Changeset 579 in ETALON


Ignore:
Timestamp:
Apr 28, 2016, 4:39:20 PM (8 years ago)
Author:
malovyts
Message:

Removed comments

Location:
papers/2016_IPAC/2016_IPAC_Malovytsia_ModelComparison
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • papers/2016_IPAC/2016_IPAC_Malovytsia_ModelComparison/MOPMB004.tex

    r578 r579  
    8585                and shown that they are in agreement
    8686                within the experimental errors.
    87                 %To have a better agreement
    88                 %between predictions and experimental measurements
    89                 %we also report on the interference effects
    90                 %that modulate the signal in the near-field zone.
    9187        \end{abstract}
    92        
    93        
    94        
    95         \section{Introduction}
    96        
     88
     89%=======================================================================================================       
     90\section{Introduction}
    9791        The production and measurement of sub-picosecond bunches is an important topic for modern accelerators.
    98 %       Recent advance in accelerating technologies introduced possibility of creating subpicosecond bunches,
    99 %        which are required for the free-electron lasers~\cite{FELEvt} and the plasma accelerators~\cite{PLASMABerry06}.
    100 %        Such short bunches confront us with a challenge of measuring their length reliably in a non-destructive way.
    101 %        Leaving aside methods, that destroy important parameters of the bunch,
    102 To measure reliably the length of such short bunches with destroying them several approaches are possible:
    103          \begin{itemize}
    104           \item Electro-Optic (EO) sampling~\cite{Fitch99} uses a non linear crystal in which the bunch wakefield will induce optical changes. It requires a femtosecond laser. Its limitations due to material properties are discussed in~\cite{EOLimSteff09}.
    105           \item Coherent Transition Radiation (CTR)~\cite{Lai94} uses the radiation emitted when the beam crosses a thin foil. In some cases it may be difficult to discriminate the signal from CTR for other sources of radiation (e.g.: synchrotron radiation) generated further upstream.
    106          \item Coherent Smith-Purcell Radiation~\cite{Nguyen97} (CSPR),
    107            uses a grating to induce the emission of radiation. It
    108            has the advantage of dispersing the radiation at the point of emission and therefore being more immune to background noise. It is described below.
     92        To measure reliably the length of such short bunches with destroying them several approaches are possible:
     93        \begin{itemize}
     94          \item
     95                  Electro-Optic (EO) sampling~\cite{Fitch99} uses a non linear crystal in which the bunch wakefield will induce optical changes. It requires a femtosecond laser. Its limitations due to material properties are discussed in~\cite{EOLimSteff09}.
     96          \item
     97                  Coherent Transition Radiation (CTR)~\cite{Lai94} uses the radiation emitted when the beam crosses a thin foil. In some cases it may be difficult to discriminate the signal from CTR for other sources of radiation (e.g.: synchrotron radiation) generated further upstream.
     98         \item
     99                  Coherent Smith-Purcell Radiation~\cite{Nguyen97} (CSPR),
     100                  uses a grating to induce the emission of radiation. It
     101                  has the advantage of dispersing the radiation at the point of emission and therefore being more immune to background noise. It is described below.
    109102        \end{itemize}
    110103       
     
    113106
    114107%======================================================================================================
    115        
    116         \section{Principle of Smith-Purcell Radiation}
    117         % geometry figure with the reference
     108\section{Principle of Smith-Purcell Radiation}
    118109        Smith-Purcell radiation is produced by a charged particle passing
    119          near a surface of a conducting periodical grating.
    120          In multiple papers~\cite{p020, p043, p026, p019, p039} authors considered a profile
    121          of the grating as a set of the periodically repeating ``$N$'' pairs of ``rising'' an ``falling''
    122          facets as shown on Fig.~\ref{fig:geom1}, with the period of repetition ``$d$'', a blaze angle
    123          ``$\theta_0$'' ($\alpha_1$ in~\cite{p020, p043}), the width ``$M$'' and the length ``$L$''.
