to be used in OS9 context. It
generates specific syntaxes for the OS9 operating systems.

The output of this tool is a set of files (named with the components’ name and
suffixed by .os9make) that are meant to be included within the main
Makefile that the developer has to write anyhow.

The syntax of the cmt build os9_makefile utility is as follows :

sh> cmt build os9_makefile <package>

prototype <source-file-name>

This command is internally (and transparently) used by CMT from the constituent
specific fragment, and when the make command is run, to generate prototype
header files from C source files.

The prototype header files (named <file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C source file.

The effective activation of this feature is controled by the build strategy of CMT .
The build strategy may be freely and globally overridden from any requirements
file, using the build_strategy cmt statement, providing either the
"prototypes" or the "no_prototypes" values.

In addition, any constituent may locally override this strategy using the
"-prototypes" or "-no_prototypes" modifiers.

readme

This command generates a README.html file into the cmt branch of the
referenced package. This html file will include

a table containing URLs to equivalent pages for all used packages,
a copy of the local README file (if it exists).

tag_makefile

This command produces onto the standard output, the exhaustive list of all macros
controled by CMT , ie. those defined in the requirements files as well as the
standard macros internally built by CMT , taking into account all used packages.

64

13. 3. 4 - cmt check configuration

This command reads the hierarchy of requirements files referenced by a package, check
them, and signals syntax errors, version conflicts or other configuration problems.

An empty output means that everything is fine.

13. 3. 5 - cmt check files <reference-file> <new-file>

This command compares the reference file to the new file, and substitues the reference
file by the new one if they are different.

If substitution is performed, a copy (with additional extension sav) is produced.

13. 3. 6 - cmt checkout ...

See the paragraph on how to use cvs together with CMT , and more specifically the
details on checkout oprations .

13. 3. 7 - cmt co ...

This is simply a short cut to the cmt checkout command.

13. 3. 8 - cmt cleanup [-csh|-sh]

This command generates (to the standard output) a set of shell commands (either for
csh or sh shell families) meant to unset all environment variables specified in the
 requirements files of the used packages.

This command is internally used in the cleanup.[c]sh shell script, itself generated by the
cmt config command.

13. 3. 9 - cmt config

This command (re-)generates the setup scripts and the manimal Makefile (when it does
not exist yet or have been lost).

csh> cd ~/Packages/Foo/v1/cmt
csh> cmt config

To be properly operated, one must already be in the cmt or mgr branch of a package
(where the requirements file can be found).

This command also performs some cleanup operations (eg. removing all makefile
fragments previously generated). Generally speaking, one may say that this command
restores the CMT-related files to their original state (ie before any document
generation)

65

The situations in which it is useful to run this command are:

When the setup or cleanup scripts have been lost
When the minimal Makefile have been lost
When the version of CMT is changed
After restoring a package from CVS
After having manually changed the directory structure of a package (using a
manual copy operation, or renaming one of its parent directory, such as the version
directory)

It should be noted however that when using actions , such as the one defined by default
to launch make tools neither cmt config nor source setup are required any
longer.

13. 3.10 - cmt create <package> <version> [<area>]

This command creates a new package or a new version of a package

csh> cmt create Foo v1

or:

csh> cmt create Foo v1 ~/dev

In the first mode (ie. without the area argument) the package will be created in the
default path.

The second mode explicitly provides an alternate path.

A minimal configuration is installed for this new package:

A src and a cmt branch
A very minimal requirements file
The setup and cleanup shell scripts
The minimal Makefile

A version directory may be created according to the structuring style or structuring
strategy parameters specified using one of the following means:

1. Through the environment variable CMTSTRUCTURINGSTYLE taking one of the
alternate values:

with_version_directory
without_version_directory

2. Through the command line options -with_version_directory or
-without_version_directory

3. Through the structure_strategy specification entered into the project file
of the current project, using the alternate values:

66

with_version_directory
without_version_directory

It should be noted that the command line option will take precedence over the strategy
specification, in case of conflict.

13. 3.11 - cmt expand model [-strict] <model-string>

This command produces on the standard output an expansion of the model string given
in the argument.

The expansion consists in:

Expanding macros referenced in the model string using the standard notations $()
or ${} or %%

> cmt expand model "abcd $(CMTVERSION) efgh"
abcd v1r18p20051101 efgh

Recursively expanding text files with parameters. The model string must then take
a conventional XML-based syntax:

> cmt expand model " text < file-name parameter =value ... /> text ..."

or

> cmt expand model -strict " text <cmts: file-name parameter =’ value ’ ... /> text ..."

or

> cmt expand model -strict " text <cmtv: file-name parameter =’ v1 v2 v3 ... ’ ... /> text ..."

Where:
file-name is the name of a file declared using the make_fragment
statement
parameter =value specifies the value of a parameter that will be
substituted in the file when referenced using the $(parameter) notation.
Several such values may be specified in one model string
the -strict form is useful to handle XML files, and file names must be
prefixed (namespaced) by a special keyword cmts: or cmtv: .

cmts: Perform a unique substitution over one copy of the file

cmtv:
Perform a multiple substitution over N copies of the file, taking the N
space-separated values specified for the parameters

The following examples will explain some of the mechanisms.

We consider A containing:

A$(P1)B$(P2)C

67

And B containing:

i<cmts:A P1=’j’ P2=’${P2}’/>k

> cmt expand model "abcd <A P1=XXX/> efgh" [1]

abcd AXXXBC efgh
> cmt expand model -strict "abcd <cmts:A P1=’XXX’ P2=’YYY’/> efgh" [2]

abcd AXXXBYYYC efgh
> cmt expand model -strict "abcd <cmts:A P1=’XXX’/> <cmts:B P2=’YYY’/> efgh" [3]

abcd AXXXBC iAjBYYYCk efgh
> cmt expand model -strict "abcd <cmtv:A P1=’X Y Z’ P2=’YYY’/> efgh" [4]

abcd AXBYYYCAYBCAZBC efgh
> cmt expand model -strict "abcd <cmtv:A P1=’X Y Z’ P2=’\"\" <cmt:null/> ZZZ’/> efgh" [5]

abcd AXBCAYBCAZBZZZC efgh
...

1. A simple expansion using the non-strict model syntax. P1 is substituted, but
$(P2) becomes empty

2. The same using the strict model. Here P2 is valued.
3. A more complex model, using a recursive expansion described in B showing

how parameter values are transmitted
4. A model showing the multiple expansion. Here P1 receives 3 values. P2 has

only one value. The largest vector (3 values) dictates the number of copies.
smaller vectors are completed by empty values.

5. A model showing the multiple expansion with empty values in a vector. Here
P1 receives 3 values. P2 has also 3 values, but only one non-empty. This
examples show the two possible means of specifying empty vector values:
using either \"\" or the reserved keyword <cmt:null/> .

The file expansion is recursive. This means that files specified in model elements
will themselves be considered as model texts (ie following the same syntax), and
be expanded in turn. This processus is entirely recursive, with no limit to the
depth. The -strict option, when selected is propagated during the recursion.

13. 3.12 - cmt filter <in-file> <out-file>

This command reads <in-file>, substitutes all occurences of macro references (taking
either the form $(macro-name) or ${ macro-name }) by values deduced from
corresponding macro specifications found in the requirements files, and writes the
result into <out-file>.

This mechanism is widely internally used by CMT , especially for instanciating make
fragments. Then, users may use it for any kind of document, including maual
generation of MSDev configuration files, etc...

13. 3.13 - cmt help | --help

This command shows the list of options of the cmt driver.

68

13. 3.14 - cmt lock [<package> <version> [<area>]]

This command tries to set a lock onto the current package (or onto the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then install a small text file named lock.cmt into the cmt/mgr branch
of the package, containing the following text:

locked by <user-name> date <now>

3. Run a shell command described in the macro named lock_command meant to
install physical locks onto all files for this version of this package. A typical
definition for this macro could be:

macro lock_command "chmod -R a-w ../*" \
 WIN32 "attrib /S /D +R ../*"

13. 3.15 - cmt remove <package> <version> [<area>]

This command removes one version of the specified package. If the package does not
contain a conflicting lock, and if the user is granted enough access rights to remove
files, all files below the version directory will be definitively removed. Therefore this
command should be used with as much care as possible.

The arguments needed to reach the package version to be removed are the same as the
ones whic had been used to create it.

If the removed version is the last version of this package, (and only if its directory is
really empty) the package directory itself will be deleted.

13. 3.16 - cmt remove library_links

This command removes symbolic links towards all imported libraries which had been
installed using the cmt build library_links command. This command is
generally transparently executed when one runs gmake clean

13. 3.17 - cmt run [shell-command]

This command runs any shell command, in the context of the current package.

