source: ETALON/papers/2016_HDR_ND/presentation/talk_HDR_Nicolas_Delerue.tex @ 758

Last change on this file since 758 was 758, checked in by delerue, 6 years ago

HDR - presentation pour la soutenance, version finale

File size: 33.0 KB
Line 
1\documentclass{beamer}
2
3\usepackage{siunitx}
4\usepackage{graphicx}
5\usepackage[latin1]{inputenc} 
6\usepackage{multirow}
7 \usepackage{beamerthemesplit} %// Activate for custom appearance
8%\usepackage{tcolorbox}
9%\usepackage{lipsum}
10\usepackage{color}
11%\usepackage{feynmf}
12
13%\usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue,
14%            citecolor=blue, urlcolor=blue]{hyperref}
15
16\definecolor{shirtblue}{RGB}{151, 198, 219}
17\definecolor{myblue}{RGB}{151, 198, 219}
18\definecolor{emeraldgreen}{RGB}{80, 200,  120}
19\definecolor{redcomplement}{RGB}{200, 80, 190}
20\beamerboxesdeclarecolorscheme{snouf}{emeraldgreen}{black}
21\setbeamercolor{snouf}{bg=emeraldgreen,fg=black} 
22
23%\setbeamertemplate{footline}[frame number]
24    \expandafter\def\expandafter\insertshorttitle\expandafter{%
25       \insertshorttitle\hfill%
26       \insertframenumber\,/\,\inserttotalframenumber}
27
28\AtBeginSection[]
29{
30  \begin{frame}<beamer>
31  \small
32    \frametitle{Outline}
33    \tableofcontents[currentsection]
34  \end{frame}
35}
36
37
38
39\title{Interactions between lasers and electrons}
40\author{Nicolas DELERUE}
41\date{30th March 2018}
42
43\begin{document}
44
45\frame{\titlepage}
46
47%\section[Outline]{}
48\frame{\tableofcontents}
49
50
51
52\section{Introduction}
53
54\subsection{This is the work of a team}
55
56\frame
57{
58  \frametitle{This is the work of a team}
59
60  \begin{itemize}
61  \item The experiments I will present are complex.
62  \item The results presented are the work of teams and I can not mention all contributors.
63  \item I want to stress that important contributions have been made by engineers and technicians who helped build the experiments.
64  \item Also, undergraduate project students, interns and graduate students have also played a key role.
65  \end{itemize}
66 
67 
68  \hfill 
69 \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=7cm]{}
70 I will mention the name of a few students \\ who have made important contributions.
71 \end{beamerboxesrounded}
72
73  }
74
75
76
77\subsection{Interaction between lasers and electrons}
78
79\frame
80{
81  \frametitle{Interaction between lasers and electrons at \ang{90}}
82
83\begin{center}
84\includegraphics[height=4.cm]{electron_laser_Compton_90.png}
85\end{center}
86
87  \begin{itemize}
88  \item Electrons and laser can interact at \ang{90}.
89  \item This interaction will produce X rays (or $\gamma$ rays).
90  \item Measure the beam profile  (``laser-wire'').
91  \end{itemize}
92}
93
94
95\frame
96{
97  \frametitle{Interaction between lasers and electrons at \ang{180}}
98
99\begin{center}
100\includegraphics[height=4.cm]{electron_laser_Compton_180.png}
101\end{center}
102
103  \begin{itemize}
104  \item Electrons and laser can interact at \ang{180}.
105  \item This interaction will produce higher energy X rays (or $\gamma$ rays).
106  \item Intense source of photons at wavelength difficult to reach.
107  \item MightyLaser and ThomX. 
108  \end{itemize}
109}
110
111
112\frame
113{
114  \frametitle{Interaction between lasers and electrons at \ang{0}}
115
116\begin{center}
117\includegraphics[height=4.cm]{electron_laser_ALP.png}
118\end{center}
119\vspace*{-12mm}
120  \begin{itemize}
121  \item Electrons and laser can propagate in the same direction through a plasma.
122  \item The laser will transfer some of its energy to the electrons.
123  \item The electrons will be accelerated.
124  \item Astra-Gemini, DACTOMUS and LASERIX.
125  \end{itemize}
126}
127
128
129\frame
130{
131  \frametitle{Interaction between lasers and electrons}
132
133\begin{center}
134\includegraphics[height=4.cm]{electron_laser_all.png}
135\end{center}
136
137  \begin{itemize}
138  \item Most of the studies I will present today were related to interactions between lasers and electrons.
139  \end{itemize}
140}
141
142
143\frame
144{
145  \frametitle{Other work}
146
147\begin{center}
148\includegraphics[height=4.cm]{electron_laser_other.png}
149\end{center}
150
151  \begin{itemize}
152  \item I will not cover some of the work I did in high energy physics.
153  \item I will also not cover some work related accelerator technology the I did early in my career (mostly at KEK).
154  \end{itemize}
155}
156
157
158
159
160
161\subsection{The tools: Particle Accelerators and lasers}
162\frame
163{
164  \frametitle{Particle accelerators}
165
166  \includegraphics[width=5.2cm]{../Introduction/livingston_e} \hspace{0.2cm}
167    \includegraphics[width=5.2cm]{../Introduction/livingston_p}
168
169  \begin{itemize}
170  \item Particle accelerators have been a key driver for particle and nuclear physics.
