source: ETALON/Filters/Doc/Report.tex @ 713

Last change on this file since 713 was 713, checked in by hodnevuc, 7 years ago
File size: 7.8 KB
Line 
1\documentclass[12pt,a4paper,titlepage]{article}
2\usepackage{graphicx}
3\usepackage{hyperref}
4\usepackage[left=2cm,right=2cm,top=1cm,bottom=2cm]{geometry}
5\usepackage[utf8]{inputenc}
6\usepackage[english]{babel}
7\usepackage{wrapfig}
8%\pagestyle{empty}
9\usepackage{graphicx}
10\usepackage{caption}
11\usepackage{float}
12\usepackage{subcaption}
13\usepackage{epstopdf}
14
15\usepackage{tcolorbox}
16\graphicspath{{pics/}{newpics/}}
17
18\begin{document}
19\begin{center}
20\Huge Mesh Filters
21\end{center}
22
23\begin{flushright}
24Khodnevych Vitalii\\
25Nicolas Delerue
26\end{flushright}
27Precise measurements of beam profile with Smith-Purcell radiation require precise measurements of spectrum. To filter background signal from Smith-Purcell radiation we will use inductive mesh filters. Detector unit at each angle will have its own filter, which correspond to emitted wavelength of Smith-Purcell radiation.
28\section{Mesh filters}
29Metal-mesh filters are filters made from metal meshes (see fig. \ref{meshp}). They working diapason is from far infrared to submilimeter regions of the electro-magnetic spectrum. We use inductive mesh filters. That's mean that they are band-pass filters. Transmissivity function is presented on figure \ref{trans}. Using Ulrich’s \cite{mesh} theory we calculate mesh parameters (period, thickness of wire(strip); see fig. \ref{meshp}) for certain frequencies. Example of manufactured filters present on figure \ref{manfilt}.
30
31\begin{figure}[!htb]
32\begin{subfigure}{.5\textwidth}
33  \centering
34  \includegraphics[width=\linewidth]{wiki.PNG}
35  \caption{Inductive and capacitive mesh filters (image source: wikipedia)}
36  \label{meshp}
37\end{subfigure}
38\begin{subfigure}{.5\textwidth}
39
40  \centering
41  \includegraphics[width=0.8\linewidth]{CAM01213.jpg}
42  \caption{Manufactured THz filters of 20, 30 and 50 GHz} 
43  \label{manfilt}
44  \end{subfigure}
45\caption{Mesh filters}
46\end{figure}%
47
48\begin{figure}[!htb]
49\begin{subfigure}{.5\textwidth}
50  \centering
51  \includegraphics[width=\linewidth]{Trans5.eps}
52  \caption{First set of filters with 5x5 cm size}
53  \label{}
54\end{subfigure}
55\begin{subfigure}{.5\textwidth}
56
57  \centering
58  \includegraphics[width=\linewidth]{Trans10.eps}
59  \caption{Second set of filters with 10x10 cm size} 
60  \label{}
61  \end{subfigure}
62\caption{Transmissivity functions of inductive mesh filters}
63  \label{trans}
64\end{figure}%
65
66
67
68
69\section{Experimental check of filter properties}
70To test filters we use setup, as present on figure \ref{exper}. We test filters with two GHz sources: GDO-2510F on 24GHz and SOL-3510-28-G1 on 35 GHz. Setup consist of source (S), chopper with frequency 25 Hz (result dont depend from chopper speed), filter frame (F) with or without filter, and detector (D) with connected Horn anthena (A).
71\begin{figure}[!htb]
72  \centering
73  \includegraphics[width=0.7\linewidth]{CAM01210b.jpg}
74  \caption{Experimental setup: S - GHz source, C - chopper (25 Hz), F - frame for filter, A - Gain Horm Anthena (GHA-28), D - detector (DET-28S)}
75  \label{exper}
76\end{figure}%
77To acquire the signal we use RTM 2054 Oscilloscope. We measure peak-to-peak voltage (Vpp) on detector. \par 
78Order of measurements was following: measure Vpp without filter; install filter and measure Vpp with filter. Ratio with and without of Vpp gives Trasmissivity for current filter.\par 
79Due to big wavelength position of parts of experimental setup play big role. For example some inroduce of some part could change diffraction pattern and signal on detector could increase or decrease. This will be discussed later.\par 
80We make few sets of measurement in different configuration of experimental setup (see fig \ref{24g}). Result of measurements strongly depend from position on line of experimental tools (detector, filter etc).