In particular all environment variables defined in requirements file are first set before
running the command. This may be seen as a generic application launcher .

This may be combined with the global options -pack= package ,
-version= version , -path= access-path , to give a direct access to any
package context.

69

13. 3.18 - cmt set version <version>

This command creates and/or fills in the version.cmt file for a package structured
without the version directory.

This command has no effect when run in the context of a package structured with the
version directory

This command must be run while being in the context of one CMT package.

13. 3.19 - cmt set versions

This command applies recursively the cmt set version ... command onto all
used packages using a broadcast operation.

Packages reached during the broadcast scan acquire their version from the original use
statement. This is this specified version which will be stored inside the version.cmt
files

13. 3.20 - cmt setup [-csh|-sh|-bat]

This command generates (to the standard output) a set of shell commands (either for
csh, sh or bat shell families) meant to set all environment variables specified in the
requirements files of the used packages.

This command is internally used in the setup.[c]sh or setup.bat shell script,
itself generated by the cmt config command.

13. 3.21 - cmt show <option>

all_tags

This command displays all currently defined tags, even when not currenty active

applied_patterns

This command displays all patterns actually applied in the current package

author

branches

clients <package> [<version>]

This command displays all packages that express an explicit use statement onto
the specified package. If no version is specified on the argument list, then all uses
of that package are displayed.

70

Note that the search on clients is not performed recusively. Thus only clients
explicitly using the specified package will be displayed.

constituent_names

constituents

cycles

This command displays all cycles in the use graph of the current package.
Although CMT smoothly accepts such cycles, it is generally a bad practice to have cycles in a use
graph, because CMT can never decide on the prefered entry point in the cycle, leading to somewhat

unpredictable results, eg in constructing the use_linkopts macro.

fragment <name>

This command displays the actual location where the specified make fragment is
currently found by CMT , taking into account possible overridden definitions.

fragments

Display the effective location of all declared make fragments

groups

This command displays all groups possibly defined in constituents of the current
package (using the -group=< group-name > option).

languages

Display al languages declared using the language keyword

macro <name>
set <name>
action <name>

This set of commands displays a quite detailed explanation on the value assigned
to the symbol (macro, set or action) specified as the additional argument. It presents in particular each
intermediate assignments made to this symbol by the hierarchy of used statements, as well as the final

result of these assignment operations.

By adding a -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a machine or an operating

system where this configuration is defined.

macro_value <name>
set_value <name>
action_value <name>

This set of commands displays the raw value assigned to the symbol (macro, set or
action) specified as the additional argument. It only presents the final result of the assignment
operations performed by used packages.

71

By adding a -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a machine or an operating

system where this configuration is defined.

The typical usage of the show macro_value command is to get at the shell
level (rather than within a Makefile) the value of a macro definition, providing
means of accessing them (quite similarly to an environment variable) :

csh> set compiler=‘cmt show macro_value cppcomp‘
csh> ${compiler}

macros
sets
actions

This set of commands extracts from the requirements file(s) the complete
set of symbol (macro, set or action) definitions, selects the appropriate tag
definition (or uses the one provided in the -tag=<tag> option) and displays the
effective symbol values corresponding to this tag.

This command is typically used to show the effective list of macros used when
running make and can be also used to build, as an argument list, the make
command as follows :

csh> eval make ‘cmt show macros‘

This use of cmt show macros is directly installed within the default target
provided in the standard Makefile.header file. Therefore if this file is
included into the package’s Makefile , macro definitions provided in the
 requirements files (the one of the currently built package as well as the ones of
the used packages) will be expanded and provided as arguments to make.

By adding a -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without atcually going to a
machine or an operating system where this configuration is defined.

manager

packages

This command displays all packages (and all versions of them) currently reachable
through the current access path definition (which can be displayed using the cmt
show path command).

path

This command displays the complete and effective access path currently defined
using any possible alternate way.

pattern <name>

This command displays how and where the specified pattern is defined, and which
packages do apply it.

72

patterns

This command displays all pattern definitions.

projects

This command displays the current knowledge of sub-project definitions and
settings. It shows the project names and their location (ie the corresponding item in
CMTPATH

> cmt show projects
PA (in C:\Arnault\test\tprojects\PC) (current)
Project1 (in C:\Arnault\test\tprojects\PB)
PA (in C:\Arnault\test\tprojects\PA\1.1)
Project2 (in C:\Arnault\test\tprojects\P0)
CMT (in C:\Arnault)

pwd

This command displays a filtered version of the standard pwd unix command. The
applied filter takes into account the set of aliases installed in the standard
configuration file located in ${CMTROOT}/mgr/cmt_mount_filter .

This configuration file contains a set of path aliases (one per line) each proposing a
translation for non-portable file paths (imposed by mount constraints on some
contexts).

setup

This command combines in one go the output of:

> cmt show uses
> cmt show tags
> cmt show path

strategies

tags

This command displays all currently active tags, and what part of the configuration
actually activates them

uses

This command displays the use graph fo the current package. Private sections of
used packages are reached and considered. This behavior can be changed to
effectively hide the private sections in used packages by using the -public
modifier

> cmt -public show uses

A typical output produced by this command is:

73

> cmt show uses

use GaudiPolicy v* [1]
use GaudiKernel v*
use GaudiPolicy v5r* [2]
use CLHEP v* (native_version=1.8.2.0) [3]
use ExternalLibs v4r*
#
Selection : [4]
use CMT v1r18p20051101 (/afs/cern.ch/sw/contrib)
use ExternalLibs v4r2p0 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5) [5]
use CLHEP v2r1820p0 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)
use GaudiPolicy v5r11p2 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)
use GaudiKernel v13r5p1 (/afs/cern.ch/atlas/offline/external/Gaudi/0.12.1.5)

1. The first section of the display (up to the Selection keyword) displays the
hierarchical use graph.

Use statements as specified in the requirements files are displayed, rather than
the result of the effective selection performed by CMT

2. Sub-uses are expanded only once and indented according to the depth in the
graph

3. Various precisions on the use statements are shown in the first section, such
as the scoping section, the -no_auto_imports modifier, and the native
version of this package, (when a <package>_native_version macro
has been defined)

4. The second section shows the effective ordered set of use statements resolved
by CMT according to the combined use specifications.

5. On every line the effective location of the found package is displayed.

The -quiet option may be used to remove the first section from the output so as
to only display a simple list of used packages, starting from the deepest uses.

use_paths <target-package>

This command displays all possible paths between the current package and the
specified used target package.

In particular this will detect if a package has no access to another one, due to
private use statements

version

This command displays the version tag of the current package.

versions <name>

This command displays the reachable versions of the specified package, looking at
the current access paths.

74

13. 3.22 - cmt system

This command displays the current value assigned by default to the CMTCONFIG
environment variable.

13. 3.23 - cmt unlock [<package> <version> [<area>]]

This command tries to remove a lock from the current package (or from the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then remove the text file named lock.cmt from the cmt/mgr branch of
the package.

3. Run a shell command described in the macro named unlock_command meant
to remove physical locks from all files for this version of this package. A typical
definition for this macro could be:

macro unlock_command "chmod -R g+w ../*" \
 WIN32 "attrib /S /D -R ../*"

13. 3.24 - cmt version | --version

This command shows the current verion of CMT , including (if applicable) the actual
patch level. This always corresponds to the corresponding CVS tag assigned to CMT
sources.

13. 3.25 - cmt cvstags <module>

(see the section on how tu use CVS together with CMT for more details on this
command)

13. 3.26 - cmt cvsbranches <module>

13. 3.27 - cmt cvssubpackages <module>

13. 3.28 - cmt cvssubprojects <module>

13. 4 - The setup and cleanup scripts

They are produced by the cmt config command and their contents is built according to
the specifications stored in the requirements file.

75

One flavour of these scripts is generated per shell family (csh , sh and bat), yielding the
following scripts :

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

The main sections installed within a setup script are :

1. Connection to the current version of the CMT package.
2. Setting the set of user defined public variables specified in the requirements file

(including those defined by all used packages). This is achieved by running the cmt
setup utility into a temporary file and running this temporary file.

3. Activation of the user defined setup and cleanup scripts (those specified using the
setup_script and cleanup_script statements).

It should be noted that these setup scripts do not contain machine specific information (due
to the online use of the cmt setup command). Therefore, it is perfectly possible to use the
same setup script on various platforms (as soon as they share the directories) and this also
shows that the configuration operation (the cmt config command) is required only once
for a set of multiple platforms sharing a development area.