171  \item During the XXth century they have steadily grown in size and in energy.
172  \end{itemize}
173}
174
175
176\frame
177{
178  \frametitle{Particle accelerators}
179
180\begin{columns}
181\begin{column}{0.59\textwidth}
182  \includegraphics[height=1.cm]{Cyclotron-1440x810.jpg} \hspace{0.1cm}
183  \includegraphics[height=1.3cm]{ACO.jpeg} \hspace{0.1cm}
184  \includegraphics[height=1.6cm]{LHC_aerial.jpg} 
185  \small
186    \begin{itemize}
187  \item One of the earliest accelerator could fit in the palm of a hand.
188  \item The world largest collider is \SI{27}{km} in circumference.
189  \item Until year 1989 colliders doubled in circumference approximately every two years.
190  \item However this trend has stopped.
191  \end{itemize}
192    \hfill 
193 \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=7.0cm]{}
194\tiny{Anne-Fleur Barfuss (M2): \em{Heritage of High Energy Physics Experiments}} 
195 \end{beamerboxesrounded}
196
197\end{column}
198\begin{column}{0.45\textwidth}
199  \includegraphics[width=5.2cm]{../Introduction/livingston_size} 
200\end{column}
201\end{columns}
202}
203
204
205
206\frame
207{
208  \frametitle{Lasers}
209
210\begin{columns}
211\begin{column}{0.6\textwidth}
212  \includegraphics[width=7cm]{History_of_laser_intensity_svg.png} 
213  \\ \tiny{Image source: Wikipedia}
214
215\end{column}
216\begin{column}{0.5\textwidth}
217  \begin{itemize}
218  \item The first experimental demonstration of a laser was in 1960.
219  \item The introduction of Chirped Pulse Amplification (CPA) in the 1980s has allowed significant progress in peak intensity.
220  \item More recently fiber lasers have allowed efficiency gains.
221  \end{itemize}
222\end{column}
223\end{columns}
224
225}
226
227\subsection{Laser-plasma acceleration}
228
229\frame
230{
231  \frametitle{Laser-plasma acceleration}
232
233 
234\begin{columns}
235\begin{column}{0.5\textwidth}
236  \begin{itemize}
237  \item Laser-Plasma acceleration was first proposed in 1979.
238  \item The first important results were achieved in the 1990s.
239  \item The latest published results show that electrons have been accelerated to energies of more than \SI{4}{GeV} over a few cm.
240  \item Higher energies have been reported at conferences.
241  \end{itemize}
242\end{column}
243\begin{column}{0.6\textwidth}
244  \includegraphics[width=5.2cm]{../Introduction/livingston_plasma} 
245\end{column}
246
247\end{columns}
248}
249
250\frame
251{
252  \frametitle{Laser-plasma vs colliders}
253
254  \includegraphics[width=5.2cm]{../Introduction/livingston_plasma} 
255  \includegraphics[width=5.2cm]{../Introduction/livingston_e}
256
257  \begin{itemize}
258  \item Although the trend in energy gain for plasma accelerators is impressive, it must be compared to colliders energy with care.
259  \item Laser-plasma accelerators: maximum energy reached.
260  \item Colliders: energy of two stable high current beams.
261  \item There is a long way from one to the other.
262  \end{itemize}
263
264}
265
266
267
268\frame
269{
270  \frametitle{Laser-plasma collider}
271
272 \begin{center}
273  \includegraphics[width=7cm]{plasma_collider.jpg} \\
274{\tiny \url{https://physicstoday.scitation.org/doi/10.1063/1.3099645}}
275 \end{center}
276
277  \begin{itemize}
278  \item A concept of particle collider based on plasma accelerators has nevertheless been proposed.
279  \item However several issues need to be addressed: staging, stability, charge, repetition rate.
280  \end{itemize}
281
282}
283
284
285
286
287
288\section{Compton scattering}
289\subsection{Theory of Compton scattering}
290
291\frame
292{
293  \frametitle{Theory of Compton scattering}
294
295\begin{center}
296\includegraphics[height=2.cm]{compton_scattering_feynman_cropped.png}
297\end{center}
298\vspace*{-0.3cm}
299\begin{equation}
300\nu_o \simeq  \nu_i [ 2 \gamma^2  ( 1 +    \cos \theta_o) ] \nonumber
301\end{equation}
302
303  \begin{itemize}
304  \item Inverse Compton scattering occurs between an electron and a photon.
305  \item The energy is transferred from the high energy particle (electron in our case) to the low energy particle (photon).
306  \item But the cross section is low ($\sigma_T \simeq \SI{6.65  e-29}{\meter^{2}}$).
307  \item ${\cal P}_{\mbox{scat}} = {\cal L} \times \sigma_T = 2.12 \times 10^{-24}$ per $e^-$ and $\gamma$  \\ for a \SI{25}{\micro m} x \SI{10}{\micro m} interaction area.
308  \end{itemize}
309
310}
311
312\subsection{Laser-wire}
313
314\frame
315{
316  \frametitle{Laser-wire}
317
318\begin{center}
319\includegraphics[height=2.5cm]{Schematic-layout-of-the-laser-wire.png}
320\includegraphics[height=2.5cm]{laser-wire-scan.png}
321\end{center}
322
323  \begin{itemize}
324  \item Compton scattering can be used to probe the transverse profile of an electron beam.