    124          The choice of such profile is explained in~\cite{p020}, by a possibility to do derive
    125          simpler analytical expressions and thus define the relation between the grating parameters and the SPR
    126          characteristics. It is convenient to chose the same profile for a comparison purposes.
     110        near a surface of a conducting periodical grating.
     111        In multiple papers~\cite{p020, p043, p026, p019, p039} authors considered a profile
     112        of the grating as a set of the periodically repeating ``$N$'' pairs of ``rising'' an ``falling''
     113        facets as shown on Fig.~\ref{fig:geom1}, with the period of repetition ``$d$'', a blaze angle
     114        ``$\theta_0$'' ($\alpha_1$ in~\cite{p020, p043}), the width ``$M$'' and the length ``$L$''.
     115        The choice of such profile is explained in~\cite{p020}, by a possibility to do derive
     116        simpler analytical expressions and thus define the relation between the grating parameters and the SPR
     117        characteristics. It is convenient to chose the same profile for a comparison purposes.
    127118
    128119        \begin{figure}
     
    132123        \end{figure}
    133124       
    134         %One of the characteristic of SPR, which allows using in the profile measurement technique, is a wavelength dispersion,
    135         %       \begin{equation}\label{eq:lDispersion}
    136         %               \lambda=\frac{d}{n}\left( \frac{1}{\beta} - \cos{\theta} \right)
    137         %       \end{equation}
    138         %where $ \lambda $ - wavelength of the radiation, in the direction of observation angle $ \theta $ (Fig.~\ref{fig:geom1}),  $ n $ - order of radiation
    139         %and speed of the electron $ \beta = \sqrt{1-\frac{1}{\gamma^2}} $ expressed through the speed of light.
    140        
    141        
    142                
    143125%=======================================================================================================
    144 
    145 
    146 %       \begin{equation}
    147 %       S_{coh}=\left| \int_{0}^{\infty}Xe^{-\left( x-x_        0 \right)/\lambda_e}dx \right|^2
    148 %       \left| \int_{-\infty}^{\infty}Ye^{-ik_y y}dy \right|^2
    149 %       \left| \int_{-\infty}^{\infty}Te^{-i\omega t}dt \right|
    150 %       \end{equation}
    151 %       \begin{equation}
    152 %       S_{inc}=\int_{0}^{\infty}Xe^{-2(x-x_0)/\lambda_e}dx
    153 %       \end{equation}
    154 
    155         \section{Single Electron Yield Models}
     126\section{Single Electron Yield Models}
    156127        The leading models to calculate the SPR Single Electron Yield (SEY) are:
    157128        \begin{itemize}
    158129               
    159         \item The Surface Current
    160         model~\cite{gfw}, that explains SPR through the currents that are being induced
    161          on the surface of the grating by a charge passing nearby. This theory has proven to be
    162          in a good agreement with experiments for energies from a few MeV to 28.5 GeV~\cite{p010, p019, p043, p026}.
     130        \item
     131                The Surface Current model~\cite{gfw}, that explains SPR through the currents that are being induced
     132                on the surface of the grating by a charge passing nearby. This theory has proven to be
     133                in a good agreement with experiments for energies from a few MeV to 28.5 GeV~\cite{p010, p019, p043, p026}.
    163134                \begin{equation}
    164         \left( \frac{dI}{d\Omega} \right)_1=2\pi q^2 \frac{L}{d^2}\frac{1}{\lambda^3}R^2\exp{\left[-\frac{2h}{\lambda_e}\right]}
    165         \end{equation}
    166         \begin{equation}
    167         \lambda_e=\frac{\lambda}{2\pi}\frac{\beta \gamma}{\sqrt{1+\beta^2\gamma^2\sin^2{\theta}\sin^2{\phi}}}
    168         \end{equation}
    169 
    170 
    171         Here, $q$ stands for the particle charge, $\lambda$ is the wavelength of the radiation emitted, $\lambda_e$ is an ``evanescent'' wavelength,
    172          $\beta, \gamma$ are the velocity of the particle and its Lorentz factor,
    173         $\theta, \phi$ are angles as shown on Fig.~\ref{fig:geom1}.
