Changeset 516 in ETALON for papers


Ignore:
Timestamp:
Apr 21, 2016, 10:02:56 PM (8 years ago)
Author:
delerue
Message:

CLIO paper updated

Location:
papers/2016_IPAC
Files:
6 edited

Legend:

Unmodified
Added
Removed
  • papers/2016_IPAC/IPAC16_CLIO/MOPMB005.aux

    r515 r516  
    11\relax
     2\citation{clio}
    23\citation{blm}
    3 \citation{clio}
    44\citation{astra}
    55\citation{clio}
     
    2626\citation{CSPR}
    2727\citation{CTR}
    28 \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Layout of the CLIO accelerator (taken from \cite  {optim})\relax }}{2}}
     28\citation{MOPMB003}
     29\citation{gfw}
     30\citation{filt}
     31\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Layout of the CLIO accelerator (taken from \cite  {optim}).\relax }}{2}}
    2932\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
    3033\newlabel{clio}{{1}{2}}
    31 \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Full width at half of maximum of the bunch for the sub-harmonic buncher phase and maximum field\relax }}{2}}
     34\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Full width at half of maximum of the bunch for the sub-harmonic buncher phase and maximum field.\relax }}{2}}
    3235\newlabel{shwdth}{{2}{2}}
    3336\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Longitudinal bunch size at exit of gun (FWHM=800 ps), at the entrance of FB (FWHM=92 ps), at the entrance (FWHM=2.35ps) and at the exit (FWHM=2.29ps) of the AC.\relax }}{2}}
    3437\newlabel{dob1}{{3}{2}}
    35 \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Longitudinal profile of the bunch at the exit of the acceleration cavity after optimization. The profile presented here is far an eery of 60.34~MeV with an energy spread $\Delta \gamma /\gamma $=0.5\%.\relax }}{2}}
    36 \newlabel{Prof1}{{4}{2}}
    37 \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Profile of the bunch at the exit of the acceleration cavity for different phases of the accelerating cavity.\relax }}{2}}
    38 \newlabel{p3}{{5}{2}}
    39 \citation{CSPR,CTR}
    40 \citation{MOPMB003}
    41 \citation{gfw}
    42 \citation{filt}
    43 \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Profile of the bunch at the exit of the acceleration cavity for different maximum fields of fundamental buncher (optimized).\relax }}{3}}
    44 \newlabel{p123}{{6}{3}}
    45 \@writefile{toc}{\contentsline {section}{Bunch length measurements}{3}}
    46 \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Form factor for the bunch profiles shown on figure~\ref  {p123}. \relax }}{3}}
    47 \newlabel{fig:FF}{{7}{3}}
    48 \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces  Coherent Smith-Purcell spectrum normalized by maximum as function of observation angle for different maximum field in the FB. The grating used for these simulations has a pitch of 8 mm and a blaze angle of$30^o$. \relax }}{3}}
    49 \newlabel{sp-normalised}{{8}{3}}
    50 \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Coherent Smith-Purcell spectrum as function of observation angle for different maximum field in the FB. The grating used for these simulations has a pitch of 8 mm and a blaze angle of$30^o$. \relax }}{3}}
    51 \newlabel{sp}{{9}{3}}
    52 \@writefile{toc}{\contentsline {section}{Conclusion}{3}}
     38\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Profile of the bunch at the exit of the acceleration cavity for different maximum fields of fundamental buncher (optimized).\relax }}{2}}
     39\newlabel{p123}{{4}{2}}
     40\@writefile{toc}{\contentsline {section}{Bunch length measurements}{2}}
    5341\bibcite{filt}{1}
    5442\bibcite{astra}{2}
     
    6553\bibcite{MOPMB003}{13}
    6654\bibcite{LIL-cavity}{14}
    67 \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces CTR spectrums for different bunches.\relax }}{4}}
    68 \newlabel{CTR-spectrum}{{10}{4}}
    69 \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Energy of CTR with mesh filters.\relax }}{4}}
    70 \newlabel{filt}{{11}{4}}
     55\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Form factor for the bunch profiles shown on figure~\ref  {p123}. \relax }}{3}}
     56\newlabel{fig:FF}{{5}{3}}
     57\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Coherent Smith-Purcell spectrum as function of observation angle for different maximum field in the FB. The grating used for these simulations has a pitch of 8 mm and a blaze angle of$30^o$. \relax }}{3}}
     58\newlabel{sp}{{6}{3}}
     59\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces  Coherent Smith-Purcell spectrum normalized by maximum as function of observation angle for different maximum field in the FB. The grating used for these simulations has a pitch of 8 mm and a blaze angle of$30^o$. \relax }}{3}}
     60\newlabel{sp-normalised}{{7}{3}}
     61\@writefile{toc}{\contentsline {section}{Conclusion}{3}}
     62\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces CTR spectrums for different bunches.\relax }}{3}}
     63\newlabel{CTR-spectrum}{{8}{3}}
  • papers/2016_IPAC/IPAC16_CLIO/MOPMB005.log

    r515 r516  
    1 This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) (format=pdflatex 2014.5.30)  21 APR 2016 19:01
     1This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) (format=pdflatex 2014.5.30)  21 APR 2016 22:01
    22entering extended mode
    33 restricted \write18 enabled.
     