325  \item Unlike a normal wire-scanner the wire of a laser-wire is unbreakable.
326  \item The laser can be focussed to a very small size.
327  \item I made several contributions to the UK laser-wire activity.
328  \end{itemize}
329
330}
331
332\frame
333{
334  \frametitle{Lens design}
335
336\begin{center}
337  \includegraphics[height=2.7cm]{../Compton/20050615_2micrometres_no1ghost.eps}
338  \includegraphics[height=2.7cm]{../Compton/20050615_2micrometres_no1ghost_diff.eps}
339  \includegraphics[height=2.7cm]{lens_Alice_Mulin.png}
340\end{center}
341
342\tiny
343  \begin{itemize}
344  \item Micrometer accuracy is needed to allow an optimum tonight of the ILC.
345  \item This requires a very challenging focussing system.
346  \item I designed and tested such a system for the ATF laser-wire.
347  \item Later an improved design was reached with a student.
348  \end{itemize}
349 
350   \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.5cm]{}
351\tiny{Alice Mulin (IFIPS): \em{Optical design F/1 lens}} 
352 \end{beamerboxesrounded}
353
354
355}
356
357\frame
358{
359  \frametitle{ATF Laser-wire}
360
361\begin{columns}
362\begin{column}{0.7\textwidth}
363\begin{center}
364\includegraphics[height=2cm]{../Compton/atf_lw_layout.png} 
365\end{center}
366  \begin{itemize}
367  \item The ATF laser-wire was a demonstrator for ILC laser-wire.
368  \item Sub-micrometer beam size resolution was demonstrated.
369  \end{itemize}
370   \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=6.5cm]{}
371\tiny{Laurent Millischer (Central Paris), Myriam Qershi (D.Phil Oxford)} 
372 \end{beamerboxesrounded}
373\end{column}
374\begin{column}{0.4\textwidth}
375\begin{center}
376\vspace*{-1cm}
377\includegraphics[height=2.6cm]{../Compton/laserwire_layout.png} \\
378\vspace*{0.3cm}
379\includegraphics[height=2.6cm]{ATF_lw_scan.png}
380\end{center}
381
382\end{column}
383
384\end{columns}
385
386
387}
388
389
390\subsection{MightyLaser}
391
392\frame
393{
394  \frametitle{The MightyLaser experiment}
395
396\vspace*{-0.5cm}
397
398\begin{center}
399\includegraphics[height=2.5cm]{Image_cavite_mighty_laser.png}
400\hspace{0.5cm}
401\includegraphics[height=2.5cm]{electron_laser_Compton_180.png}
402\end{center}
403
404  \begin{itemize}
405  \item The aim of the MightyLaser experiment, also at the KEK ATF was to demonstrate $\gamma$-rays production with a Fabry-Perot cavity.
406  \item This has the advantage of requiring a much lower laser power as photons cross several thousand times the electron beam.
407  \item I joined the project when most of the hardware had been built.
408  \item I took the lead of the experimental campaigns in Japan.
409  \end{itemize}
410
411}
412
413\frame
414{
415  \frametitle{First experimental campaign}
416
417%\vspace*{-0.5cm}
418
419\begin{center}
420\includegraphics*[height=3cm]{../Compton/screenshot_data_taking_long473.png}  \hspace{1cm}
421\includegraphics*[height=3cm]{../Compton/14122010_file_data_locked2_3.pdf} 
422\end{center}
423
424  \begin{itemize}
425  \item The first experimental campaign demonstrated the principle.
426  \item We were rather fast to find laser-electrons overlap.
427  \item Some minor issues were identified and had to be addressed during a second experimental campaign.
428  \end{itemize}
429
430   \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.2cm]{}
431\tiny{Iryna Chaikovska (PhD U-Psud)} 
432 \end{beamerboxesrounded}
433
434}
435
436\frame
437{
438  \frametitle{Second experimental campaign}
439
440%\vspace*{-0.5cm}
441
442\begin{center}
443\includegraphics*[height=3cm]{../Compton/screenshot_long_data_taking8.png} 
444\includegraphics*[height=3cm]{../Compton/lifetime.png} 
445\end{center}
446
447\small
448  \begin{itemize}
449  \item The second experimental campaign was significantly delayed by the 2011 earthquake.
450  \item The intracavity laser power was significantly increased (to \SI{35}{kW}).
451  \item Some thermal effect due to the power stored in the cavity were observed.
452  \item Effect on the electron beam and its lifetime.
453  \end{itemize}
454
455}
456
457
458
459\subsection{ThomX}
460
461\frame
462{
463  \frametitle{The ThomX project}
464
465 \begin{center}
466  \includegraphics[width=7cm]{thomX.png} 
467 \end{center}
468
469  \begin{itemize}
470  \item The MightyLaser experiment can be seen as a demonstrator for a compact X-ray source to be built in Orsay: ThomX.
471%  \item This project is based on a \SI{50}{MeV} electron ring.
472  \item My contribution to this project is the diagnostics, the synchronization system and some beam dynamics studies.
