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Introduction

This is the work of a team

» The experiments | will present are complex.

» The results presented are the work of teams and | can not
mention all contributors.

» | want to stress that important contributions have been made
by engineers and technicians who helped build the
experiments.

» Also, undergraduate project students, interns and graduate
students have also played a key role.

| will mention the name of a few students
who have made important contributions.
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Interaction between lasers and electrons at 90°

MW Laser
Laser-wire

Compton
Interaction

Electrons )

> Electrons and laser can interact at 90°.
» This interaction will produce X rays (or 7 rays).
» Measure the beam profile (“laser-wire").
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Interaction between lasers and electrons at 180°

Compton
Interaction

MightylLaser
ThomX

Electrons ) (MW Laser

Fhayy:

Electrons and laser can interact at 180°.

This interaction will produce higher energy X rays (or v rays).
Intense source of photons at wavelength difficult to reach.
MightylLaser and ThomX.
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Interaction between lasers and electrons at 0°

Laser-plasma

acceleration
Astra-Gemini
DACTOMUS
LASERIX

TW Laser;

Electrons )

v

Electrons and laser can propagate in the same direction
through a plasma.

v

The laser will transfer some of its energy to the electrons.

The electrons will be accelerated.
Astra-Gemini, DACTOMUS and LASERIX.

v

v
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Interaction between lasers and electrons

Laser-plasma

acceleration MW La se_r
- Laser-wire
Astra-Gemini
DACTOMUS Compton
LASERIX Interaction

TW Laser .
MightylLaser
ThomX

Electrons ) (MW Laser
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» Most of the studies | will present today were related to
interactions between lasers and electrons.
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Other work

Ultrafast feedback
at a warm linear collider

RF
breakdowns
Electrons ) Higgs
Electron @ extra-dim.
compositness at ILC

> | will not cover some of the work | did in high energy physics.

» | will also not cover some work related accelerator technology
the | did early in my career (mostly at KEK).
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Introduction

Particle accelerators

Electrons colliders 10 Proton colliders
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» Particle accelerators have been a key driver for particle and
nuclear physics.

» During the XXth century they have steadily grown in size and
in energy.
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Particle accelerators
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> However this trend has stopped.

Anne-Fleur Barfuss (M2): Heritage of High Energy Physics Experiments j
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Lasers
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» More recently fiber lasers
have allowed efficiency
gains.
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Laser-plasma acceleration

» Laser-Plasma acceleration

was first proposed in 1979. e Plasma scolerstors
» The first important results ‘
. . 10 i i 4
were achieved in the 1990s. ‘f o
s
> The latest published results  £*
show that electrons have 104, S
been accelerated to energies
of more than 4 GeV over a e
few cm. 10°
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Year

» Higher energies have been
reported at conferences.
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Laser-plasma vs colliders

Plasma accelerators Electrons colliders

10
10’ P
; Leemans 2014 102 b -]
S E = - s
) T 3 it
1 = Jpema %
£ g ——— e oo
> 4 rosm boam 210 ¢ e ST
5,00 g e CEsR
2 & P
i . & X A?ONE‘
. 10° bmco e
10 L ciK ”_wm=|ws«.m?§”'?
L onan
; Amiranoft
107 . . . . . , e
1990 1995 2000 2005 2010 2015 2020 1960 1970 1980 1990 2000 2010
Year Year

» Although the trend in energy gain for plasma accelerators is
impressive, it must be compared to colliders energy with care.

» Laser-plasma accelerators: maximum energy reached.

» Colliders: energy of two stable high current beams.

» There is a long way from one to the other.
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Laser-plasma collider

https://physicstoday.scitation.org/doi/10.1063/1.3099645

> A concept of particle collider based on plasma accelerators has
nevertheless been proposed.

» However several issues need to be addressed: staging,
stability, charge, repetition rate.
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Theory of Compton scattering

e € e

Vo I/,'[2")/2(1 + cosb,)]

v

Inverse Compton scattering occurs between an electron and a
photon.

The energy is transferred from the high energy particle
(electron in our case) to the low energy particle (photon).
But the cross section is low (o7 ~ 6.65 x 1072° m?).