    14631463 []
    14641464
    1465 Package epstopdf Info: Source file: <plots/Profile20deg.eps>
    1466 (epstopdf)                    date: 2016-04-14 18:46:53
    1467 (epstopdf)                    size: 29849 bytes
    1468 (epstopdf)             Output file: <plots/Profile20deg-eps-converted-to.pdf>
    1469 (epstopdf)                    date: 2016-04-14 18:46:53
    1470 (epstopdf)                    size: 17012 bytes
    1471 (epstopdf)             Command: <repstopdf --outfile=plots/Profile20deg-eps-con
    1472 verted-to.pdf plots/Profile20deg.eps>
    1473 (epstopdf)             \includegraphics on input line 120.
    1474 Package epstopdf Info: Output file is already uptodate.
    1475 <plots/Profile20deg-eps-converted-to.pdf, id=5, 420.57124pt x 316.18124pt>
    1476 File: plots/Profile20deg-eps-converted-to.pdf Graphic file (type pdf)
    1477 
    1478 <use plots/Profile20deg-eps-converted-to.pdf>
    1479 Package pdftex.def Info: plots/Profile20deg-eps-converted-to.pdf used on input
    1480 line 120.
    1481 (pdftex.def)             Requested size: 211.26027pt x 158.82355pt.
    1482 Package epstopdf Info: Source file: <plots/Profile.eps>
    1483 (epstopdf)                    date: 2016-04-21 10:05:14
    1484 (epstopdf)                    size: 60439 bytes
    1485 (epstopdf)             Output file: <plots/Profile-eps-converted-to.pdf>
    1486 (epstopdf)                    date: 2016-04-21 10:05:14
    1487 (epstopdf)                    size: 26474 bytes
    1488 (epstopdf)             Command: <repstopdf --outfile=plots/Profile-eps-converte
    1489 d-to.pdf plots/Profile.eps>
    1490 (epstopdf)             \includegraphics on input line 135.
    1491 Package epstopdf Info: Output file is already uptodate.
    1492 
    1493 <plots/Profile-eps-converted-to.pdf, id=6, 502.87875pt x 316.18124pt>
    1494 File: plots/Profile-eps-converted-to.pdf Graphic file (type pdf)
    1495 
    1496 <use plots/Profile-eps-converted-to.pdf>
    1497 Package pdftex.def Info: plots/Profile-eps-converted-to.pdf used on input line
    1498 135.
    1499 (pdftex.def)             Requested size: 211.26027pt x 132.82416pt.
    15001465Package epstopdf Info: Source file: <plots/Profile4.eps>
    15011466(epstopdf)                    date: 2016-04-21 10:05:14
     
    15061471(epstopdf)             Command: <repstopdf --outfile=plots/Profile4-eps-convert
    15071472ed-to.pdf plots/Profile4.eps>
    1508 (epstopdf)             \includegraphics on input line 143.
     1473(epstopdf)             \includegraphics on input line 136.
    15091474Package epstopdf Info: Output file is already uptodate.
    1510 
    1511 <plots/Profile4-eps-converted-to.pdf, id=7, 539.01375pt x 316.18124pt>
     1475<plots/Profile4-eps-converted-to.pdf, id=5, 539.01375pt x 316.18124pt>
    15121476File: plots/Profile4-eps-converted-to.pdf Graphic file (type pdf)
    15131477
    15141478<use plots/Profile4-eps-converted-to.pdf>
    15151479Package pdftex.def Info: plots/Profile4-eps-converted-to.pdf used on input line
    1516  143.
     1480 136.
    15171481(pdftex.def)             Requested size: 211.26027pt x 123.9229pt.
     1482
     1483Underfull \vbox (badness 1400) has occurred while \output is active []
     1484
    15181485 [1{/usr/local/texlive/2013/texmf-var/fonts/map/pdftex/updmap/pdftex.map}
    15191486
    15201487
    15211488]
    1522 Underfull \vbox (badness 1117) has occurred while \output is active []
    1523 
    1524 
    1525 Underfull \vbox (badness 10000) has occurred while \output is active []
    1526 
    1527  [2 <./plots/CLIO.png> <./plots/fwhm2d-eps-converted-to.pdf> <./plots/QuardProf
    1528 ile-eps-converted-to.pdf> <./plots/Profile20deg-eps-converted-to.pdf> <./plots/
    1529 Profile-eps-converted-to.pdf>]
     1489Underfull \vbox (badness 10000) has occurred while \output is active []
     1490
    15301491Package epstopdf Info: Source file: <plots/FF2.eps>
    15311492(epstopdf)                    date: 2016-04-21 10:05:14
     