13. 5 - cmt build prototype

This command is only provided for development of C modules. It generates a C header file
containing the set of prototype statements for all public functions of a given module. Its
output is a file with the same name as the input source (given as the argument) and suffixed
with .ph .

The generated prototype header file is meant to be included whereever it is needed (in the
module file itself for instance).

A typical example of the use of cmt build prototype could be :

csh> cd ../src
csh> cmt build prototype FooA.c
Building FooA.ph

Running cmt build prototype will only produce a new prototype header file if the
output is actually different from the existing one (if it exists) in order to avoid confusing
make checks.

The effective use of this facility (which may not be appropriate in all projects) is controlled
by one option of the build strategy, which can take one of the two values:

build_strategy prototypes
build_strategy no_prototypes

In addition to this global strategy specification, each application or library may individually
override it using the -prototypes or -no_prototypes options.

76

Lastly, the actual behaviour of the prototype generator is defined in the standard make macro
build_prototype (which default to call the cmt build prototype command,
allowing a user defined behavious to this feature)

14 - Using cvs together with CMT
Nothing special is apriori required by CMT with respect to the use of CVS . Nevertheless, one may
advertize some well tested conventions and practices which turned out to ensure a good level of
consistency between the two utilities.

Although none of these are required, the cmt general command provides a few utilities so as to
simplify the use of these practices. It should be noted that the added features provided by cmt rely
on the possibility to query CVS about the existing CMT packages and the possible tags setup for
these packages. CVS does not by default permit such query operations (since they require to scan
the physical CVS repository). Therefore CMT provides a hook to CVS (based upon standard CVS
features - not patches) for this. This hook can be installed following a recipe explained in the
dedicated appendix .

14. 1 - Importing a package into a cvs repository

Generally, everything composing a package (below the version directory and besides the
binary directories) is relevant to be imported. Then choosing a cvs module name is
generally done on the basis of the package name. Taking the previous examples, one could
import the Foo package as follows :

csh> cd/Foo/v1
csh> cvs import -m "First import" -I alpha -I hp9000s700 Foo LAL v1

In this example,

we have ignored the currently existing binary directories (here alpha and
hp9000s700)
the cvs module name is identical to the package name (Foo)
the original symbolic insertion tag is identical to the version identifier (v1)

The choice of the module name can generally be identical to the package name. However,
some site specific management issues may lead to different choices (typically, a top
directory where groups of packages are gathered may be inserted).

Conversely, using symbolic tags identical to version identifiers appears to be a very good
practice. The only constraint induced by cvs is that the symbolic tags may not contain dot
characters (’.’), whereas no restriction exist from CMT itself. Thus version identifiers like
v3r2 will be preferred to the v3.2 form.

77

14. 2 - Checking a package out from a cvs repository

Assuming the previous conventions on module name and version identifier have been
selected when importing a package, the following operations will naturally intervene when
one need to check a package out (typically to work on it or to install it on some platform) :

csh> cd <some root> (1)
csh> mkdir Foo (2)
csh> cd Foo
csh> cvs checkout -d v1 Foo (3)
csh> cd v1/cmt
csh> cmt config (4)
csh> source setup.csh (5)
csh> [g]make (6)

1. one always have to select a root directory where to settle down this copy of the
extracted package. This may either be the so-called default root or any other
appropriate directory. In both cases, the next cmt config operation will
automatically take care of this effective location.

2. creating a base directory with the package name is mandatory here, and is not taken into
account by cvs during the chaeckout operation since one wants to insert the version
branch in between.

3. the package is checked out into a directory named with the expected version identifier
exactly corresponding to the version currently stored in the cvs repository.

4. then using the cmt config command (from the cmt branch) will update the setup
scripts against the requirements file and the effective current package location.

5. using this updated version of the setup script provides the appropriate set of
environment variables

6. lastly, rebuilding the entire package is possible simply using the [g]make command.

The actions decribed just above (from number 2 to number 4 included) can also be
performed using the cmt checkout command.

> cd <some work area>
> cmt checkout [modifier ...] <package> ...

modifier :
-l Do not process used packages (default).
-R Process used packages recursively.
-r rev Check out version tag. (is sticky)
-d dir Check out into dir instead of module name.
-o offset Offset in the CVS repository
-n Simulation mode on
-v Verbose mode on
-help Print this help

Thus the previous example would become:

csh> cd <some root>
csh> cmt checkout Foo
csh> cd Foo/v1/cmt
csh> source setup.csh
csh> [g]make

78

14. 3 - Querying CVS about some important infos

It is possible, using the commands :
cmt cvstags <module>
cmt cvsbranches <module>
cmt cvssubpackages <module>
cmt cvssubprojects <module>

to query the CVS repository about the existing tags installed onto a given CVS module, the
subdirectories and the subpackages (in the CMT meaning, i.e. when a requirements file
exists).

> cmt cvstags Cm
v7r6 v7r5 v7r4 v7r3 v7r1 v7
> cmt cvstags Co
v3r7 v3r6 v3

One should notice here that the cvstags command can give informations about any type
of module, even if it is not managed in the CMT environment.

However, in order to let this mechanism operate, it is required to install some elements into
the physical CVS repository (which may require some access rights into it). This
installation procedure (to be done only once in the life of the repositiory) can be achieved
through the following command:

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

However, the details of the procedure is listed below (this section is preferably reserved for
system managers and can easily be skipped by standard users):

1. copy the cmt_buildcvsinfos2.sh shell script into the management directory
${CVSROOT}/CVSROOT as follows :

sh> cp ${CMTROOT}/mgr/cmt_buildcvsinfos2.sh ${CVSROOT}/CVSROOT

2. install one special statement in the loginfo administrative file as follows :

sh> cd ...
sh> cvs checkout CVSROOT
sh> cd CVSROOT
sh> vi loginfo
...
.cmtcvsinfos $CVSROOT/CVSROOT/cmt_buildcvsinfos2.sh
sh> cvs commit -m "set up commitinfo for CMT"

14. 4 - Working on a package, creating a new release

This section presents the way to instanciate a new release of a given package, which happens
when the foreseen modifications will yield additions or changes to the application
programming interface of the package.

79

Then the version tag is supposed to be moved forward, either increasing its minor identifier
(in case of simple additions) or its major identifier (in case of changes).

The following actions should be undertaken then :

1. understand what is the latest version tag (typically by using the cmt cvstags
command). Let’s call it old-tag .

2. select (according to the foreseen amount of changes) what will be the next version tag.
Let’s call it new-tag .

3. check the most recent version of the package in your development area :

sh> cd <development area>
sh> cvs checkout -d <new-tag> <package>

4. configure this new release, and rebuild it :

sh> cd <new-tag>/cmt
sh> cmt config
sh> source setup.csh
sh> [g]make

14. 5 - Getting a particular tagged version out of CVS

The previous example presented the standard case where one gets the most recent version of
a given package. The procedure is only slightly modified when one wants to extract a
previously tagged version. Let’s imagine that the Foo package has evolved by several
iterations, leading to several tagged releases in the cvs repository (say v2 and v3). If the
v2 release is to be used (e.g. for understanding and fixing a problem discovered in the
running version) one will operate as follows :

csh> cd <some root>
csh> mkdir Foo
csh> cd Foo
csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt
csh> cmt config
csh> source setup.csh
csh> make

15 - Interfacing an external package with CMT
Very often, external packages (typically commercial products, or third party software) are to be
used by packages developped in the context of the CMT environment. Although this can obviously
done simply by specifying compiler or linker options internally to the client packages, it can be
quite powerful to interface these so-called external packages to CMT by defining a glue package,
where configuration specifications for this external package are detailed.

Using this approach, one may :

80

provide a nickname for this external package,
adapt the version tag convention consistently to the project, hiding the version tag
specificities of eg. commercial packages.
provide compiler options using the the standard make macros <package>_cflags ,
<package>_cppflags or <package>_fflags ,
specify a set of search paths for the include files, using the include_dirs statement,
provide linker options using the the standard make macros <package>_linkopts

Let’s consider the example of the OPACS package. This package is provided outside of the CMT
environment. Providing a directory tree following the CMT conventions (ie. a branch named after
the version identifier, then an cmt branch) then a requirements file, containing (among
other statements not shown for the sake of clarity) :

package OPACS

include_dirs ${Wo_root}/include ${Co_root}/include ${Xx_root}/include \
${Ho_root}/include ${Go_root}/include ${Xo_root}/include

public
macro OPACS_cflags "-DHAS_XO -DHAS_XM"
macro OPACS_cppflags " $(OPACS_cflags) "

macro OPACS_linkopts "$(Wo_linkopts) $(Xo_linkopts) $(Go_linkopts) \
$(Glo_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(Htmlo_linkopts) \
$(W3o_linkopts) $(Co_linkopts) $(X_linkopts)"

Then every package or application, client of this OPACS package would have just to provide a
use statement like :

use OPACS v3

This procedure gives the complete benefit of the use relationships between packages (a client
application transparently inherits all configuration specifications) while keeping unchanged the
original referenced package, allowing to apply this approach even to commercial products so that
they may be integrated in resource usage surveys similarly to local packages.