Pscat = L x o7 = 2.12 x 10724 per e~ and v

for a 25 pum x 10 pm interaction area.

v

v

v
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Laser-wire
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» Compton scattering can be used to probe the transverse
profile of an electron beam.

» Unlike a normal wire-scanner the wire of a laser-wire is
unbreakable.

» The laser can be focussed to a very small size.
> | made several contributions to the UK laser-wire activity.
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Lens design
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Micrometer accuracy is needed to allow an optimum tonight of the ILC.
This requires a very challenging focussing system.

| designed and tested such a system for the ATF laser-wire.

vvyvyy

Later an improved design was reached with a student.

Alice Mulin (IFIPS): Optical design F/1 lens J
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ATF Laser-wire
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» Sub-micrometer beam size resolution was “E
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Laurent Millischer (Central Paris), Myriam Qershi (D.Phil Oxford) J
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The Mightylaser experiment

Compton
Interaction

MightyLaser
ThomX

Electrons )(MW Laser

*é;’}é"“'x

» The aim of the MightyLaser experiment, also at the KEK ATF
was to demonstrate -rays production with a Fabry-Perot
cavity.

» This has the advantage of requiring a much lower laser power
as photons cross several thousand times the electron beam.

v

| joined the project when most of the hardware had been built.

v

| took the lead of the experimental campaigns in Japan.
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First experimental campaign

Al MWW {

Fo = R =] Time [s] x10°

Voltage [V]

> The first experimental campaign demonstrated the principle.

» We were rather fast to find laser-electrons overlap.
» Some minor issues were identified and had to be addressed
during a second experimental campaign.

Iryna Chaikovska (PhD U-Psud) J
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Second experimental campaign
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» The second experimental campaign was significantly delayed by the
2011 earthquake.

> The intracavity laser power was significantly increased (to 35 kW).

> Some thermal effect due to the power stored in the cavity were
observed.

» Effect on the electron beam and its lifetime.
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The ThomX project

» The MightylLaser experiment can be seen as a demonstrator
for a compact X-ray source to be built in Orsay: ThomX.

» My contribution to this project is the diagnostics, the
synchronization system and some beam dynamics studies.
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ThomX project
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Beam dynamics in ThomX
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> The accelerator is foreseen to operate at 50 MeV (at the

beginning).
» At injection the bunches coming from the linac expand
turbulently in the much wider RF buckets from the ring.

lllya Drebot (PhD U-Psud)
Nicolas DELERUE Interactions between lasers and electrons 26 /59



Theory of Compton scattering
Laser-wire
Compton scattering MightyLaser
ThomX
Synchronizing lasers and accelerators

Beam dynamics in ThomX: unstable bunches
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» Collective effects can be
strong enough to destroy the

energy spread
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lya Drebot (PhD U-Psud) > Strategies to mitigate these

effects will be studied soon.
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Synchronizing lasers and accelerators

» Several time during my career | have faced the problem of a
pulsed laser having to be operated together with an
accelerator.

» The laser frequency is set by its oscillator and the accelerator
frequency is set by the RF.

» However for them to work together the laser pulse must be
sent exactly when the electron pulse comes with picosecond
accuracy.

» This requires a synchronization system.
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Heterodyne synchronisation

Laser freq.

50Hz main Linac

trigger
Trigger
50HzZ 2

Delay
generator|

Linac Clock

Trigger
\;*3

Ring Clock

jitter "Pulse LaseriX/3GHz pilote PHIL" versus time

) > In ThomX, the linac and the ring
also use different frequencies.

Trigger
#4

» An heterodyne synchronisation
scheme has been developed and is
also used in ESCULAP.

1000 10 20 120 Heidi Résch (M1 Darmstadt) J
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e ThomX synchronisation scheme

RF signals distribution
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Clément Godfrin (Magistére 1 U-Psud),
Naomi Chmielewski and Karim Khaldi (L2 U-Psud)
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Motivation for single shot measurements

Energy (MeV)
Electron number (a.u.)

9 10 11 12 13 14 15 16 17 18 19 20
Shot number

https://aip.scitation.org/doi/full/10.1063/1.4817747
» Laser-plasma accelerators are not as stable as conventional
accelerators.

» To be meaningful measurements must be done in a single
shot.