    15361497(epstopdf)             Command: <repstopdf --outfile=plots/FF2-eps-converted-to
    15371498.pdf plots/FF2.eps>
    1538 (epstopdf)             \includegraphics on input line 164.
     1499(epstopdf)             \includegraphics on input line 173.
    15391500Package epstopdf Info: Output file is already uptodate.
    15401501
    1541 <plots/FF2-eps-converted-to.pdf, id=41, 420.57124pt x 316.18124pt>
     1502<plots/FF2-eps-converted-to.pdf, id=16, 420.57124pt x 316.18124pt>
    15421503File: plots/FF2-eps-converted-to.pdf Graphic file (type pdf)
    15431504
    15441505<use plots/FF2-eps-converted-to.pdf>
    1545 Package pdftex.def Info: plots/FF2-eps-converted-to.pdf used on input line 164.
    1546 
     1506Package pdftex.def Info: plots/FF2-eps-converted-to.pdf used on input line 173.
     1507
     1508(pdftex.def)             Requested size: 211.26027pt x 158.82355pt.
     1509Package epstopdf Info: Source file: <plots/SPpolar.eps>
     1510(epstopdf)                    date: 2016-04-21 10:05:14
     1511(epstopdf)                    size: 15498 bytes
     1512(epstopdf)             Output file: <plots/SPpolar-eps-converted-to.pdf>
     1513(epstopdf)                    date: 2016-04-21 10:05:14
     1514(epstopdf)                    size: 6980 bytes
     1515(epstopdf)             Command: <repstopdf --outfile=plots/SPpolar-eps-converte
     1516d-to.pdf plots/SPpolar.eps>
     1517(epstopdf)             \includegraphics on input line 179.
     1518Package epstopdf Info: Output file is already uptodate.
     1519
     1520<plots/SPpolar-eps-converted-to.pdf, id=17, 420.57124pt x 316.18124pt>
     1521File: plots/SPpolar-eps-converted-to.pdf Graphic file (type pdf)
     1522
     1523<use plots/SPpolar-eps-converted-to.pdf>
     1524Package pdftex.def Info: plots/SPpolar-eps-converted-to.pdf used on input line
     1525179.
    15471526(pdftex.def)             Requested size: 211.26027pt x 158.82355pt.
    15481527Package epstopdf Info: Source file: <plots/SPnorm.eps>
     
    15541533(epstopdf)             Command: <repstopdf --outfile=plots/SPnorm-eps-converted
    15551534-to.pdf plots/SPnorm.eps>
    1556 (epstopdf)             \includegraphics on input line 171.
     1535(epstopdf)             \includegraphics on input line 187.
    15571536Package epstopdf Info: Output file is already uptodate.
    15581537
    1559 <plots/SPnorm-eps-converted-to.pdf, id=42, 484.81125pt x 316.18124pt>
     1538<plots/SPnorm-eps-converted-to.pdf, id=18, 484.81125pt x 316.18124pt>
    15601539File: plots/SPnorm-eps-converted-to.pdf Graphic file (type pdf)
    15611540
    15621541<use plots/SPnorm-eps-converted-to.pdf>
    15631542Package pdftex.def Info: plots/SPnorm-eps-converted-to.pdf used on input line 1
    1564 71.
     154387.
    15651544(pdftex.def)             Requested size: 211.26027pt x 137.77895pt.
    1566 Package epstopdf Info: Source file: <plots/SPpolar.eps>
    1567 (epstopdf)                    date: 2016-04-21 10:05:14
    1568 (epstopdf)                    size: 15498 bytes
    1569 (epstopdf)             Output file: <plots/SPpolar-eps-converted-to.pdf>
    1570 (epstopdf)                    date: 2016-04-21 10:05:14
    1571 (epstopdf)                    size: 6980 bytes
    1572 (epstopdf)             Command: <repstopdf --outfile=plots/SPpolar-eps-converte
    1573 d-to.pdf plots/SPpolar.eps>
    1574 (epstopdf)             \includegraphics on input line 176.
    1575 Package epstopdf Info: Output file is already uptodate.
    1576 
    1577 <plots/SPpolar-eps-converted-to.pdf, id=43, 420.57124pt x 316.18124pt>
    1578 File: plots/SPpolar-eps-converted-to.pdf Graphic file (type pdf)
    1579 
    1580 <use plots/SPpolar-eps-converted-to.pdf>
    1581 Package pdftex.def Info: plots/SPpolar-eps-converted-to.pdf used on input line
    1582 176.
    1583 (pdftex.def)             Requested size: 211.26027pt x 158.82355pt.
    15841545Package epstopdf Info: Source file: <plots/CTRspec.eps>
    15851546(epstopdf)                    date: 2016-04-21 10:05:14
     
