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This is the work of a team

I The experiments I will present are complex.

I The results presented are the work of teams and I can not
mention all contributors.

I I want to stress that important contributions have been made
by engineers and technicians who helped build the
experiments.

I Also, undergraduate project students, interns and graduate
students have also played a key role.

I will mention the name of a few students
who have made important contributions.

Nicolas DELERUE Interactions between lasers and electrons 4 / 59



Introduction
Compton scattering

Advanced diagnostics and plasma acceleration

This is the work of a team
Interaction between lasers and electrons
The tools: Particle Accelerators and lasers
Laser-plasma acceleration

Interaction between lasers and electrons at 90◦

I Electrons and laser can interact at 90◦.

I This interaction will produce X rays (or γ rays).

I Measure the beam profile (“laser-wire”).
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Interaction between lasers and electrons at 180◦

I Electrons and laser can interact at 180◦.
I This interaction will produce higher energy X rays (or γ rays).
I Intense source of photons at wavelength difficult to reach.
I MightyLaser and ThomX.
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Interaction between lasers and electrons at 0◦

I Electrons and laser can propagate in the same direction
through a plasma.

I The laser will transfer some of its energy to the electrons.

I The electrons will be accelerated.

I Astra-Gemini, DACTOMUS and LASERIX.
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Interaction between lasers and electrons

I Most of the studies I will present today were related to
interactions between lasers and electrons.
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Other work

I I will not cover some of the work I did in high energy physics.

I I will also not cover some work related accelerator technology
the I did early in my career (mostly at KEK).
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Particle accelerators
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I Particle accelerators have been a key driver for particle and
nuclear physics.

I During the XXth century they have steadily grown in size and
in energy.
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Particle accelerators

I One of the earliest accelerator could
fit in the palm of a hand.

I The world largest collider is 27 km in
circumference.

I Until year 1989 colliders doubled in
circumference approximately every
two years.

I However this trend has stopped.

Anne-Fleur Barfuss (M2): Heritage of High Energy Physics Experiments
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Lasers

Image source: Wikipedia

I The first experimental
demonstration of a laser was
in 1960.

I The introduction of Chirped
Pulse Amplification (CPA)
in the 1980s has allowed
significant progress in peak
intensity.

I More recently fiber lasers
have allowed efficiency
gains.
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Laser-plasma acceleration

I Laser-Plasma acceleration
was first proposed in 1979.

I The first important results
were achieved in the 1990s.

I The latest published results
show that electrons have
been accelerated to energies
of more than 4 GeV over a
few cm.

I Higher energies have been
reported at conferences.
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Laser-plasma vs colliders
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I Although the trend in energy gain for plasma accelerators is
impressive, it must be compared to colliders energy with care.

I Laser-plasma accelerators: maximum energy reached.
I Colliders: energy of two stable high current beams.
I There is a long way from one to the other.
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Laser-plasma collider

https://physicstoday.scitation.org/doi/10.1063/1.3099645

I A concept of particle collider based on plasma accelerators has
nevertheless been proposed.

I However several issues need to be addressed: staging,
stability, charge, repetition rate.
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Theory of Compton scattering

νo ' νi [2γ2(1 + cos θo)]

I Inverse Compton scattering occurs between an electron and a
photon.

I The energy is transferred from the high energy particle
(electron in our case) to the low energy particle (photon).

I But the cross section is low (σT ' 6.65× 10−29 m2).
I Pscat = L × σT = 2.12× 10−24 per e− and γ

for a 25 µm x 10 µm interaction area.
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Laser-wire

I Compton scattering can be used to probe the transverse
profile of an electron beam.

I Unlike a normal wire-scanner the wire of a laser-wire is
unbreakable.

I The laser can be focussed to a very small size.

I I made several contributions to the UK laser-wire activity.
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Lens design

I Micrometer accuracy is needed to allow an optimum tonight of the ILC.

I This requires a very challenging focussing system.

I I designed and tested such a system for the ATF laser-wire.

I Later an improved design was reached with a student.

Alice Mulin (IFIPS): Optical design F/1 lens

Nicolas DELERUE Interactions between lasers and electrons 19 / 59



Introduction
Compton scattering

Advanced diagnostics and plasma acceleration

Theory of Compton scattering
Laser-wire
MightyLaser
ThomX
Synchronizing lasers and accelerators

ATF Laser-wire

I The ATF laser-wire was a demonstrator
for ILC laser-wire.

I Sub-micrometer beam size resolution was
demonstrated.

Laurent Millischer (Central Paris), Myriam Qershi (D.Phil Oxford)
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The MightyLaser experiment

I The aim of the MightyLaser experiment, also at the KEK ATF
was to demonstrate γ-rays production with a Fabry-Perot
cavity.