    174          $R^2$ is a grating efficiency parameter, that depends on the radiation angle and blaze angle.
     135                        \left( \frac{dI}{d\Omega} \right)_1=2\pi q^2 \frac{L}{d^2}\frac{1}{\lambda^3}R^2\exp{\left[-\frac{2h}{\lambda_e}\right]}
     136                \end{equation}
     137                \begin{equation}
     138                        \lambda_e=\frac{\lambda}{2\pi}\frac{\beta \gamma}{\sqrt{1+\beta^2\gamma^2\sin^2{\theta}\sin^2{\phi}}}
     139                \end{equation}
     140
     141                Here, $q$ stands for the particle charge, $\lambda$ is the wavelength of the radiation emitted, $\lambda_e$ is an ``evanescent'' wavelength,
     142                $\beta, \gamma$ are the velocity of the particle and its Lorentz factor,
     143                $\theta, \phi$ are angles as shown on Fig.~\ref{fig:geom1}.
     144                $R^2$ is a grating efficiency parameter, that depends on the radiation angle and blaze angle.
    175145         
    176          Further in the paper, the results obtained with the expression for $R^2$ taken from~\cite{p021} will be called SC, and from the~\cite{gfw}, where the grating efficiency is calculated numerically, will be referred to as GFW.
    177        
    178         \item The Resonant Diffraction Radiation (RDR) model,
    179          uses equation for the diffraction radiation (DR) of an electron passing near a conductive semi-plane
    180           and extends it onto the case of the ``N'' periodically placed strips~\cite{p021}:
     146                Further in the paper, the results obtained with the expression for $R^2$ taken from~\cite{p021} will be called SC, and from the~\cite{gfw}, where the grating efficiency is calculated numerically, will be referred to as GFW.
     147       
     148        \item
     149                The Resonant Diffraction Radiation (RDR) model,
     150                uses equation for the diffraction radiation (DR) of an electron passing near a conductive semi-plane
     151                and extends it onto the case of the ``N'' periodically placed strips~\cite{p021}:
    181152         
    182           \begin{equation}\label{eq:RDR_model}
    183                   \frac{d^2W_{RDR}}{d\omega d\Omega}=\frac{d^2W_{RDR}}{d\omega d\Omega}F_{n,cell}F_{N}
    184           \end{equation}
    185        
    186         Where $\frac{d^2W_{RDR}}{d\omega d\Omega}$ is a frequency distribution of the intensity of the RDR,
    187          $\frac{d^2W_{DR}}{d\omega d\Omega}$ is the frequency distribution of the intensity of the DR,
    188          $F_{N}$ is a factor corresponding to the interference from $N$ strips,
    189          $F_{n,cell}$ is a term, that takes into account the interference of the DR on one strip.
     153                \begin{equation}\label{eq:RDR_model}
     154                        \frac{d^2W_{RDR}}{d\omega d\Omega}=\frac{d^2W_{RDR}}{d\omega d\Omega}F_{n,cell}F_{N}
     155                \end{equation}
     156       
     157                Where $\frac{d^2W_{RDR}}{d\omega d\Omega}$ is a frequency distribution of the intensity of the RDR,
     158                $\frac{d^2W_{DR}}{d\omega d\Omega}$ is the frequency distribution of the intensity of the DR,
     159                $F_{N}$ is a factor corresponding to the interference from $N$ strips,
     160                $F_{n,cell}$ is a term, that takes into account the interference of the DR on one strip.
    190161         
    191          For a large number of periods one can integrate Eq.~\ref{eq:RDR_model} over the frequencies and obtain an analytical expression~(see paper~\cite{p021}) for the intensity of the SPR.