    15901551(epstopdf)             Command: <repstopdf --outfile=plots/CTRspec-eps-converte
    15911552d-to.pdf plots/CTRspec.eps>
    1592 (epstopdf)             \includegraphics on input line 187.
     1553(epstopdf)             \includegraphics on input line 198.
    15931554Package epstopdf Info: Output file is already uptodate.
    15941555
    1595 <plots/CTRspec-eps-converted-to.pdf, id=44, 420.57124pt x 316.18124pt>
     1556<plots/CTRspec-eps-converted-to.pdf, id=19, 420.57124pt x 316.18124pt>
    15961557File: plots/CTRspec-eps-converted-to.pdf Graphic file (type pdf)
    15971558
    15981559<use plots/CTRspec-eps-converted-to.pdf>
    15991560Package pdftex.def Info: plots/CTRspec-eps-converted-to.pdf used on input line
    1600 187.
     1561198.
    16011562(pdftex.def)             Requested size: 211.26027pt x 158.82355pt.
    1602 Package epstopdf Info: Source file: <plots/Filter2.eps>
    1603 (epstopdf)                    date: 2016-04-21 10:05:14
    1604 (epstopdf)                    size: 17624 bytes
    1605 (epstopdf)             Output file: <plots/Filter2-eps-converted-to.pdf>
    1606 (epstopdf)                    date: 2016-04-21 10:05:14
    1607 (epstopdf)                    size: 6046 bytes
    1608 (epstopdf)             Command: <repstopdf --outfile=plots/Filter2-eps-converte
    1609 d-to.pdf plots/Filter2.eps>
    1610 (epstopdf)             \includegraphics on input line 194.
    1611 Package epstopdf Info: Output file is already uptodate.
    1612 
    1613 <plots/Filter2-eps-converted-to.pdf, id=45, 600.2425pt x 416.55624pt>
    1614 File: plots/Filter2-eps-converted-to.pdf Graphic file (type pdf)
    1615 
    1616 <use plots/Filter2-eps-converted-to.pdf>
    1617 Package pdftex.def Info: plots/Filter2-eps-converted-to.pdf used on input line
    1618 194.
    1619 (pdftex.def)             Requested size: 211.26027pt x 146.61044pt.
    1620 
    1621 Underfull \vbox (badness 2205) has occurred while \output is active []
    1622 
    1623  [3 <./plots/Profile4-eps-converted-to.pdf> <./plots/FF2-eps-converted-to.pdf>
    1624 <./plots/SPnorm-eps-converted-to.pdf> <./plots/SPpolar-eps-converted-to.pdf>]
    1625 Underfull \vbox (badness 1117) has occurred while \output is active []
    1626 
    1627 Extra height:0.0pt when 438.37947pt
    1628 
    1629 Underfull \vbox (badness 1117) has occurred while \output is active []
    1630 
    1631 (2)Left:438.37947pt Right:434.32498pt Output:438.37947pt
     1563
     1564Underfull \vbox (badness 1286) has occurred while \output is active []
     1565
     1566 [2 <./plots/CLIO.png> <./plots/fwhm2d-eps-converted-to.pdf> <./plots/QuardProf
     1567ile-eps-converted-to.pdf> <./plots/Profile4-eps-converted-to.pdf>]
     1568Underfull \vbox (badness 10000) has occurred while \output is active []
     1569
     1570Extra height:65.863pt when 689.64127pt
     1571
     1572Underfull \vbox (badness 10000) has occurred while \output is active []
     1573
     1574Extra height:65.863pt when 690.64127pt
     1575
     1576Underfull \vbox (badness 10000) has occurred while \output is active []
     1577
     1578Extra height:65.863pt when 691.64127pt
     1579
     1580Underfull \vbox (badness 10000) has occurred while \output is active []
     1581
     1582Extra height:65.863pt when 692.64127pt
     1583
     1584Underfull \vbox (badness 10000) has occurred while \output is active []
     1585
     1586Extra height:65.863pt when 693.64127pt
     1587
     1588Underfull \vbox (badness 10000) has occurred while \output is active []
     1589
     1590Extra height:28.863pt when 694.64127pt
     1591
     1592Underfull \vbox (badness 10000) has occurred while \output is active []
     1593
     1594Extra height:28.863pt when 695.64127pt
     1595
     1596Underfull \vbox (badness 10000) has occurred while \output is active []
     1597
     1598Extra height:28.863pt when 696.64127pt
     1599
     1600Underfull \vbox (badness 10000) has occurred while \output is active []
     1601
     1602Extra height:28.863pt when 697.64127pt
     1603
     1604Underfull \vbox (badness 10000) has occurred while \output is active []
     1605
     1606Extra height:28.863pt when 698.64127pt
     1607
     1608Underfull \vbox (badness 10000) has occurred while \output is active []
     1609
     1610Extra height:28.863pt when 699.64127pt
     1611
     1612Underfull \vbox (badness 10000) has occurred while \output is active []
     1613
     1614Extra height:28.863pt when 700.64127pt
     1615
     1616Underfull \vbox (badness 10000) has occurred while \output is active []
     1617
     1618Extra height:28.863pt when 701.64127pt
     1619
     1620Underfull \vbox (badness 10000) has occurred while \output is active []
     1621
     1622Extra height:28.863pt when 702.64127pt
     1623
     1624Underfull \vbox (badness 10000) has occurred while \output is active []
     1625
     1626Extra height:28.863pt when 703.64127pt
     1627
     1628Underfull \vbox (badness 10000) has occurred while \output is active []
     1629
     1630Extra height:28.863pt when 704.64127pt
     1631