> Hence | have worked on several single shot diagnostics.
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Single shot emittance measurement: Pepper-pot

» Pepper-pots are conventionally =
. . » Gap Beamlets
used to measure single shot e 5
transverse emittance at low energy.

> | studied how thicker pepper-pot
can work at higher energy.

Joe Hewlett, Michael McCann (BA and MPhys Oxford) J

200 MeV electron penetration in tantalum 1000 MeV electron penetration in tantalum

Particle attenuation
T
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Pepper-pots at high energy

N -
. R~ 7%
> It was important to =

check that the L e
thickness did not

affect the
phase-space.

» This was done by
calculations and
GEANT4 simulations.

Joe Hewlett (MPhys Oxford) J
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Pepper-pot experiments

S Frascati
Beam Test Facility
508 MeV

Nick Shipman (MPhys Oxford) )
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Single shot emittance measurement: OTRs

I I
forward OTR OTR OTR OTR

Scees radiation R | beam |

//' e NS — N Ny =
I I

: - :
-7 “«— ra e I
| I 0.5m 0.5m 1m I
- ybackward _ e e e e e e— e = = = =

radiation

» Another technique that was considered was to use Optical
Transition Radiation screens to measure the beam size at
several locations.

» This requires to check the scattering induced by a screen to
ensure that it does not affect the measurement.
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Scattering in a screen: calculations

v

Derivation of the product scattering angle and particle energy:

13.6 MeV X X
pbp = —, | — [1 + 0.038/n (—)]
B¢ Xo Xo

Example: 10 pm Aluminium: pfy = 139 MeV mrad

This allows to estimate the size limit for the scattering to be
negligible:

v

v

o N L
0 << Nscreens
pé
~

v

For 10 pm Aluminium and ey = 1 mm mrad this gives 0.9 mm.

Howat Duncan (MPhys Oxford))
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Scattering in a screen: Simulations
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» Geant4 simulations were made to validate the simulations.

Stuart Moulder (MPhys Oxford))
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Single emittance measurement with OTRs

> An experiment was done at the
DIAMOND light source to check

the result.
» Beam size measured was not i ;
significantly affected by upstream ) :
screens. L
Bas-Jan Zandt (MPhys Eindhoven) ) éiE;T N R 1

Screens
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Single emittance measurement with OTRs: results

I ffective emittance178 9:12.1
I cmittance = 160.1211.4

0
100 120 140 160 180 200 220
emittance (nm rad)

» The measurements were done in a highly dispersive area, so this had
to be taken into account to reconstruct the correct transverse
emittance value.

» After correction the transverse emittance measured by this method
was very close from the value measured by quadrupole scanning.
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Single emittance measurement with OTRs: interferences

100 200 300 400 300 400 500 600

» Concerns were expressed about interferences in the OTR
formation zone.

» The images we recorded did not show any such interference.

> Interferences would be visible for single wavelength but
smeared out for large bandwidth.

> An experiment is planned at CLIO to study this further.
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Phase space shearing

Drift space;

'TH /
X /
U, Z/ : Focussing
x A | Quadrupole
Work in
progress!!! == Drift space;

> Issue: at LPA the beam has a very large divergence but a very

small size.

» Refocussing is

needed but dispersion may affect the beam size.
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Coherent Smith-Purcell Radiation

340 kv

3325 kv

325 kv

317 kv

NOMINAL ELECTRON ENERGIES

309 kv

1 i)

» Bunch length measurement is a challenge for ultra-short
bunches.

» One possibility for single shot measurements is to use the
coherent radiative phenomena.

» Coherent Smith-Purcell Radiation (CSPR) is one of such
phenomena.
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CSPR: Bunch profile reconstruction

Bunch profiles Expected signal
-6 FWHM=5 ps gamma = 70 -11 FWHM=5 ps gamma = 70
5X 10 gX 10
4
5
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140
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» In CSPR the bunch longitudinal profile is encoded in the
spectrum distribution of the radiation emitted.

» Bunch with different profiles will have different spectrum.

Vitalii Khodnevych (Kyiv National University) J
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CSPR: Comparison of models

Incoherent SPESO d=10mm R=310mm Incoherent E203 d=0.25mm R=220mm

di/idQ, JISr
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> There are several different models describing CSPR.

