source: ETALON/papers/2016_IPAC/WEPMY003_Plasma_acceleration/WEPMY003.aux @ 593

Last change on this file since 593 was 593, checked in by delerue, 8 years ago

Papier acceleration laser-plasma

File size: 2.4 KB
Line 
1\relax
2\citation{}
3\citation{Gorbunov:1987,Sprangle:1987}
4\citation{PHIL}
5\citation{}
6\select@language{USenglish}
7\@writefile{toc}{\select@language{USenglish}}
8\@writefile{lof}{\select@language{USenglish}}
9\@writefile{lot}{\select@language{USenglish}}
10\@writefile{toc}{\contentsline {section}{Introduction}{1}}
11\@writefile{toc}{\contentsline {subsection}{Plasma acceleration in the linear regime}{1}}
12\@writefile{toc}{\contentsline {subsection}{Proposed experiment}{1}}
13\@writefile{toc}{\contentsline {section}{Simulations}{1}}
14\citation{}
15\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The PHIL beam line. The electrons are produced on the left of the image and travel toward the right. A spectrometer magnet can be seen in the middle of the beam line.\relax }}{2}}
16\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
17\newlabel{PHIL}{{1}{2}}
18\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Scheme of the current LASERIX installation at LAL showing the new high intensity laser beamlines for emerging applications.\relax }}{2}}
19\newlabel{fig:scheme_laserix_lal}{{2}{2}}
20\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The PHIL and Laserix facilities. A small leak from Laserix will be sent on the PHIL photocathode and the reminder will be sent in the plasma chamber.\relax }}{2}}
21\newlabel{PHIL_and_Laserix}{{3}{2}}
22\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Density profile along the plasma axis. The maximum density, $n_{e0}$ is \SI {4e17}{cm^{-3}}.\relax }}{2}}
23\newlabel{fig:plasma_density}{{4}{2}}
24\bibcite{jacow-help}{1}
25\bibcite{IEEE}{2}
26\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Propagation of the the electrons (in black) and the laser (in blue) at different $z$ positions in the plasma. The horizontal axis is the comoving frame (that is the distance of the electrons behind the laser pulse). For the electrons the vertical axis is their energy expressed by their Lorentz factor. For the laser it is the longitudinal accelerating field compared to the maximum field $E_0 = mc \omega _p / e = \SI {608}{MV/cm}$. \relax }}{3}}
27\newlabel{fig:simulations}{{5}{3}}
28\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Energy distribution at the end of the acceleration process.\relax }}{3}}
29\newlabel{fig:energy_dist}{{6}{3}}
30\@writefile{toc}{\contentsline {section}{Conclusions}{3}}
Note: See TracBrowser for help on using the repository browser.