     1632Underfull \vbox (badness 10000) has occurred while \output is active []
     1633
     1634Extra height:28.863pt when 705.64127pt
     1635
     1636Underfull \vbox (badness 10000) has occurred while \output is active []
     1637
     1638Extra height:28.863pt when 706.64127pt
     1639
     1640Underfull \vbox (badness 10000) has occurred while \output is active []
     1641
     1642Extra height:28.863pt when 707.64127pt
     1643
     1644Underfull \vbox (badness 10000) has occurred while \output is active []
     1645
     1646Extra height:28.863pt when 708.64127pt
     1647
     1648Underfull \vbox (badness 10000) has occurred while \output is active []
     1649
     1650Extra height:28.863pt when 709.64127pt
     1651
     1652Underfull \vbox (badness 10000) has occurred while \output is active []
     1653
     1654Extra height:28.863pt when 710.64127pt
     1655
     1656Underfull \vbox (badness 10000) has occurred while \output is active []
     1657
     1658Extra height:0.0pt when 711.64127pt
     1659
     1660Underfull \vbox (badness 10000) has occurred while \output is active []
     1661
     1662(2)Left:711.64127pt Right:744.85649pt Output:711.64127pt
     1663
     1664Underfull \vbox (badness 10000) has occurred while \output is active []
     1665
     1666(2)Left:744.85649pt Right:744.85649pt Output:744.85649pt
    16321667- LAST -
    16331668Extra skip:0.0pt
    1634 Left:438.37947pt
    1635 Right:434.32498pt
    1636 Output:438.37947pt
    1637 
    1638 Underfull \vbox (badness 1117) has occurred while \output is active []
    1639 
    1640  [4 <./plots/CTRspec-eps-converted-to.pdf> <./plots/Filter2-eps-converted-to.pd
    1641 f>]
     1669Left:744.85649pt
     1670Right:744.85649pt
     1671Output:744.85649pt
     1672
     1673Underfull \vbox (badness 10000) has occurred while \output is active []
     1674
     1675 [3 <./plots/FF2-eps-converted-to.pdf> <./plots/SPpolar-eps-converted-to.pdf> <
     1676./plots/SPnorm-eps-converted-to.pdf> <./plots/CTRspec-eps-converted-to.pdf>]
    16421677(./MOPMB005.aux) )
    16431678Here is how much of TeX's memory you used:
    1644  18271 strings out of 493315
    1645  349066 string characters out of 6137904
    1646  392231 words of memory out of 5000000
    1647  21241 multiletter control sequences out of 15000+600000
    1648  128970 words of font info for 225 fonts, out of 8000000 for 9000
     1679 18231 strings out of 493315
     1680 348373 string characters out of 6137904
     1681 397205 words of memory out of 5000000
     1682 21226 multiletter control sequences out of 15000+600000
     1683 122356 words of font info for 207 fonts, out of 8000000 for 9000
    16491684 957 hyphenation exceptions out of 8191
    1650  45i,8n,75p,675b,600s stack positions out of 5000i,500n,10000p,200000b,80000s
    1651 {/usr/local/texlive/2013/texmf-dist/fonts/enc/dvips/base/8r.e
    1652 nc}{/usr/local/texlive/2013/texmf-dist/fonts/enc/dvips/tex-gyre/q-ec.enc}</usr/
    1653 local/texlive/2013/texmf-dist/fonts/type1/public/tex-gyre/qtmb.pfb></usr/local/
    1654 texlive/2013/texmf-dist/fonts/type1/public/tex-gyre/qtmr.pfb></usr/local/texliv
    1655 e/2013/texmf-dist/fonts/type1/public/tex-gyre/qtmri.pfb></usr/local/texlive/201
    1656 3/texmf-dist/fonts/type1/public/newtx/rntxmi7.pfb></usr/local/texlive/2013/texm
    1657 f-dist/fonts/type1/public/txfonts/rtxmi.pfb></usr/local/texlive/2013/texmf-dist
    1658 /fonts/type1/public/txfonts/rtxr.pfb></usr/local/texlive/2013/texmf-dist/fonts/
    1659 type1/public/txfonts/txmia.pfb></usr/local/texlive/2013/texmf-dist/fonts/type1/
    1660 public/txfonts/txsy.pfb></usr/local/texlive/2013/texmf-dist/fonts/type1/public/
    1661 newtx/txsy5.pfb></usr/local/texlive/2013/texmf-dist/fonts/type1/urw/times/utmr8
    1662 a.pfb></usr/local/texlive/2013/texmf-dist/fonts/type1/urw/times/utmri8a.pfb>
    1663 Output written on MOPMB005.pdf (4 pages, 304746 bytes).
     1685 45i,8n,75p,629b,600s stack positions out of 5000i,500n,10000p,200000b,80000s
     1686{/usr/local/texlive/2013/texmf-dist/fonts/enc/dvips/tex-gyre/
     1687q-ec.enc}</usr/local/texlive/2013/texmf-dist/fonts/type1/public/tex-gyre/qtmb.p
     1688fb></usr/local/texlive/2013/texmf-dist/fonts/type1/public/tex-gyre/qtmr.pfb></u
     1689sr/local/texlive/2013/texmf-dist/fonts/type1/public/tex-gyre/qtmri.pfb></usr/lo
     1690cal/texlive/2013/texmf-dist/fonts/type1/public/newtx/rntxmi7.pfb></usr/local/te
     1691xlive/2013/texmf-dist/fonts/type1/public/txfonts/txsy.pfb></usr/local/texlive/2
     1692013/texmf-dist/fonts/type1/public/newtx/txsy5.pfb>
     1693Output written on MOPMB005.pdf (3 pages, 249623 bytes).
    16641694PDF statistics:
    1665  124 PDF objects out of 1000 (max. 8388607)
    1666  94 compressed objects within 1 object stream
     1695 85 PDF objects out of 1000 (max. 8388607)
     1696 64 compressed objects within 1 object stream
    16671697 0 named destinations out of 1000 (max. 500000)
    1668  33342 words of extra memory for PDF output out of 35830 (max. 10000000)
    1669 
     1698 33327 words of extra memory for PDF output out of 35830 (max. 10000000)
     1699
  • papers/2016_IPAC/IPAC16_CLIO/MOPMB005.tex