473  \end{itemize}
474
475}
476
477\frame
478{
479  \frametitle{The ThomX project}
480
481 \begin{center}
482  \includegraphics[width=11cm]{thomX.png} 
483 \end{center}
484}
485
486\frame
487{
488  \frametitle{Beam dynamics in ThomX}
489
490\vspace*{-2mm}
491 \begin{center}
492    \begin{tabular}{ccc}
493    \includegraphics*[width=28mm]{../Compton/WEPRO001f3.png}  &
494    \includegraphics*[width=28mm]{../Compton/WEPRO001f4.png}  &
495    \includegraphics*[width=28mm]{../Compton/WEPRO001f5.png} \\
496    \includegraphics*[width=28mm]{../Compton/WEPRO001f6.png}  &
497    \includegraphics*[width=28mm]{../Compton/WEPRO001f7.png} &
498    \includegraphics*[width=28mm]{../Compton/WEPRO001f8.png} 
499   \end{tabular}
500 \end{center}
501 \vspace*{-5mm}
502
503 
504   \begin{itemize}
505  \item The accelerator is foreseen to operate at \SI{50}{MeV} (at the beginning).
506  \item At injection the bunches coming from the linac expand turbulently in the much wider RF buckets from the ring.
507  \end{itemize}
508
509    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
510\tiny{Illya Drebot (PhD U-Psud)} 
511 \end{beamerboxesrounded}
512
513}
514
515
516\frame
517{
518  \frametitle{Beam dynamics in ThomX: unstable bunches}
519
520\begin{columns}
521\begin{column}{0.6\textwidth}
522%\vspace{30mm}
523    \includegraphics[width=70mm]{../Compton/WEPRO001f9.eps}\\
524    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
525\tiny{Illya Drebot (PhD U-Psud)} 
526 \end{beamerboxesrounded}
527\end{column}
528\begin{column}{0.5\textwidth}
529    \includegraphics*[width=50mm]{../Compton/WEPRO001f10.png}
530   \begin{itemize}
531  \item Collective effects can be strong enough to destroy the bunch.
532  \item Strategies to mitigate these effects will be studied soon.
533  \end{itemize}
534
535\end{column}
536
537\end{columns}
538}
539
540
541\subsection{Synchronizing lasers and accelerators}
542
543\frame
544{
545  \frametitle{Synchronizing lasers and accelerators}
546\centering
547    \includegraphics[width=30mm]{../Compton/freqs_heterodyne.png}\\
548   \begin{itemize}
549  \item Several time during my career I have faced the problem of a pulsed laser having to be operated together with an accelerator.
550  \item The laser frequency is set by its oscillator and the accelerator frequency is set by the RF.
551  \item However for them to work together the laser pulse must be sent exactly when the electron pulse comes with picosecond accuracy.
552  \item This requires a synchronization system.
553  \end{itemize}
554   
555}
556
557\frame
558{
559  \frametitle{Heterodyne synchronisation}
560
561\centering
562    \includegraphics*[width=80mm]{../Compton/montage_heterodyne_thomX_AD8611.png}
563
564 \begin{columns}
565\begin{column}{0.4\textwidth}
566    \includegraphics[width=50mm]{THPAB093f3a.png}\\
567\end{column}
568\begin{column}{0.6\textwidth}
569   \begin{itemize}
570  \item In ThomX, the linac and the ring also use different frequencies.
571  \item An heterodyne synchronisation scheme has been developed and is also used in ESCULAP.
572  \end{itemize}
573   
574  \hfill 
575    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
576\tiny{Heidi R\"{o}sch (M1 Darmstadt)} 
577 \end{beamerboxesrounded}
578
579
580\end{column}
581\end{columns}
582
583
584}
585
586
587\frame
588{
589  \frametitle{The ThomX synchronisation scheme}
590
591\centering
592\vspace*{-1mm}
593    \includegraphics*[width=75mm]{20171219_ThomX_synchronisation_scheme_with_nomenclature.jpg}
594
595\vspace*{-3mm}
596\hfill\begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.8cm]{}
597\tiny{Clément Godfrin (Magistère 1 U-Psud), \\ Naomi Chmielewski and Karim Khaldi (L2 U-Psud)} 
598 \end{beamerboxesrounded}
599
600}
601
602\section{Advanced diagnostics and plasma acceleration}
603
604\frame
605{
606  \frametitle{Motivation for single shot measurements}
607
608\centering
609\vspace*{-1mm}
610    \includegraphics*[width=90mm]{1_4817747_figures_f9.png}\\
611{\tiny \url{https://aip.scitation.org/doi/full/10.1063/1.4817747}}
612
613  \begin{itemize}
614  \item Laser-plasma accelerators are not as stable as conventional accelerators.
615  \item To be meaningful measurements must be done in a single shot.
616  \item Hence I have worked on several single shot diagnostics.
617  \end{itemize}
618}
619\subsection{Single shot emittance measurement}
620
621
622\frame
623{
624  \frametitle{Single shot emittance measurement: Pepper-pot}
625
626
627 \begin{columns}
628\begin{column}{0.6\textwidth}
629   \begin{itemize}
630  \item Pepper-pots are conventionally used to measure single shot transverse emittance at low energy.
631  \item I studied how thicker pepper-pot can work at higher energy.