16 - The installation area mechanism
CMT proposes and implements a flexible architecture for installation areas, meant to group the
results of the build process or any other information belonging to packages into shared disk
spaces. The typical usage of such installation areas is classical and expect to make only visible to
the clients of a given (sub-)project the results of the build process while hiding the details of the
package sources.

the basics of the mechanisms supported by CMT are the following:

1. The installation area mechanism is activated on demand via a dedicated strategy
specification, that can be written either in a requirements file or in a project file. By default
the mechanism is not active.

2. All mechanisms are customizable on a per-project basis, so as to easily follow the project
specific conventions

81

3. However CMT proposes a minimal default behaviour based on the concrete experience in
large projects, as well as frequently met practices

4. A typical well supported convention is to map the set of installation areas onto the set of
CMTPATH entries, associating the concept of CMTPATH splitting with the sub-project organization

5. A typical consequence of this approach is that many configuration parameters need to be set
according to the list of CMTPATH items. Eg on a Unix system, if one expects to find shared libraries
in every installation area, each of them being created in a corresponding CMTPATH entry, one also
expects to have LD_LIBRARY_PATH entries accordingly. The mechanism of
cmtpath_pattern is exactly designed for that.

6. The mechanism easily supports the extension for installing binary files (libraries,
applications, java classes), runtime files, documentation and header files.

16. 1 - The default implementation

It is provided in terms of

1. A set of cmtpath_pattern s defined in the CMT requirements file. This can be
displayed using the command

> cmt show cmtpath_patterns

2. A consistent set of actions added to the following make_fragments

application applications

library shared libraries

library_no_share static libraries

java_header Java applications

jar Java libraries

3. One shell script for installing or uninstalling files or directories

${CMTROOT}/mgr/cmt_install_action.sh
${CMTROOT}/mgr/cmt_uninstall_action.sh
${CMTROOT}/mgr/cmt_install_action.bat
${CMTROOT}/mgr/cmt_uninstall_action.bat

4. The default architecture of this installation scheme is by default set for each
CMTPATH entry to:

<path>/$(<project>_installarea_prefix)/$(tag)/bin/... [1]
 /$(tag)/lib/... [2]
 /include/<package>/... [3]
 /share/bin/... [4]
 /share/lib/... [5]
 /... [6]
 /doc/<package>/... [7]
 /... [8]

82

1. Platform dependent executables
2. Platform dependent libraries
3. Public header files
4. Platform independent applications (eg Java applications)
5. Platform independent libraries (eg Java libraries)
6. other platform independent files
7. package specific documentations
8. project-wide documentation

The <project>_installarea_prefix takes the default value of
$(cmt_installarea_prefix) for all projects, which itself takes the default
value of InstallArea . Of course it can be overridden to other values in each project

The cmtpath_patterns are designed in this implementation for constructing a proper
and consistent sequence of system specific environment variables (eg PATH ,
LD_LIBRARY_PATH , CLASSPATH) as well as compiler or linker options so as to
transparently refer to the installation area only when it is appropriate to ovverride the local
patterns.

16. 2 - Tuning the installation area mechanisms

First of all every individual sub-project may activate or inhibit the installation area
mechanisms using the build_strategy statement, with either with_installarea
or without_installarea option.

Then a dedicated tag materializes the selected strategy:
<project>_with_installarea or <project>_without_installarea

This tag set will be used in various macro or set definitions to produce or not the appropriate
values

CMT manipulate some standard macros or environment variables according to the effective
strategy:

83

name purpose default

cmt_installarea_prefix
The default
prefix for
all projects

InstallArea

<project>_installarea_prefix
The prefix
for a given
sub-project

$(cmt_installarea_prefix)

<project>_installarea_prefix_remove

The regexp
pattern to
cleanup
symbols

$(<project>_installarea_prefix)

cmt_installarea_linkopts

Implicit
linker
options due
to the
installation
area

...

PATH

Accessing
the
executables
in the
installation
area

...

LD_LIBRARY_PATH

Accessing
the shared
libraries in
the
installation
area

...

CLASSPATH

Accessing
the jar files
in the
installation
area

...

17 - Installing CMT for the first time
These sections are of interest only if CMT is not yet installed on your site, of if you need a private
installation.

The first question you need to answer is the location where to install CMT . This location is
typically a disk area where most of packages managed in your project will be located.

Then, you have to fetch the distribution kit from the Web at http://www.cmtsite.org . You must
get at least the primary distribution kit containing the basic configuration information and the
CMT sources. This operation results in a set of directories hanging below the CMT root and the
version directory. The src branch contains the sources of CMT , the fragments branch contains the
makefile fragments and the mgr branch contains the scripts needed to build or operate CMT .

84

http://www.cmtsite.org/

17. 1 - Installing CMT on your Unix site

The very first operation after dowloading CMT consists in running the INSTALL shell script.
This will build the setup scripts required by any CMT user.

Then you may either decide to build CMT by yourself or fetch a pre-built binary from the
same Web location. The prebuilt binary versions may not exist for the actual platform you
are working on. You will see on the distribution page the precise configurations used for
building those binaries.

In case you have to build CMT yourself, you need a C++ compiler capable of handling
templates (although the support for STL is not required). There is a Makefile provided in the
distribution kit which takes g++ by default as the compiler. If you need a specific C++
compiler you will override the cpp macro as follows:

sh> gmake cpp=CC

The cppflags macro can also be used to override the behaviour of the compilation.

Another important concern is the way CMT will identify the platform. CMT builds a
configuration tag per each type of platform, and uses this tag for naming the directory where
all binary files will be stored. As such this tag has to be defined prior to even build CMT
itself.

CMT builds the default configuration by running the cmt_system.sh script found in the mgr
branch of CMT . Run it manually to see what is the default value provided by this script. You
might consider changing its algorithm for your own convenience.

A distribution kit may be obtained at the following URL :

http://www.cmtsite.org

Once the tar file has been downloaded, the following operations must be achieved :

1. Select a root directory where to install CMT . Typically this will correspond to a
development area or a public distribution area.

2. Import the distribution kit mentioned above.
3. Uncompress and untar it.
4. Configure CMT .
5. CMT is ready to be used for developing packages.

A typical corresponding session could look like :

csh> cd /Packages
csh> <get the tar file from the Web>
csh> tar xzf CMTv1r18p20051101.tar.gz
csh> cd CMT/v1r18p20051101/mgr
csh> ./INSTALL
csh> source setup.csh
csh> gmake

85

17. 2 - Installing CMT on a Windows or Windows NT site

You first have to fetch the distribution kit from the Web at http://www.cmtsite.org . You
must get at least the primary distribution kit containing the basic configuration information
and the CMT sources. This operation results in a set of directories hanging below the CMT
root and the version directory. The binary kit provided for Windows environments will
generally fit your needs.

You should consider getting the pre-compiled (for a Windows environment) applications,
and especially the ..\VisualC\install.exe application, which interactively
configures the registry entries as described in the next paragraph.

The next operation consists in defining a few registries (typically using the standard RegEdit
facility or the install.exe special application):

HKEY_LOCAL_MACHINE/Software/CMT/root will contain the root directory
where CMT is installed (eg. "e:").
HKEY_LOCAL_MACHINE/Software/CMT/version will contain the current
version tag of CMT ("v1r18p20051101" for this version).
HKEY_LOCAL_MACHINE/Software/CMT/path/ may optionally contain a set of
text values corresponding to the different package global access paths.
HKEY_LOCAL_MACHINE/Software/CMT/site will contain the conventional site
name.
HKEY_CURRENT_USER/Software/CMT/path/ may contain a set of text of text
values corresponding to the different package private access paths.

CMT can also be configured to run on DOS-based environments using the nmake facility.
In this case, the installation procedure is very similar to the Unix one:

A typical corresponding session could look like :

dos> cd Packages
dos> <get the tar file from the Web>
dos> cd CMT\v1r18p20051101\mgr
dos> call INSTALL
dos> call setup.bat
dos> nmake /f nmake

18 - Appendices

18. 1 - Copyright

Copyright LAL and Christian Arnault LAL-Orsay CNRS

arnault@lal.in2p3.fr

This software is a computer program whose purpose is to describe and manage software
configuration activities.