    r501 r516  
    3333\title{Study of Short Bunches at the Free Electron Laser CLIO\thanks{Work supported by the French ANR (contract ANR-12-JS05-0003-01), the IDEATE International Associated Laboratory (LIA) between France and Ukraine  and  Research Grant \#F58/380-2013 (project F58/04) from the State Fund for Fundamental Researches of Ukraine in the frame of the State key laboratory of high energy physics." }}
    3434
    35 \author{ Nicolas Delerue, Stéphane Jenzer (LAL, Orsay),\\ Jean-Paul Berthet, Francois Glotin, Jean-Michel Ortega,
     35\author{ Nicolas Delerue, St\'ephane Jenzer (LAL, Orsay),\\ Jean-Paul Berthet, Francois Glotin, Jean-Michel Ortega,
    3636  Rui Prazeres (CLIO/ELISE/LCP, Orsay), \\Vitalii Khodnevych (LAL, Orsay; National Taras Shevchenko University of Kyiv, Kyiv) }
    3737
     
    4040%
    4141\begin{abstract}
    42 CLIO is a Free Electron Laser based on a thermoionic electron gun. In its normal operating mode it delivers long electron $8\pm1$ ps~\cite{blm} pulse but studies are ongoing to shorten the pulses to about 1 ps. We report on simulations showing how the pulse can be shortened and the expected signal yield from several bunch length diagnostics (Coherent Transition Radiation, Coherent Smith Purcell Radiation) as well as on the first experimental measurements.
     42CLIO is a Free Electron Laser based on a thermoionic electron gun. In its normal operating mode it delivers long electron 8 pulses but studies are ongoing to shorten the pulses to about 1 ps. We report on simulations showing how the pulse can be shortened and the expected signal yield from several bunch length diagnostics (Coherent Transition Radiation, Coherent Smith Purcell Radiation).
    4343\end{abstract}
    4444
    4545
    4646\section{Introduction}
    47 Experimental comparison of Coherent Smith-Purcell Radiation (CSPR)  an dCoherent Transition Radiation (CTR) will take place at CLIO accelerator~\cite{clio}. This accelerator can produce single electron bunches  with length of several ps and energy up to 100 MeV.  To predict the spectrums of CTR and CSP and optimise the CLIO parameters for the experiment, we have performed simulations of  of the accelerator using ASTRA~\cite{astra}.
     47Experimental comparison of Coherent Smith-Purcell Radiation (CSPR)  and Coherent Transition Radiation (CTR) will take place at CLIO accelerator~\cite{clio}. This accelerator can produce single electron bunches  with length of about 8 $\pm1$ ps~\cite{blm}  and energy up to 100~MeV.  To predict the spectrums of CTR and CSPR and optimise the CLIO parameters for the experiment, we have performed simulations of  of the accelerator using ASTRA~\cite{astra}.
    4848
    4949\section{The CLIO accelerator}
     
    5959%\end{figure}%
    6060
    61 \begin{figure*}[!tbh]
     61\begin{figure*}[!bth]
    6262    \centering
    6363    \includegraphics*[width=\textwidth]{plots/CLIO.png}
    64     \caption{Layout of the CLIO accelerator (taken from \cite{optim})}
     64    \caption{Layout of the CLIO accelerator (taken from \cite{optim}).}
    6565    \label{clio}
    6666%    \vspace*{-\baselineskip}
     
    9292  \centering
    9393  \includegraphics[width=0.9\linewidth]{plots/fwhm2d.eps}
    94   \caption{Full width at half  of maximum of the bunch for the sub-harmonic buncher phase and maximum field}
     94  \caption{Full width at half  of maximum of the bunch for the sub-harmonic buncher phase and maximum field.}
    9595    \label{shwdth}
    9696\end{figure}
    9797
    9898
    99 Taking into account other parameters (charge in a 200ps window, full width at 10\% of the maximum, energy from the technical report \cite{RT}) we are able to choose the optimal values of the energy gradient and the phase of the cavity for the  SHB, 2.56 MV/m and 126 degrees respectively.  As  from the exit of the SHB to the entrance of the FB the bunch evolving, we look at the result of compression at the entrance of the FB. A comparison of the longitudinal bunch size at the gun's exit and at the entrance of the FB is presented on fig.~\ref{dob1}.\par
     99Taking into account other parameters (charge in a 200ps window, full width at 10\% of the maximum, energy from the technical report \cite{RT}) we are able to choose the optimal values of the energy gradient and the phase of the cavity for the  SHB, 2.56 MV/m and 126 degrees respectively.  As  from the exit of the SHB to the entrance of the FB the bunch is still evolving, we look at the result of compression at the entrance of the FB. A comparison of the longitudinal bunch size at the gun's exit and at the entrance of the FB is presented on fig.~\ref{dob1}.\par
    100100\begin{figure}[htb]
    101101  \centering
     
    105105\end{figure}
    106106
    107 The fundamental buncher (FB) is a copper triperiodic, S-band standing wave structure~\cite{LIL-cavity}. It is composed of cells at 3 different wavelengths, slightly matched to the beam velocity (0.92, 0.98 and 1 lambda) at the buncher \cite{clio}. The role of the 3 GHz buncher is to complete the compression of the pulses initiated by the SHB at 500~MHz and to bring the particles to ultra-relativistic energies.
    108 It also gives the micro-particles pack enough energy to make them  ultrarelativistic~\cite{RT}.\par
    109  Similarly to the SHB, the FB also requires a phase study. We found the optimal phase as 210 degree and the maximum cavity field as 22 MV/m. \par
    110 The accelerating cavity (AC) is a constant gradient S band travelling wave disk-loaded structure. The cavity is surrounded with a set of solenoidal coils which give a continuous axial field adjustable up to 0.2 Tesla \cite{clio}. Comparison of the longitudinal bunch size at the entrance and at the exit of the AC is presented at the fig.~\ref{dob1}. In ideal conditions the profile is almost not altered in the AC, but particles are significantly accelerated.\par
    111 
    112 The result of the optimisation of the hase and field of all the components of the accelerator is shown on figure~\ref{Prof1}.
     107The fundamental buncher (FB) is a copper triperiodic, S-band standing wave structure~\cite{LIL-cavity}. It is composed of cells at 3 different wavelengths, slightly matched to the beam velocity (0.92, 0.98 and 1 lambda)~\cite{clio}. The role of the 3 GHz buncher is to complete the compression of the pulses initiated by the SHB at 500~MHz and to bring the particles to ultra-relativistic energies.~\cite{RT}.\par
     108 Similarly to the SHB, the FB also requires a phase study. We found the optimal phase to be 210 degree and the maximum cavity field as 22 MV/m. \par
     109The accelerating cavity (AC) is a constant gradient S band travelling wave disk-loaded structure. The cavity is surrounded with a set of solenoidal coils which give a continuous axial field adjustable up to 0.2 Tesla \cite{clio}. Comparison of the longitudinal bunch size at the entrance and at the exit of the AC is presented on the fig.~\ref{dob1}. In ideal conditions the profile is almost not altered in the AC, but particles are significantly accelerated.\par
     110
     111%The result of the optimisation of the phase and field of all the components of the accelerator is shown on figure~\ref{p123}.
    113112
    114113
     