    192        
    193         \item The model so-called Resonant Reflection Radiation (RRR) model based on the fact that a field of a moving charged particle could be described
    194          as a sum of the virtual plain waves~\cite{Mikaelian72,Haeberl94}, that will become real after scattering on the grating.
    195          The expression for the intensity of this model is given in reference~\cite{p041}.
    196        
    197                         \begin{equation}\label{eq:BDR}
     162                For a large number of periods one can integrate Eq.~\ref{eq:RDR_model} over the frequencies and obtain an analytical expression~(see paper~\cite{p021}) for the intensity of the SPR.
     163       
     164        \item
     165                The model so-called Resonant Reflection Radiation (RRR) model based on the fact that a field of a moving charged particle could be described as a sum of the virtual plain waves~\cite{Mikaelian72,Haeberl94}, that will become real after scattering on the grating. The expression for the intensity of this model is given in reference~\cite{p041}.
     166       
     167                \begin{equation}\label{eq:BDR}
    198168                        \begin{split}
    199169                        &\left(
     
    226196                        }         
    227197                        \end{split}
    228                         \end{equation}
    229         \begin{equation}
    230         \begin{split}
    231         I&=C_1'\left( (E_x^D)^2 + (E_z^D)^2\right)
    232         \end{split}
    233         \end{equation} 
    234         Here,$E^D_Z,E_X^D$ are the $Z$ and $X$ components of the field on the detector, $I$ is the Intensity of the radiation, $X_T, Z_T$ are the $X, Z$ coordinates on the Fig.~\ref{fig:geom1}, $K_1$ is the modified Bessel function
    235 of the second order, $\chi$ equals $1$ on the grating and $0$ in the gap, $\mathcal{R}(X_T,Z_T,\theta,\phi)$ is the grating-detector distance.
    236 
    237  In reference~\cite{p041}, by assuming the distances from the grating to be infinite, the authors also derived the far-zone approximation of the RRR model.
    238  
    239 %       Although authors of the~\cite{p041} chose geometry of a plain strips
    240 %        it could be easily changed into the geometry discussed in this paper (Fig.~\ref{fig:geom1}).
     198                \end{equation}
     199                \begin{equation}
     200                        \begin{split}
     201                        I&=C_1'\left( (E_x^D)^2 + (E_z^D)^2\right)
     202                        \end{split}
     203                \end{equation} 
     204                Here,$E^D_Z,E_X^D$ are the $Z$ and $X$ components of the field on the detector, $I$ is the Intensity of the radiation, $X_T, Z_T$ are the $X, Z$ coordinates on the Fig.~\ref{fig:geom1}, $K_1$ is the modified Bessel function
     205                of the second order, $\chi$ equals $1$ on the grating and $0$ in the gap, $\mathcal{R}(X_T,Z_T,\theta,\phi)$ is the grating-detector distance.
     206
     207                In reference~\cite{p041}, by assuming the distances from the grating to be infinite, the authors also derived the far-zone approximation of the RRR model.
    241208        \end{itemize}
    242 
    243 
    244          \section{Simulation of SEY for different models}
    245          The parameters of the SPESO at SOLEIL synchrotron and E203 at FACET at SLAC experiments~{\cite{SPESO,p046}} were used in the simulation (see table~\ref{tab:SPESO_E203}). The constant of the RRR model was calculated from the assumption, that the intensities of the SC and RRR models are equal at $\theta=90^\circ$.
     209       
     210%=======================================================================================================
     211\section{Simulation of SEY for different models}
     212        The parameters of the SPESO at SOLEIL synchrotron and E203 at FACET at SLAC experiments~{\cite{SPESO,p046}} were used in the simulation (see table~\ref{tab:SPESO_E203}). The constant of the RRR model was calculated from the assumption, that the intensities of the SC and RRR models are equal at $\theta=90^\circ$.