632  \end{itemize}
633   
634  \hfill 
635    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=5.5cm]{}
636\tiny{Joe Hewlett, Michael McCann (BA and MPhys Oxford)} 
637 \end{beamerboxesrounded}
638\end{column}
639\begin{column}{0.4\textwidth}
640\begin{center}
641\includegraphics[width=40mm]{../Advanced_diags/thin_pepper_pot_diagram.eps}\\
642\includegraphics[width=20mm]{../Advanced_diags/pepper_pots_teaching_accelerator_cropped.jpg}
643\end{center}
644\end{column}
645\end{columns}
646
647\centering
648 \includegraphics[width=40mm]{../Advanced_diags/depth_summary_200MeV.eps}\hspace{10mm}
649\includegraphics[width=40mm]{../Advanced_diags/depth_summary_1GeV.eps}
650
651}
652
653\frame
654{
655  \frametitle{Pepper-pots at high energy}
656
657 \begin{columns}
658\begin{column}{0.4\textwidth}
659   \begin{itemize}
660  \item It was important to check that the thickness did not affect the phase-space.
661  \item This was done by calculations and GEANT4 simulations.
662  \end{itemize}
663   
664
665%  \hfill
666    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
667\tiny{Joe Hewlett (MPhys Oxford)} 
668 \end{beamerboxesrounded}
669\end{column}
670\begin{column}{0.6\textwidth}
671
672\centering
673\includegraphics[width=50mm]{../Advanced_diags/pepper_pot_diagram_pos.eps} \\
674\includegraphics[width=50mm]{../Advanced_diags/sheared_4ellipse_no_var.eps} \\
675\vspace*{-20mm}
676\includegraphics[width=34mm]{../Advanced_diags/acceptance_Air_Ta_sx50um_sxp05mrad_l10_ws50um_gp100um_xpm1_1E5_E1000_05_clean.eps}
677\includegraphics[width=34mm]{../Advanced_diags/acceptance_Air_Ta_sx50um_sxp05mrad_l50_ws50um_gp100um_xpm1_1E5_E1000_05_clean.eps} \\
678\end{column}
679\end{columns}
680
681}
682
683
684
685\frame
686{
687  \frametitle{Pepper-pot experiments}
688\centering
689\begin{tabular}{ccc} 
690&  \includegraphics[height=25mm,angle=270]{../Advanced_diags/figure4.eps} \vspace*{-29mm}   & \\ 
691& &
692\tiny
693 \begin{tabular}{c}
694Frascati \\ Beam Test Facility \\  \SI{508}{MeV} \\     \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
695\tiny{Nick Shipman (MPhys Oxford)} 
696 \end{beamerboxesrounded}
697\end{tabular}  \vspace*{-14mm}  \\
698\includegraphics[height=28mm]{../Advanced_diags/runrun1_PP_shot100_10d_despeckle_cropped2.jpg}  & & 
699\end{tabular}
700
701
702\centering
703\begin{tabular}{ccc} 
704 \includegraphics[width=35mm]{../Advanced_diags/DLS_PP_image.png}\hspace{3mm} &
705\includegraphics[width=35mm]{../Advanced_diags/DLS_PP_diag.png} & 
706\tiny
707 \begin{tabular}{c}
708\vspace*{-20mm} \\
709 DIAMOND \\ Booster to Synchrotron line\\ \SI{3}{GeV}\\
710 \end{tabular}
711 \end{tabular}
712
713
714}
715
716
717\frame
718{
719  \frametitle{Single shot emittance measurement: OTRs}
720
721\centering
722\includegraphics[width=35mm]{Transition_radiaton.png} \hspace*{20mm}
723\includegraphics[width=60mm]{../Advanced_diags/layout3.eps}
724
725
726  \begin{itemize}
727  \item Another technique that was considered was to use Optical Transition Radiation screens to measure the beam size at several locations.
728  \item This requires to check the scattering induced by a screen to ensure that it does not affect the measurement.
729  \end{itemize}
730}
731
732\frame
733{
734  \frametitle{Scattering in a screen: calculations}
735
736
737%\centering
738%\includegraphics[width=60mm]{../Advanced_diags/layout3.eps}
739
740  \begin{itemize}
741  \item Derivation of the product scattering angle and particle energy:
742{\tiny
743  \begin{equation}
744p \theta_0 = \frac{13.6\mbox{ MeV}}{\beta c } \sqrt{\frac{x}{X_0}} \left[ 1+ 0.038 ln\left(\frac{x}{X_0}  \right)\right] \nonumber
745\end{equation}}
746  \item Example: \SI{10}{\micro m} Aluminium: $p\theta_0=\SI{139}{MeV.mrad}$
747  \item This allows to estimate the size limit for the scattering to be negligible:
748  {\tiny
749    \begin{equation}
750\sigma_0 << N_{\mbox{screens}} \frac{\epsilon_n}{\gamma \frac{  p \theta_0}{p}}  \nonumber
751\end{equation}}
752\item For \SI{10}{\micro m} Aluminium and $\epsilon_N=\SI{1}{mm.mrad}$ this gives \SI{0.9}{mm}.