    116115%energy distribution as on fig.~\ref{fig:energ} (
    117116%
    118 \begin{figure}[!htb]
    119   \centering
    120   \includegraphics[width=0.9\linewidth]{plots/Profile20deg.eps}
    121   \caption{Longitudinal profile of the bunch at the exit of the acceleration cavity after optimization. The profile presented here is far an eery of 60.34~MeV with an energy spread $\Delta\gamma/\gamma$=0.5\%.}
    122   \label{Prof1}
    123 \end{figure}%
     117
     118%\begin{figure}[!htb]
     119%  \centering
     120%  \includegraphics[width=0.9\linewidth]{plots/Profile20deg.eps}
     121%  \caption{}
     122%  \label{Prof1}
     123%\end{figure}%
    124124
    125125%\begin{figure}[!htb]
     
    130130%\end{figure}%
    131131
    132 Our simulations also show that  it is possible to make even shorter bunches with the accelerator, but at the expense of degrading others parameters (energy spread, etc.). Some profiles in such conditions are shown on figure~\ref{p3}.\par
    133 \begin{figure}[!htb]
    134   \centering
    135   \includegraphics[width=0.9\linewidth]{plots/Profile.eps}
    136   \caption{Profile of the bunch at the exit of the acceleration cavity for different phases of the accelerating cavity.}
    137   \label{p3}
    138 \end{figure}%
    139132
    140133From our simulations we find that the parameter that has the most significant impact on the bunch length is the field in the FB (see fig.~\ref{p123}). The FB has been upgraded with respect to the original CLIO design and this explains why we can predict shorter bunches than what was originally foreseen in~\cite{blm,thesis-francois-glottin,comm}. Once this field is increased the phases of the other components need to be slightly optimized. To help us with this optimization we will use CTR and CSPR signals measured at the exit of the AC.
     
    147140
    148141
     142
     143Our simulations also show that  it is possible to make even shorter bunches with the accelerator, but at the expense of degrading others parameters (energy spread, etc.). \par
     144
     145%Some profiles in such conditions are shown on figure~\ref{p3}.\par
     146%\begin{figure}[!htb]
     147%  \centering
     148%  \includegraphics[width=0.9\linewidth]{plots/Profile.eps}
     149%  \caption{
     150%  Longitudinal profile of the bunch at the exit of the acceleration cavity after optimization. The profile presented here is far an energy of 60.34~MeV with an energy spread $\Delta\gamma/\gamma$=0.5\%.
     151%  Profile of the bunch at the exit of the acceleration cavity for different phases of the accelerating cavity.}
     152%  \label{p3}
     153%\end{figure}%
     154
    149155\section{Bunch length measurements}
    150156
    151 To measure and optimize the bunch length at CLIO we plan to use install a bunch length monitor at the exit of the AC at CLIO. This bunch length monitor will use two different radiative phenomenon:  Coherent Smith-Purcell Radiation (CSPR)~\cite{CSPR} and Coherent Transition Radiation (CTR)~\cite{CTR}. These two phenomenon both rely on radiation that become more intense when the bunch length is sufficiently short with respect to the observed wavelength. It is therefore important to calculate the (incoherent) Single Electron Yield (SEY) for each of them and the form factor of the bunch. In both cases the radiation emitted will be of form:
    152 $$
    153 I_{\mbox{coh}}(\lambda) = I_1 ( N + N^2 \cal{F}(\lambda)  )
    154 $$
    155 where $I_{\mbox{coh}}(\lambda)$ is the total radiation emitted at wavelength $\lambda$, $I_1$ is the SEY, $N$ is the bunch charge (number of electrons) and $\cal{F}(\lambda)$ is the bunch form factor at $\lambda$. More details can be found in \cite{CSPR,CTR} and in references therein. The signal emitted in the bunch length monitor will be measured by pyroelectric detectors.
    156 A discussion of the SEY of CSPR  and CTR is presented in another contribution to this conference~\cite{MOPMB003}. \par
    157 
    158 
    159 On figure \ref{fig:FF} the form factor of the bunch at different AC phases is shown. On figure~\ref{sp} one can see the predicted spectrum for CSPR (the code used is based on~\cite{gfw}). Making the distinction between these profiles to know if the bunch has the target length will be rather easy as it will be a matter of looking at the direction in which the signal is the most intense~\ref{sp-normalised}.
     157To measure and optimize the bunch length at CLIO we plan to use install a bunch length monitor at the exit of the AC at CLIO. This bunch length monitor will use two different radiative phenomenon:  Coherent Smith-Purcell Radiation (CSPR)~\cite{CSPR} and Coherent Transition Radiation (CTR)~\cite{CTR}. A  comparison of CSPR  and CTR is presented in another contribution to this conference~\cite{MOPMB003}. \par
     158
     159
     160%These two phenomenon both rely on radiation that become more intense when the bunch length is sufficiently short with respect to the observed wavelength. It is therefore important to calculate the (incoherent) Single Electron Yield (SEY) for each of them and the form factor of the bunch. In both cases the radiation emitted will be of form:
     161%$$
     162%I_{\mbox{coh}}(\lambda) = I_1 ( N + N^2 \cal{F}(\lambda)  )
     163%$$
     164%where $I_{\mbox{coh}}(\lambda)$ is the total radiation emitted at wavelength $\lambda$, $I_1$ is the SEY, $N$ is the bunch charge (number of electrons) and $\cal{F}(\lambda)$ is the bunch form factor at $\lambda$. More details can be found in \cite{CSPR,CTR} and in references therein. The signal emitted in the bunch length monitor will be measured by pyroelectric detectors.
     165%A discussion of the SEY of CSPR  and CTR is presented in another contribution to this conference~\cite{MOPMB003}. \par
     166
     167
     168On figure \ref{fig:FF} the form factor of the bunch at different AC phases is shown. On figure~\ref{sp} one can see the predicted spectrum for CSPR (the code used is based on~\cite{gfw}). Making the distinction between these profiles to know if the bunch has the target length will be rather easy as it will be a matter of looking at the direction in which the signal is the most intense as shown on figure~\ref{sp-normalised}.
    160169
    161170
     