86

http://www.cmtsite.org/

This software is governed by the CeCILL license under French law and abiding by the rules
of distribution of free software. You can use, modify and/ or redistribute the software under the terms
of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL

http://www.cecill.info

As a counterpart to the access to the source code and rights to copy, modify and redistribute
granted by the license, users are provided only with a limited warranty and the software’s
author, the holder of the economic rights, and the successive licensors have only limited
liability.

In this respect, the user’s attention is drawn to the risks associated with loading, using,
modifying and/or developing or reproducing the software by the user in light of its specific
status of free software, that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced professionals having
in-depth computer knowledge. Users are therefore encouraged to load and test the software’s
suitability as regards their requirements in conditions enabling the security of their systems
and/or data to be ensured and, more generally, to use and operate it in the same conditions as
regards security.

The fact that you are presently reading this means that you have had knowledge of the
CeCILL license and that you accept its terms.

18. 2 - Standard make targets predefined in CMT

These targets can always be listed through the following command :

sh> gmake help

target usage

help Get the list of possible make target for this package.

all build all components of this package.

clean remove everything that can be rebuilt by make

binclean completely remove the ../$(tag) binary directory

configclean remove all intermediate makefile fragments

install install binaries of this package to the current installation area

uninstall uninstall binaries of this package from the current installation area

check run all applications defined with the -check option

component-name only build this particular component (as opposed to the all target that tries to build all components of this package)

group-name build all constituents belonging to this group (ie. those defined using the same -group=<group-name> option)

87

http://www.cecill.info/

These targets have to be specified as follows :

sh> gmake clean
sh> gmake Foo

18. 3 - Standard macros predefined in CMT

18. 3. 1 - CMT static macros

These macros provide static data about CMT itself. They cannot be modified by the
user.

macro usage default value

CMTrelease gives the current release number of CMT 18

CMTVERSION gives the current complete version tag of CMT v1r18p20051101

18. 3. 2 - Structural macros

These macros describe the structural conventions followed by CMT . They receive a
conventional default value from the CMT requirements file. However, they can be
overridden in any package for its own needs.

macro usage default value

tag gives the binary tag ${CMTCONFIG}

src the src branch ../src/

inc the include branch ../src/

mgr the cmt or mgr branch ../cmt/ or ../mgr/

bin the branch for binaries ../$(<package>_tag)/

javabin the branch for java classes ../classes/

doc the doc branch ../doc/

cmt_hardware the description of the current hardware <none>

cmt_system_version the version of the current OS <none>

cmt_compiler_version the version of the currently visible C++ compiler <none>

88

18. 3. 3 - Language related macros

These macros are purely conventional. They are expected in the various make
fragments available from CMT itself for providing the various building actions.

During the mechanism of new language declaration and definition available in the CMT
syntax, developers are expected to define similar conventions for corresponding
actions.

Their default values are originally defined inside the requirements file of the CMT
package itself but can be redefined by providing a new definition in the package’s
requirements file using the macro statement. The original definition can be completed
using the macro_append or macro_prepend statements.

macro usage default value

cc The C compiler cc

ccomp The C compiling command $(cc) -c -I$(inc) $(includes) $(cflags)

clink The C linking command $(cc) $(clinkflags)

cflags The C compilation flags none

pp_cflags The preprocessor flags for C none

clinkflags The C link flags none

cpp The C++ compiler g++

preproc The C++ preprocessor g++ -MD -c

cppcomp The C++ compiling command $(cpp) -c -I$(inc) $(includes) $(cppflags)

cpplink The C++ linking command $(cpp) $(cpplinkflags)

cppflags The C++ compilation flags none

pp_cppflags The preprocessor flags for C++ none

cpplinkflags The C++ link flags none

for The Fortran compiler f77

fcomp The Fortran compiling command $(for) -c -I$(inc) $(includes) $(fflags)

flink The Fortran linking command $(for) $(clinkflags)

fflags The Fortran compilation flags none

pp_fflags The preprocessor flags for fortran none

flinkflags The Fortran link flags none

ppcmd The include file command for Fortran -I

89

javacomp The java compiling command javac

jar The java archiver command jar

lex The Lex command lex $(lexflags)

lexflags The Lex flags none

yacc The Yacc command yacc $(yaccflags)

yaccflags The Yacc flags none

ar The archive command ar -clr

ranlib The ranlib command ranlib

18. 3. 4 - Package customizing macros

These macros do not receive default values. They are all prefixed by the package name.
They are meant to provide specific variant to the corresponding generic language
related macros.

They are automatically and by default concatenated by CMT to fill in the corresponding
global use macros (see appendix on generated macros). However, this concatenation
mechanism is discarded when the -no_auto_imports option is specified in the
corresponding use statement.

macro usage

<package >_cflags specific C flags

<package >_pp_cflags specific C preprocessor flags

<package >_cppflags specific C++ flags

<package >_pp_cppflags specific C++ preprocessor flags

<package >_fflags specific Fortran flags

<package >_pp_fflags specific Fortran preprocessor flags

<package >_libraries gives the (space separated) list of library names exported by this package. This list is typically used in the cmt build library_links command.

<package >_linkopts

provide the linker options required by any application willing to access the different libraries offered by the package. This may include support for several libraries per package.

A typical example of how to define such a macro could be :

macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -lCm -lm"

<package >_stamps

may contain a list of stamp file names (or make targets). Whenever a library is modified, one dedicated stamp file is re-created, simply to mark the reconstruction date. The name of this stamp file is conventionally <library >.stamp . Thus, a typical definition for this macro could be :

macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp"

Then, these stamp file references are accumulated into the standard macro named use_stamps which is always installed within the dependency list for applications, so that whenever one of the libraries used from the hierarchy of used packages changes, the application will be automatically rebuilt.

90

The following macros are not subject to automatic concatenation (and therefore are not
hidden by the -no_auto_imports modifier).

macro usage

<package >_native_version
specifies the native version of the external package referenced by this interface package.
When this macro is provided, its value is displayed by the cmt show uses command

<package >_export_paths specifies the list of files or directories that should be exported during the deployment process for this package. Generally this is only useful for glue packages refering to external software

<package >_home specifies the base location for external software described in glue packages. This macro is generally used to specify the previous one

18. 3. 5 - Constituent specific customizing macros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each constituent, specific variants to the corresponding generic
language related macros.

By convention, they are all prefixed by the constituent name. But macros used for
defining compiler options are in addition prefixed by the constituent type (either lib_
, app_ or doc_).

They are used in the various make fragments for fine customization of the build
command parameters.

91

<type
>_<constituent
>_cflags

specific C flags

<type
>_<constituent
>_pp_cflags

specific C preprocessor flags

<type
>_<constituent
>_cppflags

specific C++ flags

<type
>_<constituent
>_pp_cppflags

specific C++ preprocessor flags

<type
>_<constituent
>_fflags

specific Fortran flags

<type
>_<constituent
>_pp_fflags

specific Fortran preprocessor flags

<constituent
>linkopts

provides additional linker options to the application. It is
complementary to - and should not be confused with - the
<package >_linkopts macro, which provides exported
linker options required by clients packages to use the package
libraries.

<constituent
>_shlibflags

provides additional linker options used when building a shared
library. Generally, a simple shared library does not need any
external reference to be resolved at build time (it is in this case
supposed to get its unresolved references from other shared
libraries). However, (typically when one builds a dynamic loading
capable component) it might be desired to statically link it with
other libraries (making them somewhat private).

<constituent
>_dependencies

provides user defined dependency specifications for each
constituent. The typical use of this macro is fill it with the name of
the list of some other constituents which have to be rebuilt first
(since each constituent is associated with a target with the same
name). This is especially needed when one want to use the parallel
gmake (ie. the -j option of gmake).

<group
>_dependencies

provides user defined dependency specifications for each group.
The typical use of this macro is fill it with the name of the list of
some other constituents which have to be rebuilt first (since each
constituent is associated with a target with the same name). This is
especially needed when one want to use the parallel gmake (ie. the
-j option of gmake).

92

18. 3. 6 - Source specific customizing macros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each source file, specific variants to the corresponding generic
language related macros.

By convention, they are all prefixed by the source file name followed by the source file
suffix (either _c , _cxx , _f , etc.)

They are used in the various make fragments for fine customization of the build
command parameters.

<constituent >_<suffix >_cflags specific C flags

<constituent >_<suffix >_cppflags specific C++ flags

<constituent >_<suffix >_fflags specific Fortran flags

18. 3. 7 - Generated macros

These macros are automatically generated when any cmt connand is run (and thus
when make is run).