753  \end{itemize}
754 
755\hfill  \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
756\tiny{Howat Duncan (MPhys Oxford)} 
757 \end{beamerboxesrounded}
758}
759
760
761
762\frame
763{
764  \frametitle{Scattering in a screen: Simulations}
765
766
767\centering
768\includegraphics[width=60mm]{../Advanced_diags/2008_12_02_041012_21104_Run1_fit.eps}
769\includegraphics[width=60mm]{../Advanced_diags/2008_12_02_042510_21454_Run1_fit.eps}
770
771  \begin{itemize}
772  \item Geant4 simulations were made to validate the simulations.
773  \end{itemize}
774 
775  \hfill
776    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
777\tiny{Stuart Moulder (MPhys Oxford)} 
778 \end{beamerboxesrounded}
779
780}
781
782
783\frame
784{
785  \frametitle{Single emittance measurement with OTRs}
786
787
788 \begin{columns}
789\begin{column}{0.6\textwidth}
790   \begin{itemize}
791  \item An experiment was done at the DIAMOND light source to check the result.
792  \item Beam size measured was not significantly affected by upstream screens.
793  \end{itemize}
794 
795      \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.cm]{}
796\tiny{Bas-Jan Zandt (MPhys Eindhoven)} 
797 \end{beamerboxesrounded}
798
799\end{column}
800 \begin{column}{0.4\textwidth}
801 \includegraphics[width=40mm]{../Advanced_diags/DLS_beamline.png} \\
802\includegraphics[width=40mm]{../Advanced_diags/multiple_OTR_DLS.png}
803
804\end{column}
805\end{columns}
806
807}
808
809\frame
810{
811  \frametitle{Single emittance measurement with OTRs: results}
812
813\centering
814 \includegraphics[width=55mm]{DLS_OTR_Results.png}
815 
816 \small
817   \begin{itemize}
818  \item The measurements were done in a highly dispersive area, so this had to be taken into account to reconstruct the correct transverse emittance value.
819  \item After correction the transverse emittance measured by this method was very close from the value measured by quadrupole scanning.
820  \end{itemize}
821 
822}
823
824\frame
825{
826  \frametitle{Single emittance measurement with OTRs: interferences}
827
828\centering
829 \includegraphics[width=40mm]{../Advanced_diags/OTR_images_DIAMOND.png}
830 
831 
832   \begin{itemize}
833  \item Concerns were expressed about interferences in the OTR formation zone.
834  \item The images we recorded did not show any such interference.
835  \item Interferences would be visible for single wavelength but smeared out for large bandwidth.
836  \item An experiment is planned at CLIO to study this further.
837  \end{itemize}
838 
839}
840
841
842\frame
843{
844  \frametitle{Phase space shearing}
845
846\centering
847 \includegraphics[width=60mm]{phase_space_shearing.png}
848 
849   \begin{itemize}
850  \item Issue: at LPA the beam has a very large divergence but a very small size.
851  \item Refocussing is needed but dispersion may affect the beam size.
852  \end{itemize}
853 
854}
855
856
857
858\subsection{Single shot longitudinal profile measurement}
859
860\frame
861{
862  \frametitle{Coherent Smith-Purcell Radiation}
863
864\centering
865\includegraphics[height=3.6cm]{../Advanced_diags/smith_purcell_first_image} 
866\includegraphics[height=3.6cm]{../Advanced_diags/grating_radiation.pdf} 
867
868  \begin{itemize}
869  \item Bunch length measurement is a challenge for ultra-short bunches.
870  \item One possibility for single shot measurements is to use the coherent radiative phenomena.
871  \item Coherent Smith-Purcell Radiation (CSPR) is one of such phenomena.
872  \end{itemize}
873}
874
875\frame
876{
877  \frametitle{CSPR: Bunch profile reconstruction}
878
879\centering
880\includegraphics[height=3.6cm]{../Advanced_diags/shape_profile.eps} 
881\includegraphics[height=3.6cm]{../Advanced_diags/shape_comparison.eps} 
882
883  \begin{itemize}
884  \item In CSPR the bunch longitudinal profile is encoded in the spectrum distribution of the radiation emitted.
885  \item Bunch with different profiles will have different spectrum.
886  \end{itemize}
887 
888  \hfill
889 
890        \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.5cm]{}
891\tiny{Vitalii Khodnevych (Kyiv National University)} 
892 \end{beamerboxesrounded}
893
894}
895
896
897\frame
898{
899  \frametitle{CSPR: Comparison of models}
900
901\centering
902\includegraphics[height=3.6cm]{../Advanced_diags/MOPMB004f2.png} 
903\includegraphics[height=3.6cm]{../Advanced_diags/MOPMB004f3.png} 
904
905  \begin{itemize}
906  \item There are several different models describing CSPR.
907  \item Although the signal yield may be different this model uncertainty has little influence on the sensitivity to the bunch longitudinal profile.
908  \end{itemize}
909 
910          \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=5.cm]{}
911\tiny{Maksym Malovitsya (Kharkiv National University)} 
912 \end{beamerboxesrounded}
913
914}
915
916
917\frame
918{
919  \frametitle{CSPR: Profile recovery}
920
921\centering
922
923\begin{equation}
924\Theta(\omega_0)  =  \frac{2\omega_0}{\pi} \textit{P}\int^{+ \infty}_{0}\frac{ln(\rho(\omega) )}{\omega_0^2-\omega^2}d\omega \nonumber
925\end{equation}
926
927  \begin{itemize}
928  \item During the measurement process the phase of the beam profile is lost.