    246213
    247214        \begin{table}[!ht]
     
    267234                \normalsize
    268235        \end{table}
    269          \begin{figure}[!ht]
     236        \begin{figure}[!ht]
    270237                        \centering
    271238                 \begin{subfigure}[t]{0.5\textwidth}
     
    281248                        \caption{Calculated curves for the RDR (solid blue line), RRR (green line with circle marker), SC (blue dashed line) and GFW (purple line with square marker) models and their ratios.}
    282249                        \label{fig:theta_RDR_SC_RRR}
    283          \end{figure}
    284 %        \begin{figure}[!ht]
    285 %                       \centering
    286 %                       \includegraphics[width=0.5\textwidth]{MOPMB004f3.png}
    287 %                       \caption{Calculated curves for the RDR, RRR, SC and GFW models. Top plot is the calculated data, bottom plot is the ratio between models}
    288 %                       \label{fig:E203_theta_RDR_SC_RRR}
    289 %        \end{figure}
     250        \end{figure}
    290251                 
    291          Taking into account an angular aperture of the detectors of 10$^\circ$, for each value of $\theta$ the intensity was integrated in $\phi$ over the range ${-5^\circ<\phi<5^\circ}$, in theta over the range ${\theta_i-5^\circ<\theta<\theta_i+5^\circ}$, where $\theta_i$ is the measurement angle. The calculation were done for ${40^\circ~<~\theta_i~<~140^\circ}$, with the step of $10^\circ$.
     252        Taking into account an angular aperture of the detectors of 10$^\circ$, for each value of $\theta$ the intensity was integrated in $\phi$ over the range ${-5^\circ<\phi<5^\circ}$, in theta over the range ${\theta_i-5^\circ<\theta<\theta_i+5^\circ}$, where $\theta_i$ is the measurement angle. The calculation were done for ${40^\circ~<~\theta_i~<~140^\circ}$, with the step of $10^\circ$.
    292253         
    293          The figures~\ref{fig:SPESO_RDR_SC_RRR},~\ref{fig:E203_RDR_SC_RRR} show the comparison of the RDR, SC, RRR in the far zone, and GFW models, and their ratio. It is seen that for the RDR, SC and RRR models the difference is not greater than a factor of 2, which is within experimental errors. The GFW model gives intensity 10 times bigger, than the RDR and SC models, which could be explained by the fact, that in GFW calculations authors take into account the width of the grating, and the grating efficiency parameter is calculated numerically, for the case of N grating facets.
    294          
    295 %        The figure~\ref{fig:SPESO_theta_RDR_SC_RRR} additionally has curve of the RRR model in the far-zone, normalized at $\theta=90^\circ$, and below the main plot is the ratio of the RRR and SC model, the ratio is not bigger than one order and have oscillations similar to the sine.
    296          
    297 %        The figure~\ref{fig:far_correction} shows the correction factor, i.e. the ratio between the intensity of the SPR in the pre-wave zone and in the far-zone. The solid red line was made by calculating the ratio between RRR model and RRR model in the pre-wave zone.
    298 %        The blue dashed line is the correction factor calculated by considering the strips of the grating as oscillators, and then calculating interference in the pre-wave zone. Their difference is within 10\%, so it could be said that they are in agreement.
    299          
    300 %       \begin{figure}[!ht]     
    301 %                       \centering
    302 %                       \includegraphics[width=0.45\textwidth]{MOPMB004f3.png}
    303 %                       \caption{Calculated curves for the RDR~(solid blue line) and SC~(dashed blue line) models. Top plot is the calculated data, bottom plot is the ratio between SC and RDR models}
    304 %                       \label{fig:SPESO_theta_RDR_SC}
    305 %        \end{figure}
    306 
    307 %        \begin{figure}[!ht]
    308 %               \centering
    309 %               \includegraphics[width=0.45\textwidth]{MOPMB004f5.png}
    310 %               \caption{The correction factor from the RRR~(solid red line) model and from the SC~(dashed blue line) model}
    311 %               \label{fig:far_correction}
    312 %         \end{figure} 
    313 
    314 %=======================================================================================================
    315 
    316 %       \subsection{Coherent Smith-Purcell Radiation}
    317 %       SPR models usually given for a single charged particle, because
    318 %        in this case it is possible to derive analytical solutions.