    166175  \label{fig:FF}
    167176\end{figure}
     177
     178\begin{figure}[!htb]
     179  \includegraphics[width=0.9\linewidth]{plots/SPpolar.eps}
     180  \caption{Coherent Smith-Purcell spectrum as function of observation angle for different maximum field in the FB. The grating used for these simulations has a pitch of 8 mm and a blaze angle of$30^o$.  }
     181  \label{sp}
     182\end{figure}
     183
    168184
    169185\begin{figure}[!htb]
     
    173189  \label{sp-normalised}
    174190  \end{figure}
    175   \begin{figure}[!htb]
    176   \includegraphics[width=0.9\linewidth]{plots/SPpolar.eps}
    177   \caption{Coherent Smith-Purcell spectrum as function of observation angle for different maximum field in the FB. The grating used for these simulations has a pitch of 8 mm and a blaze angle of$30^o$.  }
    178   \label{sp}
    179 \end{figure}
    180 
    181 
    182 The CTR measurement will use a single detectors located at 90$^o$. The discrimination between pulse length will therefore be based primarily on CTR intensity but to enhance this phenomena we will also use band-pass filters in THz wavelength designed according to~\cite{filt}. Figure~\ref{CTR-spectrum} shows the CTR spectrum before filtering and figure~\ref{filt} shows the expected yield after filtering. \par
     191 
     192
     193The CTR measurement will use a single detectors located at 90$^o$. The discrimination between pulse length will therefore be based primarily on CTR intensity but to enhance this phenomena we will also use band-pass filters in THz wavelength designed according to~\cite{filt}. Figure~\ref{CTR-spectrum} shows the CTR spectrum before filtering. \par
    183194
    184195
     
    190201\end{figure}
    191202
    192    \begin{figure}[!htb]
    193   \centering
    194   \includegraphics[width=0.9\linewidth]{plots/Filter2.eps}
     203%   \begin{figure}[!htb]
     204%  \centering
     205%  \includegraphics[width=0.9\linewidth]{plots/Filter2.eps}
    195206 % \includegraphics[width=0.9\linewidth]{plots/CTR_Filter.eps}
    196   \caption{Energy of CTR with  mesh filters.}
    197   \label{filt}
    198 \end{figure}
     207%  \caption{Energy of CTR with  mesh filters.}
     208%  \label{filt}
     209% \end{figure}
    199210
    200211Unlike the case of CSPR, CTR will only be used to estimate the bunch length and no detailed profile reconstruction will be attempted.
  • papers/2016_IPAC/MOPMB002_SPESO/MOPMB002.tex

    r496 r516  
    6666\title{First Measurements of Coherent Smith-Purcell Radiation in the SOLEIL Linac\thanks{Work supported by the French ANR (contract ANR-12-JS05-0003-01), the IDEATE International Associated Laboratory (LIA) between France and Ukraine  and  Research Grant \#F58/380-2013 (project F58/04) from the State Fund for Fundamental Researches of Ukraine in the frame of the State key laboratory of high energy physics." }}
    6767
    68 \author{Nicolas Delerue\thanks{delerue@lal.in2p3.fr}, Joanna Barros, St\'ephane Jenzer, LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit\'e Paris-Saclay, Orsay, France.\\
     68\author{Nicolas Delerue\thanks{delerue@lal.in2p3.fr}, Joanna Barros, St\'ephane Jenzer, Vitalii Khodnevych\textsuperscript{1}, Maksym Malovytsia\textsuperscript{2},\\ LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit\'e Paris-Saclay, Orsay, France.\\
    6969         Nicolas Hubert, Marie Labat, Synchrotron SOLEIL, Gif-Sur-Yvette, France\\
    70          Maksym Malovytsia, KhNU, Kharkov, Ukraine\textsuperscript{1}\\
    71          Vitalii Khodnevych, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine\textsuperscript{1}\\
    72          \textsuperscript{1}also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit\'e Paris-Saclay, Orsay, France.\\}
     70         \textsuperscript{1}also at National Taras Shevchenko University of Kyiv, Kyiv, Ukraine\\
     71         \textsuperscript{2}also at KhNU, Kharkov, Ukraine\\
     72         }
    7373         
    7474       
Note: See TracChangeset for help on using the changeset viewer.