929  \item This information can be recovered using an Hilbert transform often by using the Kramers Kronig relations (KK).
930  \item Work to improve this technique in the case of CSPR.
931  \end{itemize}
932 
933          \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.5cm]{}
934\tiny{Richard Tovey (MPhys Oxford)\\Clémentaine Santamaria (Magistère U-Psud) \\Vitalii Khodnevych (Kyiv National University)} 
935 \end{beamerboxesrounded}
936
937 
938}
939
940\frame
941{
942  \frametitle{CSPR: Profile recovery studies}
943
944\centering
945 \begin{tabular}{cccc}
946  \includegraphics*[width=30mm]{../Advanced_diags/plots_11541.eps} &  \includegraphics*[width=30mm]{../Advanced_diags/plots_11658.eps}
947     \includegraphics*[width=30mm]{../Advanced_diags/plots_12231.eps} 
948\end{tabular}
949 \begin{tabular}{cc}
950  \includegraphics*[width=30mm]{../Advanced_diags/plot2210_181.eps} &
951  \includegraphics*[width=30mm]{../Advanced_diags/plot2210_182.eps}
952\end{tabular}
953
954  \begin{itemize}
955  \item  \tiny{In most case the profile is correctly reconstructed (top) but some pathological cases occur (bottom).}
956   \item We checked that the later case is not frequent.
957   \item We also studied the effect of noise.
958  \end{itemize}
959 
960          \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.5cm]{}
961\tiny{Vitalii Khodnevych (Kyiv National University)} 
962 \end{beamerboxesrounded}
963
964 
965}
966
967\frame
968{
969  \frametitle{CSPR: E-203}
970
971\centering
972    \begin{tabular}{ccc}
973\multirow{3}{*}{\includegraphics*[width=50mm]{E-203_setup.png}} & \vspace*{-5mm}   &  \multirow{3}{*}{\includegraphics*[width=34mm,angle=90]{../Advanced_diags/E203_motor_side.JPG}} \\
974 &  \includegraphics*[width=25mm,angle=0]{../Advanced_diags/E203_filters_side.JPG} \\
975  &  \includegraphics*[width=25mm]{../Advanced_diags/E203_carousel.JPG}   
976       \end{tabular}
977
978  \begin{itemize}
979  \item  I took part in several experiment related to CSPR.
980  \item The first of them was E-203 on the FACET accelerator at SLAC.
981  \item \SI{20}{GeV} sub-ps beam.
982  \end{itemize}
983 
984 
985            \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.5cm]{}
986\tiny{Ewen McLean (MPhys Oxford)} 
987 \end{beamerboxesrounded}
988
989
990 
991}
992
993
994\frame
995{
996  \frametitle{CSPR: E-203 results on bunch length}
997
998\centering
999    \begin{tabular}{cc}
1000   \includegraphics*[width=30mm]{../Advanced_diags/E203_high_comp_rho.png}  & 
1001   \includegraphics*[width=30mm]{../Advanced_diags/E203_high_comp_profile.png} \\   
1002   \includegraphics*[width=30mm]{../Advanced_diags/E203_med_comp_profile.png}  & 
1003   \includegraphics*[width=30mm]{../Advanced_diags/E203_low_comp_profile.png} \\   
1004       \end{tabular}
1005
1006\tiny
1007  \begin{itemize}
1008  \item We were able to measure the bunch longitudinal profile for different compression.
1009  \item Unfortunately we did not have the opportunity to make a measurement at the same time than other bunch profile measurement devices.
1010  \end{itemize}
1011 
1012          \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=6.5cm]{}
1013\tiny{Mélissa Vieille Grosjean (PhD U-Psud), Solène Le Corre (ENS Lyon)} 
1014 \end{beamerboxesrounded}
1015
1016 
1017}
1018
1019
1020\frame
1021{
1022  \frametitle{CSPR: E-203 results on polarization}
1023
1024\centering
1025   \includegraphics*[width=50mm]{../Advanced_diags/E203_polar.png} 
1026
1027  \begin{itemize}
1028  \item We also studied the polarization of the radiation.
1029  \item This could have been a promising way of removing the background but the measurement do not agree with the theory.
1030  \end{itemize}
1031 
1032\hfill          \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=4.5cm]{}
1033\tiny{Solène Le Corre, Clément Duval (ENS Lyon)} 
1034 \end{beamerboxesrounded}
1035}
1036
1037
1038\frame
1039{
1040  \frametitle{CSPR: Experiment at SOLEIL}
1041
1042\centering
1043   \includegraphics*[height=30mm]{../Advanced_diags/MOPAB025f1.jpg} 
1044   \includegraphics*[height=30mm]{../Advanced_diags/MOPMB002f5a.png} 
1045   \includegraphics*[height=25mm]{../Advanced_diags/MOPMB002f6.eps} 
1046
1047  \begin{itemize}
1048  \item Another CSPR experiment was done at SOLEIL.
1049  \item The measurement are done by a single detector on a translation stage.
1050  \item The aim of that experiment was to make a map of CSPR.