    319 %        To get the picture of the SPR intensity for a bunch, one need to use simple equation:
    320 %       \begin{equation}\label{eq:CohIncoh}
    321 %       \left( \frac{dI}{d\Omega} \right)_{N_e}=\left( \frac{dI}{d\Omega} \right)_1\left( N_e S_{inc} + N_e^2 S_{coh} \right)
    322 %       \end{equation} 
    323 %       Which is relation between the intensity per solid angle for a bunch
    324 %        $ \left( \frac{dI}{d\Omega} \right)_{N_e} $ and for a single electron $ \left( \frac{dI}{d\Omega} \right)_1 $,
    325 %        where $N_e$ is the number of electrons, $ S_{inc} $ and $ S_{coh} $ are coefficients corresponding
    326 %        to the incoherent and coherent cases, they are the Fourier transformations of the bunch profile.
    327 %        More detailed explanations are presented in the~\cite{p019}.
    328          
    329 %       \section{Near-field zone effect}
    330 %               In every radiative phenomenon it is possible to identify the three zones~\cite{p013}:
    331 %               \begin{enumerate}
    332 %               \item The wave-zone~--- at distances comparable to the wavelength,
    333 %               \item The far-zone~--- for the large distances at which the grating could be considered a single-point oscillator. In this zone intensity per solid angle is independent from the grating-detector
    334 %               separation.
    335 %               \item The pre-wave zone~--- between the first two zones, where the grating sizes should be taken into account. Here, intensity per solid angle is dependant on the grating-detector separation due to the
    336 %               interference effects.
    337 %               \end{enumerate}
    338 %               The criterion for far/pre-wave zones separation were calculated in  \cite{p041}. The condition for the far
    339 %               zone is:
    340 %                \begin{equation}
    341 %                \mathcal{R} \gg \frac{1}{n}dN^2(1+\cos{\theta}).
    342 %                \end{equation}
    343 %               For $N=800$ and $d=$\SI{0.05}{mm} at $\theta=90^\circ$, the far zone should be considered starting \SI{30}{m} which is much greater than available distances at the experiments, for other angles the far zone criterion is presented on the Fig.~\ref{fig:zones}, the (0,~0) coordinate correspond to the position of the grating.
    344 %               
    345 %       \begin{figure}[!ht]
    346 %               \centering
    347 %               \includegraphics[width=0.4\textwidth]{MOPMB004f2.png}
    348 %               \caption{Visualisation of the far/pre-wave zones}
    349 %               \label{fig:zones}
    350 %        \end{figure}
    351                
    352          
    353          \section{Conclusions}
     254        The figures~\ref{fig:SPESO_RDR_SC_RRR},~\ref{fig:E203_RDR_SC_RRR} show the comparison of the RDR, SC, RRR in the far zone, and GFW models, and their ratio. It is seen that for the RDR, SC and RRR models the difference is not greater than a factor of 2, which is within experimental errors. The GFW model gives intensity 10 times bigger, than the RDR and SC models, which could be explained by the fact, that in GFW calculations authors take into account the width of the grating, and the grating efficiency parameter is calculated numerically, for the case of N grating facets.
     255
     256%=======================================================================================================         
     257\section{Conclusions}
    354258        The SEY of the several leading models of the SPR were compared. The simulation shows that the SC and RDR models are in agreement within experimental errors. The RRR model is also close to the RDR and SC, but more detailed explanation on the constant is required.  More detailed consideration of the grating profile and width in the GFW simulation gives the intensity 10 times bigger. The ratios between the models are not changing much with the parameters~(except for the observation angle). This work will allow us to estimate the error due to theoretical uncertainty when SPR is used for longitudinal profile reconstruction.