I This has the advantage of requiring a much lower laser power
as photons cross several thousand times the electron beam.

I I joined the project when most of the hardware had been built.

I I took the lead of the experimental campaigns in Japan.
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First experimental campaign
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I The first experimental campaign demonstrated the principle.

I We were rather fast to find laser-electrons overlap.

I Some minor issues were identified and had to be addressed
during a second experimental campaign.

Iryna Chaikovska (PhD U-Psud)
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Second experimental campaign

I The second experimental campaign was significantly delayed by the
2011 earthquake.

I The intracavity laser power was significantly increased (to 35 kW).

I Some thermal effect due to the power stored in the cavity were
observed.

I Effect on the electron beam and its lifetime.
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The ThomX project

I The MightyLaser experiment can be seen as a demonstrator
for a compact X-ray source to be built in Orsay: ThomX.

I My contribution to this project is the diagnostics, the
synchronization system and some beam dynamics studies.
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The ThomX project
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Beam dynamics in ThomX

I The accelerator is foreseen to operate at 50 MeV (at the
beginning).

I At injection the bunches coming from the linac expand
turbulently in the much wider RF buckets from the ring.

Illya Drebot (PhD U-Psud)
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Beam dynamics in ThomX: unstable bunches

Illya Drebot (PhD U-Psud)

I Collective effects can be
strong enough to destroy the
bunch.

I Strategies to mitigate these
effects will be studied soon.

Nicolas DELERUE Interactions between lasers and electrons 27 / 59



Introduction
Compton scattering

Advanced diagnostics and plasma acceleration

Theory of Compton scattering
Laser-wire
MightyLaser
ThomX
Synchronizing lasers and accelerators

Synchronizing lasers and accelerators

I Several time during my career I have faced the problem of a
pulsed laser having to be operated together with an
accelerator.

I The laser frequency is set by its oscillator and the accelerator
frequency is set by the RF.

I However for them to work together the laser pulse must be
sent exactly when the electron pulse comes with picosecond
accuracy.

I This requires a synchronization system.
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Heterodyne synchronisation

I In ThomX, the linac and the ring
also use different frequencies.

I An heterodyne synchronisation
scheme has been developed and is
also used in ESCULAP.

Heidi Rösch (M1 Darmstadt)
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The ThomX synchronisation scheme

Clément Godfrin (Magistère 1 U-Psud),
Naomi Chmielewski and Karim Khaldi (L2 U-Psud)
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Motivation for single shot measurements

https://aip.scitation.org/doi/full/10.1063/1.4817747

I Laser-plasma accelerators are not as stable as conventional
accelerators.

I To be meaningful measurements must be done in a single
shot.

I Hence I have worked on several single shot diagnostics.
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Single shot emittance measurement: Pepper-pot

I Pepper-pots are conventionally
used to measure single shot
transverse emittance at low energy.

I I studied how thicker pepper-pot
can work at higher energy.

Joe Hewlett, Michael McCann (BA and MPhys Oxford)
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Pepper-pots at high energy

I It was important to
check that the
thickness did not
affect the
phase-space.

I This was done by
calculations and
GEANT4 simulations.

Joe Hewlett (MPhys Oxford)
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Pepper-pot experiments
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Single shot emittance measurement: OTRs

I Another technique that was considered was to use Optical
Transition Radiation screens to measure the beam size at
several locations.

I This requires to check the scattering induced by a screen to
ensure that it does not affect the measurement.
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Scattering in a screen: calculations

I Derivation of the product scattering angle and particle energy:

pθ0 =
13.6 MeV

βc

√
x

X0

[
1 + 0.038ln

(
x

X0

)]

I Example: 10 µm Aluminium: pθ0 = 139 MeV mrad
I This allows to estimate the size limit for the scattering to be

negligible:
σ0 << Nscreens

εn

γ
pθ0
p

I For 10 µm Aluminium and εN = 1 mm mrad this gives 0.9 mm.

Howat Duncan (MPhys Oxford)
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Scattering in a screen: Simulations
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I Geant4 simulations were made to validate the simulations.

Stuart Moulder (MPhys Oxford)
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Single emittance measurement with OTRs

I An experiment was done at the
DIAMOND light source to check
the result.

I Beam size measured was not
significantly affected by upstream
screens.

Bas-Jan Zandt (MPhys Eindhoven)
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Single emittance measurement with OTRs: results

I The measurements were done in a highly dispersive area, so this had
to be taken into account to reconstruct the correct transverse
emittance value.