81We make three sets of measurements (Data set 3) for 24 GHz source (see fig. \ref{24g}) and conclude, that they are quite reproducible for current setup. Also we make measurements with and without horn anthena for 35 GHz source (see fig. \ref{35g}). Change of results was caused by diffraction in plane of detectors anthena and necessity of usage near-field approach.\par
82
83 
84
85
86
87\begin{figure}[!htb]
88\begin{subfigure}{.5\textwidth}
89  \centering
90  \includegraphics[width=\linewidth]{BigF24.eps}
91  \caption{Transmissivity of filters for 24 GHz source}
92  \label{24g}
93\end{subfigure}
94\begin{subfigure}{.5\textwidth}
95
96  \centering
97  \includegraphics[width=\linewidth]{BigF35.eps}
98  \caption{Transmissivity of filters for 35 GHz source}
99  \label{35g}
100  \end{subfigure}
101\caption{Experimental results}
102\end{figure}%
103
104To understand effect of diffraction, we change filter frame position wiht step 0.5 and measure transmissivity for filters. Results are presented on figure \ref{map}. We clearly see that pattern with me measure repeat with step equal of half source wavelength. We find from this data that corresponding source frequency equal $2.34\pm0.24$ GHz with given in documentation of source 24 GHz. On figure \ref{Tmap} present transmissivity of filters form maximum to minimum. Why transmissivity is changing is not clear yet.
105
106\begin{figure}[!htb]
107\begin{subfigure}{.5\textwidth}
108  \centering
109  \includegraphics[width=\linewidth]{BigMAP.eps}
110  \caption{}
111  \label{map}
112\end{subfigure}
113\begin{subfigure}{.5\textwidth}
114
115  \centering
116  \includegraphics[width=\linewidth]{BigF24Difr.eps}
117  \caption{}
118  \label{Tmap}
119  \end{subfigure}
120\caption{Experimental results: Trasmissivity as function of filter position}
121\end{figure}%
122
123To be able avoid diffraction effects we construct other setup, where we place components as close, as possible to each other. Also we install 1 inch tube in between chopper and filter. \par 
124\begin{figure}[!htb]
125  \centering
126  \includegraphics[width=0.7\linewidth]{CAM01236.jpg}
127  \caption{Experimental setup \#2}
128  \label{}
129\end{figure}%
130
131Due to unknown spectral characteristics of detector and both sources, we could not compare experimental results with our calculation, but can assume gaussian spectrum of the source and flat frequency sensitivity of detector.
132With new setup we repeat measurement for both sets of filters and and both sources we have. Results are present on figures \ref{compB} and fig. \ref{compS}. We still don't have good agreement with 20-50 GHz filters (see fig. \ref{compB}), which was caused due to near-field effects, we suspect.\par
133
134\begin{figure}[!htb]
135\begin{subfigure}{.5\textwidth}
136  \centering
137  \includegraphics[width=\linewidth]{Bg24.eps}
138  \caption{}
139  \label{}
140\end{subfigure}
141\begin{subfigure}{.5\textwidth}
142
143  \centering
144  \includegraphics[width=\linewidth]{Bg35.eps}
145  \caption{}
146  \label{}
147  \end{subfigure}
148\caption{Experimental results: big filters}
149  \label{compB}
150\end{figure}%
151
152
153
154But we have good agreement of calculation and experiment for other set of filters (see fig. \ref{compS}). With small correction of filter impedance, agreement even better for both sources.
155
156
157
158
159\begin{figure}[!htb]
160\begin{subfigure}{.5\textwidth}
161  \centering
162  \includegraphics[width=\linewidth]{Sm24.eps}
163  \caption{}
164  \label{}
165\end{subfigure}
166\begin{subfigure}{.5\textwidth}
167
168  \centering
169  \includegraphics[width=\linewidth]{Sm35.eps}
170  \caption{}
171  \label{}
172  \end{subfigure}
173\caption{Experimental results: small filters}
174  \label{compS}
175
176\end{figure}%
177\newpage
178\section*{Conclusion}
179Experimental check of filter properties gives good agreement between calculation and data for small filters.% Difference in experiment and calculation for big filters (20-50 GHz) could be caused by the long wavelength for which filters was designed or too small a/g ratio. For small filters data  and experiment agreed,
180So this code could be used for calculation filters for Smith-Purcell experiment at CLIO.
181
182\begin{thebibliography}{9}
183
184\bibitem{mesh}
185  R. Ulrich,
186  \emph{Far-infrared properties of metallic mesh and its complement-
187ary structure}, Infrared Physics, Vol. 7, pp. 37-55, Pergamon Press Ltd.
1881967, Printed in Great Britain.
189 
190
191\end{thebibliography}
192
193
194
195
196
197
198
199\end{document}
Note: See TracBrowser for help on using the repository browser.