1051  \end{itemize}
1052 
1053          \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=7.5cm]{}
1054\tiny{Mélissa Vieille Grosjean (PhD U-Psud), Vitalii Khodnevych (M2 U-Psud), \\ Maksym Malovitsya (Kharkiv National University), Geoffrey Bonami (M1 INSTN)} 
1055 \end{beamerboxesrounded}
1056
1057 
1058}
1059
1060
1061\frame
1062{
1063  \frametitle{CSPR: Experiment at CLIO}
1064
1065\centering
1066   \includegraphics*[width=34mm]{../Advanced_diags/MOPAB026f1.jpg}  \hspace*{5mm}
1067   \includegraphics*[width=34mm]{../Advanced_diags/MOPAB026f3.pdf}  \hspace*{5mm} 
1068   \includegraphics*[width=34mm]{../Advanced_diags/Profile1.eps} 
1069
1070  \begin{itemize}
1071  \item To test the detector geometry an experiment has been installed at the CLIO Free Electron Laser in Orsay.
1072  \item We found new techniques to check data consistency.
1073  \end{itemize}
1074 
1075  \hfill      \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.5cm]{}
1076\tiny{Vitalii Khodnevych (M2 U-Psud)} 
1077 \end{beamerboxesrounded}
1078}
1079
1080
1081\subsection{Laser-plasma acceleration: ESCULAP}
1082
1083\frame
1084{
1085  \frametitle{Laser-plasma acceleration: ESCULAP}
1086 
1087  \centering
1088   \includegraphics*[width=60mm]{../Advanced_diags/dogleg.eps}
1089
1090  \begin{itemize}
1091  \item ESCULAP is a laser-plasma acceleration experiment with external injection.
1092  \item It uses the PHIL photo injector and the Laserix High power laser.
1093  \end{itemize}
1094}
1095
1096\frame
1097{
1098  \frametitle{ESCULAP: Layout}
1099 
1100  \centering
1101   \includegraphics*[width=74mm]{figure_PHIL_LASERIX_with_cell_v201801.png}
1102
1103}
1104
1105\frame
1106{
1107  \frametitle{ESCULAP: simulations}
1108 
1109\hspace*{-6mm}
1110  \includegraphics[width=0.28\linewidth]{../Advanced_diags/WEPMY003f5a.png} 
1111  \includegraphics[width=0.28\linewidth]{../Advanced_diags/WEPMY003f5b.png} 
1112 \includegraphics[width=0.28\linewidth]{../Advanced_diags/WEPMY003f5c.png} 
1113  \includegraphics[width=0.28\linewidth]{../Advanced_diags/WEPMY003f5d.png} 
1114 
1115    \begin{itemize}
1116  \item One of the difficulty is that the accelerating volume in the plasma is very small.
1117  \item In one of the scheme considered, the bunch is first compressed by the plasma and then accelerated.
1118  \item This requires a specific profiling of the plasma density.
1119  \end{itemize}
1120
1121
1122
1123}
1124
1125\frame
1126{
1127  \frametitle{ESCULAP: synchronisation}
1128 
1129  \centering
1130   \includegraphics*[width=55mm]{THPAB093f2.png}
1131
1132\small
1133  \begin{itemize}
1134  \item PHIL and Laserix have been built separately.
1135  \item A synchronisation system is necessary to synchronize the two machines.
1136  \end{itemize}
1137 
1138    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
1139\tiny{Heidi R\"{o}sch (M1 Darmstadt)} 
1140 \end{beamerboxesrounded}
1141
1142}
1143
1144\frame
1145{
1146  \frametitle{ESCULAP: compression}
1147 
1148  \centering
1149   \begin{tabular}{cc}
1150\includegraphics*[width=55mm]{../Advanced_diags/dogleg.eps}  &
1151   \includegraphics*[width=55mm]{CSRtrack.eps}
1152   \end{tabular}
1153
1154  \begin{itemize}
1155  \item To match the plasma wavelength the electron bunch must be compressed to less than \SI{100}{fs}.
1156  \item This can be done using a magnetic compression chicane.
1157  \end{itemize}
1158 
1159 
1160      \hfill 
1161    \begin{beamerboxesrounded}[scheme=snouf, shadow=true,lower=snouf, width=3.cm]{}
1162\tiny{Ke Wang (PhD U-PSaclay)} 
1163 \end{beamerboxesrounded}
1164
1165}
1166
1167\frame
1168{
1169  \frametitle{ESCULAP: gas cell}
1170 
1171  \centering
1172   \includegraphics*[width=60mm]{../Advanced_diags/Cellule_1.pdf}
1173
1174  \begin{itemize}
1175  \item We are currently designing a gas cell that will allow to have the density profile we need in the plasma.
1176  \end{itemize}
1177}
1178
1179
1180\frame
1181{
1182  \frametitle{Outlook}
1183 
1184  \begin{itemize}
1185  \item I have  presented some of the topics on which I worked during the past 14 years.
1186  \item Experimental work has always its challenges.
1187  \item In the coming year two major experimental facilities will start in Paris-Saclay: ThomX and the APOLLON laser and I hope that ESCULAP will follow soon after.
1188  \item All of them will be opportunities for interesting experiments!
1189  \end{itemize}
1190}
1191
1192\end{document}
Note: See TracBrowser for help on using the repository browser.