» Although the signal yield may be different this model
uncertainty has little influence on the sensitivity to the bunch
longitudinal profile.

Maksym Malovitsya (Kharkiv National University) J
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CSPR: Profile recovery

O(wo) = 2wOP/O+OO de

T wi — w?

» During the measurement process the phase of the beam
profile is lost.

» This information can be recovered using an Hilbert transform
often by using the Kramers Kronig relations (KK).

» Work to improve this technique in the case of CSPR.

Clémentaine Santamaria (Magistere U-Psud)

Richard Tovey (MPhys Oxford)
Vitalii Khodnevych (Kyiv National University) J
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CSPR: Profile recovery studies
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P In most case the profile is correctly reconstructed (top) but some pathological cases occur (bottom).

P> We checked that the later case is not frequent.
P We also studied the effect of noise.

Vitalii Khodnevych (Kyiv National University) J
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CSPR: E-203

Vacuum Chamber Gratings
(on carousel)

» | took part in several experiment related to CSPR.

» The first of them was E-203 on the FACET accelerator at
SLAC.

» 20 GeV sub-ps beam.

Ewen McLean (MPhys Oxford) )
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CSPR: E-203 results on bunch length
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P> We were able to measure the bunch longitudinal profile for different compression.

P Unfortunately we did not have the opportunity to make a measurement at the same time than other bunch
profile measurement devices.

Mélissa Vi

lle Grosjean (PhD U-Psud), Soléne Le Corre (ENS Lyon) J
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CSPR: E-203 results on polarization
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» We also studied the polarization of the radiation.

» This could have been a promising way of removing the
background but the measurement do not agree with the
theory.

Solene Le Corre, Clément Duval (ENS Lyon) )
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CSPR: Experiment at SOLEIL
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» Another CSPR experiment was done at SOLEIL.

» The measurement are done by a single detector on a
translation stage.

» The aim of that experiment was to make a map of CSPR.

Mélissa Vieille Grosjean (PhD U-Psud), Vitalii Khodnevych (M2 U-Psud),
Maksym Malovitsya (Kharkiv National University), Geoffrey Bonami (M1 INSTN)
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CSPR: Experiment at CLIO

Reconstructed profile
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» To test the detector geometry an experiment has been
installed at the CLIO Free Electron Laser in Orsay.

» We found new techniques to check data consistency.

Vitalii Khodnevych (M2 U-Psud) J
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Laser-plasma acceleration: ESCULAP

A dipole —— reference particle
quadrupole —— higher ener

g gy

| sextupole lower energy

dp/p . dp/p
Z

2 5.
M 9.95MeV

» ESCULAP is a laser-plasma acceleration experiment with
external injection.

> It uses the PHIL photo injector and the Laserix High power
laser.
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ESCULAP: Layo
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ESCULAP: simulations

» One of the difficulty is that the accelerating volume in the
plasma is very small.

> In one of the scheme considered, the bunch is first compressed
by the plasma and then accelerated.

» This requires a specific profiling of the plasma density.
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ESCULAP: synchronisation
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» PHIL and Laserix have been built separately.

> A synchronisation system is necessary to synchronize the two
machines.

Heidi Résch (M1 Darmstadt) )
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Advanced diagnostics and plasma acceleration

ESCULAP: compression
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» To match the plasma wavelength the electron bunch must be

compressed to less than 100fs.

Single shot emittance measurement
Single shot longitudinal profile measurement
Laser-plasma acceleration: ESCULAP
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» This can be done using a magnetic compression chicane.

Nicolas DELERUE

Ke Wang (PhD U-PSaclay)

0.8

J
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Advanced diagnostics and plasma acceleration

ESCULAP: gas cell
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» We are currently designing a gas cell that will allow to have
the density profile we need in the plasma.
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Outlook

v

| have presented some of the topics on which | worked during
the past 14 years.

» Experimental work has always its challenges.

> In the coming year two major experimental facilities will start
in Paris-Saclay: ThomX and the APOLLON Iaser and | hope
that ESCULAP will follow soon after.

> All of them will be opportunities for interesting experiments!
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