The first set of them provide constant values corresponding to CMT based information.
They are not meant to be overridden by the user, since they serve as a communication
mean between CMT and the user.

<PACKAGE >ROOT The access path of the package (including the version branch). This is controlled by the setup_strategy [no_]root statement.

<package >_root The access path of the package (including the version branch). This macro is very similar to the <PACKAGE >ROOT macro except that it tries to use a relative path instead of an absolute one.

<PACKAGE >VERSION The used version of the package.

PACKAGE_ROOT The access path of the current package (including the version branch)

package The name of the current package

version The version tag of the current package

package_offset The directory offset of the current package

package_cmtpath The package area where the current package has been found

<package >_project The project name to which the corresponding package belongs

<package >_cmtpath The package area where the corresponding package has been found

<package >_offset The directory offset of the corresponding package

The second set is deduced from the context and from the requirements file of the
package. They can be overridden by the user so as to customize the CMT behaviour.

93

<package >_tag
The specific configuration tag for the package. By default it is
set to $(tag) but can be freely overridden

constituents
The ordered set of constituents declared without any group
option

<group-name>
_constituents

The ordered set of all constituents declared using a
group=<group-name> option

The third set of generated macros are the global use macros . They correspond to the
concatenation of the corresponding package specific customizing options that can be deduced from the

ordered set of use statements found in the requirements file (taking into account the
complete hierarchy of used packages with the exception of those specified with the
-no_auto_imports option in their use statement) :

use_cflags C compiler flags

use_pp_cflags Preprocessor flags for the C language

use_cppflags C++ compiler flags

use_pp_cppflags Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use_pp_fflags Preprocessor flags for the Fortran language

use_libraries List of library names

use_linkopts Linker options

use_stamps Dependency stamps

use_requirements The set of used requirements

use_includes The set of include search paths options for the preprocessor from the used packages

use_fincludes The set of include search paths options for the fortran preprocessor from the used packages

includes The overall set of include search paths for the preprocessor

fincludes The overall set of include search paths options for the fortran preprocessor

18. 3. 8 - Macros related with the installation area mechanisms

These macros contain the parameterisation of the installation area mechanisms.

94

macro usage default value

cmt_installarea_command

cmt_uninstallarea_command

cmt_install_action $(CMTROOT)\mgr\cmt_install_action.bat

cmt_installdir_action $(CMTROOT)\mgr\cmt_installdir_action.bat

cmt_uninstall_action $(CMTROOT)\mgr\cmt_uninstall_action.bat

cmt_uninstalldir_action $(CMTROOT)\mgr\cmt_uninstalldir_action.bat

cmt_installdir_excludes $(CMTROOT)\mgr\cmt_installdir_excludes.txt

cmt_installarea_prefix InstallArea

<project>_installarea_prefix $(cmt_installarea_prefix)

CMTINSTALLAREA C:\Arnault\test\tprojects\PC\InstallArea

cmt_installarea_paths

cmt_installarea_linkopts

18. 3. 9 - Utility macros

These macros are used to specify the behaviour of various actions in CMT.

95

macro usage default on Unix

X11_cflags compilation flags for X11 -I/usr/include

Xm_cflags compilation flags for Motif -I/usr/include

X_linkopts Link options for XWindows (and Motif)

make_shlib The command used to generate the shared library from the static one ${CMTROOT}/mgr/cmt_make_shlib_common.sh extract

shlibsuffix The system dependent suffix for shared libraries so

shlibbuilder The loader used to build the shared library g++

shlibflags The additional options given to the shared library builder -shared

application_suffix The default extension for applications .exe

library_prefix The default name prefix of libraries lib

library_suffix The default name suffix of libraries

symlink The command used to install a symbolic link /bin/ln -fs

The command used to remove a symbolic link /bin/rm -f

build_prototype The command used to generate the C prototype header file (default to the internal cmt dedicated command) $(cmtexe) build prototype

build_dependencies The command used to generate dependencies (default to the internal cmt dedicated command) $(cmtexe) -quiet -tag=$(tags) build dependencies

lock_command The command used to physically lock a package chmod -R a-w ../*

unlock_command The command used to physically unlock a package chmod -R g+w ../*

make_hosts The list of remote host names which exactly require the make command

gmake_hosts The list of remote host names which exactly require the gmake command

18. 4 - Standard tags generated by CMT

96

tag name usage

CMTv<n> Primary version id of CMT

CMTr<n> Secondary version id of CMT

CMTp<n> Patch id of CMT

‘uname‘ The basic platform id

<project-name> The current project name

<project>_prototypes

<project>_no_prototypes
The prototypes strategy for each project

<project>_with_installarea

<project>_without_installarea
The installation area strategy for each project

<project>_setup_config

<project>_setup_no_config
The strategy for generating <P>CONFIG for each project

<project>_setup_root

<project>_setup_no_root
The strategy for generating <P>ROOT for each project

<project>_setup_cleanup

<project>_setup_no_cleanup
The installation area cleanup strategy for each project

18. 5 - Standard templates for makefile fragments

97

template name usage used in fragment

ADDINCLUDE additional include path <language > java

CONSTITUENT name of the constituent <language > java jar make_header jar_header java_header library_header application_header protos_header library_no_share library application dependencies cleanup_header cleanup_library cleanup_application check_application document_header <document> trailer dsw_all_project_dependency dsw_project dsp_library_header dsp_shared_library_header dsp_windows_header dsp_application_header dsp_trailer constituent check_application_header

DATE now make_header

FILENAME file name without path buildproto <language ><document >

FILEPATH file path buildproto <language ><document >

FILESUFFIX file suffix (without dot) <language >

FILESUFFIX file suffix (with dot) <document >

FULLNAME complete file path and name <language > cleanup <document > dsp_contents

GROUP group name constituents_header

LINE source files <language > dependencies constituent

LINKMACRO link macro application

NAME file name without path and suffix buildproto <language > java <document >

OBJS object files jar_header java_header jar library_no_share library application cleanup_java document_header trailer

OUTPUTNAME output file name java

PACKAGE current package name <language > dsw_header dsw_all_project dsw_all_project_trailer dsw_trailer dsp_all readme_header readme readme_use readme_trailer

PACKAGEPATH current package location readme_use

PROTOSTAMPS prototype stamp files protos_header

PROTOTARGET prototype target name library_header application_header

SUFFIX document suffix <document >

TITLE title for make header make_header

USER user name make_header

VERSION current package version tag readme_header readme readme_use

18. 6 - Makefile generation sequences

This section describes the various makefile generation sequences provided by CMT .
Each sequence description shows the precise set of make fragments used during the
operation.

98

Generated makefile description used make fragments

constituents.make the main entry point point for all constituent targets
1. constituents_header
2. constituent
3. check_application_header

<constituent >.make application or library specific make fragment

1. make_header
2. java_header | jar_header | library_header | application_header
3. protos_header
4. buildproto
5. jar | library | library_no_share | application
6. dependencies
7. <language> | <language>_library | java
8. cleanup_header
9. cleanup

10. cleanup_application
11. cleanup_objects
12. cleanup_java
13. cleanup_library
14. check_application

<constituent >.make document specific make fragment

1. make_header
2. document_header
3. dependencies
4. <document>
5. <document-trailer>
6. cleanup_header

<package>.dsw Visual workspace configuration files

1. dsw_header
2. dsw_all_project_header
3. dsw_all_project_dependency
4. dsw_all_project_trailer
5. dsw_project
6. dsw_trailer
7. dsp_all

<constituent>.dsp Visual project configuration files
1. dsp_library_header | dsp_shared_library_header | dsp_windows_header | dsp_application_header
2. dsp_contents
3. dsp_trailer

README .

1. readme_header
2. readme
3. readme_use
4. readme_trailer

99

18. 7 - The complete project file syntax

The syntax of specification statements that can be installed in a project.cmt file are :

cmt-statement : build_strategy

| container

| project

| setup_strategy

| structure_strategy

| use

build_strategy : build_strategy build-strategy-name

build-strategy-name : prototypes

| no_prototypes

| with_installarea

| without_installarea

container : container container-name [version-tag [access-path]]

project : project project-name

setup_strategy : setup_strategy setup-strategy-name

setup-strategy-name : config

| no_config

| root

| no_root

| cleanup

| no_cleanup

structure_strategy : structure_strategy structure-strategy-name

structure-strategy-name : with_version_directory

| without_version_directory

use : use project-name [release-tag [access-path]]

100

18. 8 - The complete requirements syntax

The syntax of specification statements that can be installed in a requirements file are :

cmt-statement : application

| apply_pattern

| apply_tag

| author

| branches

| build_strategy

| cleanup_script

| cmtpath_pattern

| document

| ignore_pattern

| include_dirs

| include_path

| language

| library

| make_fragment

| manager

| package

| pattern

| private

| public

| setup_script

| setup_strategy

| structure_strategy

| symbol

| tag

| tag_exclude

| use

| version

101

alias : alias alias-name default-value [tag-expr value ...]

application : application application-name [constituent-option ...]