I After correction the transverse emittance measured by this method
was very close from the value measured by quadrupole scanning.
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Single emittance measurement with OTRs: interferences

I Concerns were expressed about interferences in the OTR
formation zone.

I The images we recorded did not show any such interference.

I Interferences would be visible for single wavelength but
smeared out for large bandwidth.

I An experiment is planned at CLIO to study this further.
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Phase space shearing

I Issue: at LPA the beam has a very large divergence but a very
small size.

I Refocussing is needed but dispersion may affect the beam size.
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Coherent Smith-Purcell Radiation

I Bunch length measurement is a challenge for ultra-short
bunches.

I One possibility for single shot measurements is to use the
coherent radiative phenomena.

I Coherent Smith-Purcell Radiation (CSPR) is one of such
phenomena.
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CSPR: Bunch profile reconstruction
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I In CSPR the bunch longitudinal profile is encoded in the
spectrum distribution of the radiation emitted.

I Bunch with different profiles will have different spectrum.

Vitalii Khodnevych (Kyiv National University)
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CSPR: Comparison of models

I There are several different models describing CSPR.

I Although the signal yield may be different this model
uncertainty has little influence on the sensitivity to the bunch
longitudinal profile.

Maksym Malovitsya (Kharkiv National University)
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CSPR: Profile recovery

Θ(ω0) =
2ω0

π
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∫ +∞

0

ln(ρ(ω))

ω2
0 − ω2

dω

I During the measurement process the phase of the beam
profile is lost.

I This information can be recovered using an Hilbert transform
often by using the Kramers Kronig relations (KK).

I Work to improve this technique in the case of CSPR.

Richard Tovey (MPhys Oxford)
Clémentaine Santamaria (Magistère U-Psud)
Vitalii Khodnevych (Kyiv National University)
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CSPR: Profile recovery studies
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I In most case the profile is correctly reconstructed (top) but some pathological cases occur (bottom).

I We checked that the later case is not frequent.
I We also studied the effect of noise.

Vitalii Khodnevych (Kyiv National University)
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CSPR: E-203

I I took part in several experiment related to CSPR.

I The first of them was E-203 on the FACET accelerator at
SLAC.

I 20 GeV sub-ps beam.

Ewen McLean (MPhys Oxford)
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CSPR: E-203 results on bunch length

I We were able to measure the bunch longitudinal profile for different compression.

I Unfortunately we did not have the opportunity to make a measurement at the same time than other bunch
profile measurement devices.

Mélissa Vieille Grosjean (PhD U-Psud), Solène Le Corre (ENS Lyon)
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CSPR: E-203 results on polarization

I We also studied the polarization of the radiation.
I This could have been a promising way of removing the

background but the measurement do not agree with the
theory.

Solène Le Corre, Clément Duval (ENS Lyon)
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CSPR: Experiment at SOLEIL
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I Another CSPR experiment was done at SOLEIL.

I The measurement are done by a single detector on a
translation stage.

I The aim of that experiment was to make a map of CSPR.

Mélissa Vieille Grosjean (PhD U-Psud), Vitalii Khodnevych (M2 U-Psud),
Maksym Malovitsya (Kharkiv National University), Geoffrey Bonami (M1 INSTN)
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CSPR: Experiment at CLIO
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I To test the detector geometry an experiment has been
installed at the CLIO Free Electron Laser in Orsay.

I We found new techniques to check data consistency.

Vitalii Khodnevych (M2 U-Psud)
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Laser-plasma acceleration: ESCULAP

I ESCULAP is a laser-plasma acceleration experiment with
external injection.

I It uses the PHIL photo injector and the Laserix High power
laser.
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ESCULAP: Layout
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ESCULAP: simulations

I One of the difficulty is that the accelerating volume in the
plasma is very small.

I In one of the scheme considered, the bunch is first compressed
by the plasma and then accelerated.

I This requires a specific profiling of the plasma density.
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ESCULAP: synchronisation

I PHIL and Laserix have been built separately.

I A synchronisation system is necessary to synchronize the two
machines.

Heidi Rösch (M1 Darmstadt)
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ESCULAP: compression
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I To match the plasma wavelength the electron bunch must be
compressed to less than 100 fs.

I This can be done using a magnetic compression chicane.

Ke Wang (PhD U-PSaclay)
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ESCULAP: gas cell
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I We are currently designing a gas cell that will allow to have
the density profile we need in the plasma.
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Outlook

I I have presented some of the topics on which I worked during
the past 14 years.

I Experimental work has always its challenges.

I In the coming year two major experimental facilities will start
in Paris-Saclay: ThomX and the APOLLON laser and I hope
that ESCULAP will follow soon after.

I All of them will be opportunities for interesting experiments!
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