    355         % The calculations were also done for the E203 experiment~\cite{p046} at FACET at SLAC, and the  conclusions were similar.
    356        
    357 %       While analysing the results of the SPR experiments, one should be aware of the pre-wave zone correction, that could be calculated using two approaches (RRR model and osillators approximation), that are giving close result.
    358        
    359        
    360         %----------------------------------------------------------------------------------------
    361         %       REFERENCE LIST
    362         %----------------------------------------------------------------------------------------
     259       
     260%----------------------------------------------------------------------------------------
     261%       REFERENCE LIST
     262%----------------------------------------------------------------------------------------
     263
    363264\begin{thebibliography}{99} % Use for 10-99 references
    364265        \bibitem{Fitch99}
     
    378279                \emph{Phys. Rev. E}, vol. 50,
    379280                pp. R4294--R4297, Dec. 1994.\\
    380 %       \bibitem{SP53}
    381 %               S.~J.~Smith and E.~M.~Purcell.,
    382 %               ``Visible Light from Localized  Surface Charges Moving across a Grating'',
    383 %               \emph{Phys. Rev.}, vol. 92,
    384 %               pp. 1069-–1069.,        1953. \\       
    385281        \bibitem{Nguyen97}
    386282                D.~C.~Nguyen,
     
    454350                San Sebastian, Spain, Sept. 2011,
    455351                paper MOP057, pp. 567--569.\\
    456                                        
    457                
    458 %       \bibitem{FELEvt},
    459 %               P.~Evtushenko \emph{et al.},
    460 %               ``Bunch length measurements at JLAB FEL'',
    461 %               in \textit{Proc. FEL 2006},
    462 %               BESSY, Berlin, Germany, Aug.--Sept. 2006,
    463 %               paper THPPH064, pp. 736--739.\\
    464 %       \bibitem{PLASMABerry06}
    465 %               F.-J.~Decker \emph{et al.},
    466 %               ``Multi-GeV Plasma Wakefield Accelera-tion Experiments'',
    467 %               In: \textit{E-167 Proposal},  2005,
    468 %               \url{https://www.slac.stanford.edu/grp/rd/epac/Proposal/E167.pdf}\\
    469 %       \bibitem{EOBerden2004}
    470 %               G.~Berden \emph{et al.},
    471 %               ``Electro-Optic Technique with Improved Time Resolution for Real-Time, Non destructive, Single-Shot     Measurements of Femtosecond Electron Bunch Profiles'',
    472 %               \emph{Phys. Rev. Lett.}, vol. 93,
    473 %               p. 114802.,  Sept. 2004. \\
    474 %       \bibitem{CTRMurokh98}
    475 %               A.~Murokh \emph{et al.},
    476 %               ``Bunch length measurement of picosecond electron beams from a photoinjector using coherent transition radiation'',
    477 %               \emph{Nucl. Instrum. Methods Phys. Res. Sect. A}, vol. 410, no. 3,
    478 %               pp. 452-–460, 1998 \\
    479 %
    480 %       \bibitem{SPExpWoods95}
    481 %               K.~J.~Woods \emph{et al.},
    482 %               ``Forward Directed Smith-Purcell Radiation from Relativistic Electrons'',
    483 %               \emph{Phys. Rev. Lett.}, vol. 74,
    484 %               pp. 1761–1764., Sept.   1992. \\
    485 %       \bibitem{p013}
    486 %               V.~A~Verzilov.,
    487 %               ``Transition radiation in the pre-wave zone'',
    488 %               \emph{Physics Letters A}, vol. 273, no. 1-2,
    489 %               pp. 135–140, 2000. \\
    490 %
    491        
    492 
    493 
    494352\end{thebibliography}
    495 %\printbibliography     
     353
    496354
    497355\end{document}
Note: See TracChangeset for help on using the changeset viewer.