 [source ...]

constituent-option : -no_share

| -no_static

| -prototypes

| -no_prototypes

| -check

| -target_tag

| -group=group-name

| -suffix=output-suffix

| -import=package-name

| variable-name = variable-value

| -OS9

| -windows

source : name.suffix

| *.suffix

| *.*

| -s=new-search-path

| -k=selection-regexp

| -x=exclusion-regexp

apply_pattern :
apply_pattern pattern-name [template-name = value ...
]

apply_tag : apply_tag tag-name [tag-name ...]

author : author author-name

branches : branches branch-name ...

build_strategy : build_strategy build-strategy-name

build-strategy-name : prototypes

| no_prototypes

| with_installarea

| without_installarea

102

cleanup_script : cleanup_script script-name

cmtpath_pattern : cmtpath_pattern cmt-statement

 [; cmt-statement ...]

document : document document-name [constituent-option ...]

 [source ...]

ignore_pattern : ignore_pattern pattern-name

include_dirs : include_dirs search-path

include_path : include_path search-path

language : language language-name [language-option ...]

language-option : -suffix=suffix

| -linker=linker-command

| -prototypes

| -preprocessor_command=preprocessor_command

| -fragment=fragment

| -output_suffix=output-suffix

| -extra_output_suffix=extra-output-suffix

library : library library-name [constituent-option ...]

 [source ...]

action : action action-name [tag-expr value ...]

macro : macro macro-name [tag-expr value ...]

macro_append : macro_append macro-name [tag-expr value ...]

macro_prepend : macro_prepend macro-name [tag-expr value ...]

macro_remove : macro_remove macro-name [tag-expr value ...]

macro_remove_regexp :
macro_remove_regexp macro-name [tag-expr value ...
]

macro_remove_all : macro_remove_all macro-name [tag-expr value ...]

macro_remove_all_regexp :
macro_remove_all_regexp macro-name [tag-expr value
 ...]

make_fragment : make_fragment fragment-name [fragment-option ...]

fragment-option : -suffix=suffix

| -dependencies

103

| -header=fragment

| -trailer=fragment

manager : manager manager-name

package : package package-name

path : path path-name [tag-expr value ...]

path_append : path_append path-name [tag-expr value ...]

path_prepend : path_prepend path-name [tag-expr value ...]

path_remove : path_remove path-name [tag-expr value ...]

path_remove_regexp : path_remove_regexp path-name [tag-expr value ...]

pattern : pattern [-global] pattern-name cmt-statement

 [; cmt-statement ...]

private : private

public : public

set : set set-name [tag-expr value ...]

set_append : set_append set-name [tag-expr value ...]

set_prepend : set_prepend set-name [tag-expr value ...]

set_remove : set_remove set-name [tag-expr value ...]

set_remove_regexp : set_remove_regexp set-name [tag-expr value ...]

setup_script : setup_script script-name

setup_strategy : setup_strategy setup-strategy-name

setup-strategy-name : config

| no_config

| root

| no_root

| cleanup

| no_cleanup

structure_strategy : structure_strategy structure-strategy-name

structure-strategy-name : with_version_directory

| without_version_directory

symbol : alias

104

| action

| macro

| macro_append

| macro_prepend

| macro_remove

| macro_remove_regexp

| macro_remove_all

| macro_remove_all_regexp

| path

| path_append

| path_prepend

| path_remove

| path_remove_regexp

| set

| set_append

| set_prepend

| set_remove

| set_remove_regexp

tag : tag tag-name [tag-name ...]

tag_exclude : tag_exclude tag-name [tag-name ...]

tag-expr : tag-name [& tag-name ...]

use : use package-name [version-tag [access-path]]

 [use-option]

version : version version-tag

version-tag : key version-number

 [key release-number [key patch-number]]

use-option : -no_auto_imports

| -auto_imports

key : letter ...

105

18. 9 - The default strategies defined in CMT

 build_strategy prototypes | without_installarea
 setup_strategy config | root
 structure_strategy with_version_directory

18.10 - The internal mechanism of cmt cvs operations

Generally, CVS does not handle queries upon the repository (such as knowing all installed
modules, all tags of the modules etc..). Various tools such as CVSWeb, LXR etc. provide
very powerful answers to this question, but all through a Web browser.

CMT provides a hook that can be installed within a CVS repository, based on a helper script
that will be activated upon a particular CVS command, and that is able to perform some
level of scan within this repository and return filtered information.

More precisely, this helper script (found in
${CMTROOT}/mgr/cmt_buildcvsinfos2.sh) is meant to be declared within the
loginfo management file (see the CVS manual for more details) as one entry named
.cmtcvsinfos , able to launch the helper script. This installation can be operated at once
using the following sequence:

sh> cd ${CMTROOT}/mgr
sh> gmake installcvs

This mechanism is thus fully compatible with standard remote access to the repository.

Once the helper script is installed, the mechanism operates as follows (this actually describes
the algorithms installed in the CvsImplementation::show_cvs_infos method
available in cmt_cvs.cxx and is transparently run when one uses the cmt cvs xxx
commands):

1. Find a location for working with temporary files. This is generally deduced from the
${TMPDIR} environment variable or in /tmp (or in the current directory if none of
these methods apply).

2. There, install a directory named cmtcvs/< unique-name >/.cmtcvsinfos
3. Then, from this directory, try to run a fake import command built as follows:

cvs -Q import -m cmt .cmtcvsinfos/<protocol-level>/< package-name > CMT v1

Obviously this command is fake, since no file exist in the temporary directory we have
just created. The protocol-level referenced in this command is described in the
standard macro $(cmt_cvs_protocol_level) .

4. This action actually triggers the CVS pluggin installed in the loginfo CVS metafile.
A default pluggin is provided by CMT implemented as a shell script,
cmt_buildcvsinfos2.sh , which simply receives in its argument the module
name onto which we need information. This information is obtained by scanning the
files into the repository, and an answer is built with the following syntax:

106

http://www.cvshome.org/docs/manual/index.html

[error= error-text] (1)
tags= tag ... (2)
branches= branch ... (3)
subpackages= sub-package ... (4)

1. In case of error (typically when the requested module is not found in the
repository) a text explaining the error condition is returned

2. The list of tags found on the requirements file
3. The list of branches defined in this packages (ie subdirectories not containing a

requirements file)
4. The list of subpackages (ie subdirectories containing a requirements files)

5. Another version of this pluggin is also available as a C++ application. This application
is available for download at the CMT web site .

Contents
 1 Presentation

 2 The conventions

 3 The architecture of the environment

 3. 1 Supported platforms

 4 Defining and managing projects

 4. 1 The project file

 4. 2 Projects and strategies

 4. 3 CMTPROJECTPATH

 4. 4 CMTPATH

 5 Installing a new package

 6 Localizing a package

 7 Assigning semantics to packages. Common practices

 7. 1 The primary package

 7. 2 The policy package

 7. 3 The container or management package

 7. 4 The release package

 7. 5 The glue or interface package

 8 Managing site dependent features - The CMTSITE environment variable

 9 Configuring a package

10 Selecting a specific configuration

107

http://www.cmtsite.org/

10. 1 Describing a configuration

10. 2 Defining the user tags

10. 3 Activating tags

11 Working on a package

11. 1 Working on a library

11. 2 Working on an application

11. 3 Working on a test or external application

12 Defining a document generator

12. 1 An example : the tex document-style

12. 2 How to create and install a new document style

12. 3 Examples

13 The tools provided by CMT

13. 1 The requirements file

13. 1. 1 The general requirements syntax

13. 2 The concepts handled in the requirements file

13. 2. 1 The package structuring style

13. 2. 2 Meta-information : author, manager

13. 2. 3 package, version

13. 2. 4 Constituents : application, library, document

13. 2. 5 Groups

13. 2. 6 Languages

13. 2. 7 Symbols

13. 2. 7. 1 actions

13. 2. 8 use

13. 2. 9 patterns

13. 2. 9. 1 Applying a pattern

13. 2.10 cmtpath_patterns

13. 2.11 branches

13. 2.12 Strategy specifications

13. 2.13 setup_script, cleanup_script

108

13. 2.14 include_path

13. 2.15 include_dirs

13. 2.16 make_fragment

13. 2.17 public, private

13. 2.17. 1 Scoping sections

13. 2.18 tag, apply_tag

13. 3 The general cmt user interface

13. 3. 1 Global options of the cmt command

13. 3. 2 cmt broadcast

13. 3. 2. 1 Specifying the shell command

13. 3. 2. 2 Templates in the shell command

13. 3. 3 cmt build <option>

13. 3. 4 cmt check configuration

13. 3. 5 cmt check files <reference-file> <new-file>

13. 3. 6 cmt checkout ...

13. 3. 7 cmt co ...

13. 3. 8 cmt cleanup [-csh|-sh]

13. 3. 9 cmt config

13. 3.10 cmt create <package> <version> [<area>]

13. 3.11 cmt expand model [-strict] <model-string>

13. 3.12 cmt filter <in-file> <out-file>

13. 3.13 cmt help | --help

13. 3.14 cmt lock [<package> <version> [<area>]]

13. 3.15 cmt remove <package> <version> [<area>]

13. 3.16 cmt remove library_links

13. 3.17 cmt run [shell-command]

13. 3.18 cmt set version <version>

13. 3.19 cmt set versions

13. 3.20 cmt setup [-csh|-sh|-bat]

13. 3.21 cmt show <option>

109

13. 3.22 cmt system

13. 3.23 cmt unlock [<package> <version> [<area>]]

13. 3.24 cmt version | --version

13. 3.25 cmt cvstags <module>

13. 3.26 cmt cvsbranches <module>

13. 3.27 cmt cvssubpackages <module>

13. 3.28 cmt cvssubprojects <module>

13. 4 The setup and cleanup scripts

13. 5 cmt build prototype

14 Using cvs together with CMT

14. 1 Importing a package into a cvs repository

14. 2 Checking a package out from a cvs repository

14. 3 Querying CVS about some important infos

14. 4 Working on a package, creating a new release

14. 5 Getting a particular tagged version out of CVS

15 Interfacing an external package with CMT

16 The installation area mechanism

16. 1 The default implementation

16. 2 Tuning the installation area mechanisms

17 Installing CMT for the first time

17. 1 Installing CMT on your Unix site

17. 2 Installing CMT on a Windows or Windows NT site

18 Appendices

18. 1 Copyright

18. 2 Standard make targets predefined in CMT

18. 3 Standard macros predefined in CMT

18. 3. 1 CMT static macros

18. 3. 2 Structural macros

18. 3. 3 Language related macros

18. 3. 4 Package customizing macros

110

18. 3. 5 Constituent specific customizing macros

18. 3. 6 Source specific customizing macros

18. 3. 7 Generated macros

18. 3. 8 Macros related with the installation area mechanisms

18. 3. 9 Utility macros

18. 4 Standard tags generated by CMT

18. 5 Standard templates for makefile fragments

18. 6 Makefile generation sequences

18. 7 The complete project file syntax

18. 8 The complete requirements syntax

18. 9 The default strategies defined in CMT

18.10 The internal mechanism of cmt cvs operations

Images
1 Structuring a package - A typical example.

2 Structuring a sofware base.

3 The architecture of document generation.

Christian Arnault

111

	CMT Configuration Management Tool
	Version v1r18p20051101 Christian Arnault arnault@lal.in2p3.fr
	General index
	€1 - Presentation
	€2 - The conventions
	€3 - The architecture of the environment
	€3.€1 - Supported platforms

	€4 - Defining and managing projects
	€4.€1 - The project file
	€4.€2 - Projects and strategies
	€4.€3 - CMTPROJECTPATH
	€4.€4 - CMTPATH

	€5 - Installing a new package
	€6 - Localizing a package
	€7 - Assigning semantics to packages. Common practices
	€7.€1 - The primary package
	€7.€2 - The policy package
	€7.€3 - The container or management package
	€7.€4 - The release package
	€7.€5 - The glue or interface package

	€8 - Managing site dependent features - The CMTSITE environment variable
	€9 - Configuring a package
	10 - Selecting a specific configuration
	10.€1 - Describing a configuration
	10.€2 - Defining the user tags
	10.€3 - Activating tags

	11 - Working on a package
	11.€1 - Working on a library
	11.€2 - Working on an application
	11.€3 - Working on a test or external application

	12 - Defining a document generator
	12.€1 - An example : the tex document-style
	12.€2 - How to create and install a new document style
	12.€3 - Examples

	13 - The tools provided by CMT
	13.€1 - The requirements file
	13.€1.€1 - The general requirements syntax

	13.€2 - The concepts handled in the requirements file
	13.€2.€1 - The package structuring style
	13.€2.€2 - Meta-information : author, manager
	13.€2.€3 - package, version
	13.€2.€4 - Constituents : application, library, document
	13.€2.€5 - Groups
	13.€2.€6 - Languages
	13.€2.€7 - Symbols
	13.€2.€7.€1 - actions

	13.€2.€8 - use
	13.€2.€9 - patterns
	13.€2.€9.€1 - Applying a pattern

	13.€2.10 - cmtpath_patterns
	13.€2.11 - branches
	13.€2.12 - Strategy specifications
	13.€2.13 - setup_script, cleanup_script
	13.€2.14 - include_path
	13.€2.15 - include_dirs
	13.€2.16 - make_fragment
	13.€2.17 - public, private
	13.€2.17.€1 - Scoping sections

	13.€2.18 - tag, apply_tag

	13.€3 - The general cmt user interface
	13.€3.€1 - Global options of the cmt command
	13.€3.€2 - cmt broadcast
	13.€3.€2.€1 - Specifying the shell command
	13.€3.€2.€2 - Templates in the shell command

	13.€3.€3 - cmt build <option>
	13.€3.€4 - cmt check configuration
	13.€3.€5 - cmt check files <reference-file> <new-file>
	13.€3.€6 - cmt checkout ...
	13.€3.€7 - cmt co ...
	13.€3.€8 - cmt cleanup [-csh|-sh]
	13.€3.€9 - cmt config
	13.€3.10 - cmt create <package> <version> [<area>]
	13.€3.11 - cmt expand model [-strict] <model-string>
	13.€3.12 - cmt filter <in-file> <out-file>
	13.€3.13 - cmt help | --help
	13.€3.14 - cmt lock [<package> <version> [<area>]]
	13.€3.15 - cmt remove <package> <version> [<area>]
	13.€3.16 - cmt remove library_links
	13.€3.17 - cmt run [shell-command]
	13.€3.18 - cmt set version <version>
	13.€3.19 - cmt set versions
	13.€3.20 - cmt setup [-csh|-sh|-bat]
	13.€3.21 - cmt show <option>
	13.€3.22 - cmt system
	13.€3.23 - cmt unlock [<package> <version> [<area>]]
	13.€3.24 - cmt version | --version
	13.€3.25 - cmt cvstags <module>
	13.€3.26 - cmt cvsbranches <module>
	13.€3.27 - cmt cvssubpackages <module>
	13.€3.28 - cmt cvssubprojects <module>

	13.€4 - The setup and cleanup scripts
	13.€5 - cmt build prototype

	14 - Using cvs together with CMT
	14.€1 - Importing a package into a cvs repository
	14.€2 - Checking a package out from a cvs repository
	14.€3 - Querying CVS about some important infos
	14.€4 - Working on a package, creating a new release
	14.€5 - Getting a particular tagged version out of CVS

	15 - Interfacing an external package with CMT
	16 - The installation area mechanism
	16.€1 - The default implementation
	16.€2 - Tuning the installation area mechanisms

	17 - Installing CMT for the first time
	17.€1 - Installing CMT on your Unix site
	17.€2 - Installing CMT on a Windows or Windows NT site

	18 - Appendices
	18.€1 - Copyright
	18.€2 - Standard make targets predefined in CMT
	18.€3 - Standard macros predefined in CMT
	18.€3.€1 - CMT static macros
	18.€3.€2 - Structural macros
	18.€3.€3 - Language related macros
	18.€3.€4 - Package customizing macros
	18.€3.€5 - Constituent specific customizing macros
	18.€3.€6 - Source specific customizing macros
	18.€3.€7 - Generated macros
	18.€3.€8 - Macros related with the installation area mechanisms
	18.€3.€9 - Utility macros

	18.€4 - Standard tags generated by CMT
	18.€5 - Standard templates for makefile fragments
	18.€6 - Makefile generation sequences
	18.€7 - The complete project file syntax
	18.€8 - The complete requirements syntax
	18.€9 - The default strategies defined in CMT
	18.10 - The internal mechanism of cmt cvs operations

	Contents

