| 1 | <html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>5.2. Physics Processes</title><link rel="stylesheet" href="../xml/XSLCustomizationLayer/G4HTMLStylesheet.css" type="text/css"><meta name="generator" content="DocBook XSL Stylesheets V1.71.1"><link rel="start" href="index.html" title="Geant4 User's Guide for Application Developers"><link rel="up" href="ch05.html" title="Chapter 5. Tracking and Physics"><link rel="prev" href="ch05.html" title="Chapter 5. Tracking and Physics"><link rel="next" href="ch05s03.html" title="5.3. Particles"><script language="JavaScript">
|
|---|
| 2 | function remote_win(fName)
|
|---|
| 3 | {
|
|---|
| 4 | var url = "AllResources/Detector/geometry.src/" + fName;
|
|---|
| 5 | RemoteWin=window.open(url,"","resizable=no,toolbar=0,location=0,directories=0,status=0,menubar=0,scrollbars=0,copyhistory=0,width=520,height=520")
|
|---|
| 6 | RemoteWin.creator=self
|
|---|
| 7 | }
|
|---|
| 8 | </script></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">5.2.
|
|---|
| 9 | Physics Processes
|
|---|
| 10 | </th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch05.html"><img src="AllResources/IconsGIF/prev.gif" alt="Prev"></a> </td><th width="60%" align="center">Chapter 5.
|
|---|
| 11 | Tracking and Physics
|
|---|
| 12 | </th><td width="20%" align="right"> <a accesskey="n" href="ch05s03.html"><img src="AllResources/IconsGIF/next.gif" alt="Next"></a></td></tr></table><hr></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="sect.PhysProc"></a>5.2.
|
|---|
| 13 | Physics Processes
|
|---|
| 14 | </h2></div></div></div><p>
|
|---|
| 15 | Physics processes describe how particles interact with a
|
|---|
| 16 | material. Seven major categories of processes are provided by
|
|---|
| 17 | Geant4:
|
|---|
| 18 |
|
|---|
| 19 | </p><div class="orderedlist"><ol type="1" compact><li><p>
|
|---|
| 20 | <a href="ch05s02.html#sect.PhysProc.EleMag" title="5.2.1. Electromagnetic Interactions">
|
|---|
| 21 | electromagnetic
|
|---|
| 22 | </a>
|
|---|
| 23 | ,
|
|---|
| 24 | </p></li><li><p>
|
|---|
| 25 | <a href="ch05s02.html#sect.PhysProc.Had" title="5.2.2. Hadronic Interactions">
|
|---|
| 26 | hadronic
|
|---|
| 27 | </a>
|
|---|
| 28 | ,
|
|---|
| 29 | </p></li><li><p>
|
|---|
| 30 | <a href="ch05s02.html#sect.PhysProc.Decay" title="5.2.3. Particle Decay Process">
|
|---|
| 31 | decay
|
|---|
| 32 | </a>
|
|---|
| 33 | ,
|
|---|
| 34 | </p></li><li><p>
|
|---|
| 35 | <a href="ch05s02.html#sect.PhysProc.PhotoHad" title="5.2.4. Photolepton-hadron Processes">
|
|---|
| 36 | photolepton-hadron
|
|---|
| 37 | </a>
|
|---|
| 38 | ,
|
|---|
| 39 | </p></li><li><p>
|
|---|
| 40 | <a href="ch05s02.html#sect.PhysProc.Photo" title="5.2.5. Optical Photon Processes">
|
|---|
| 41 | optical
|
|---|
| 42 | </a>
|
|---|
| 43 | ,
|
|---|
| 44 | </p></li><li><p>
|
|---|
| 45 | <a href="ch05s02.html#sect.PhysProc.Param" title="5.2.6. Parameterization">
|
|---|
| 46 | parameterization
|
|---|
| 47 | </a>
|
|---|
| 48 | and
|
|---|
| 49 | </p></li><li><p>
|
|---|
| 50 | <a href="ch05s02.html#sect.PhysProc.Trans" title="5.2.7. Transportation Process">
|
|---|
| 51 | transportation
|
|---|
| 52 | </a>
|
|---|
| 53 | .
|
|---|
| 54 | </p></li></ol></div><p>
|
|---|
| 55 | </p><p>
|
|---|
| 56 | The generalization and abstraction of physics processes is a key
|
|---|
| 57 | issue in the design of Geant4. All physics processes are treated in
|
|---|
| 58 | the same manner from the tracking point of view. The Geant4
|
|---|
| 59 | approach enables anyone to create a process and assign it to a
|
|---|
| 60 | particle type. This openness should allow the creation of processes
|
|---|
| 61 | for novel, domain-specific or customised purposes by individuals or
|
|---|
| 62 | groups of users.
|
|---|
| 63 | </p><p>
|
|---|
| 64 | Each process has two groups of methods which play an important
|
|---|
| 65 | role in tracking, <code class="literal">GetPhysicalInteractionLength</code> (GPIL) and
|
|---|
| 66 | <code class="literal">DoIt</code>. The GPIL method gives the step length from the
|
|---|
| 67 | current space-time point to the next space-time point. It does this
|
|---|
| 68 | by calculating the probability of interaction based on the
|
|---|
| 69 | process's cross section information. At the end of this step the
|
|---|
| 70 | <code class="literal">DoIt</code> method should be invoked. The <code class="literal">DoIt</code> method
|
|---|
| 71 | implements the details of the interaction, changing the particle's
|
|---|
| 72 | energy, momentum, direction and position, and producing secondary
|
|---|
| 73 | tracks if required. These changes are recorded as
|
|---|
| 74 | <span class="emphasis"><em>G4VParticleChange</em></span> objects(see
|
|---|
| 75 | <a href="ch05s02.html#brhead.PhysProc.PrtChng">
|
|---|
| 76 | Particle Change</a>).
|
|---|
| 77 | </p><h5><a name="id456777"></a>
|
|---|
| 78 | G4VProcess
|
|---|
| 79 | </h5><p>
|
|---|
| 80 | <span class="emphasis"><em>G4VProcess</em></span> is the base class for all physics processes.
|
|---|
| 81 | Each physics process must implement virtual methods of
|
|---|
| 82 | <span class="emphasis"><em>G4VProcess</em></span> which describe the interaction (DoIt) and
|
|---|
| 83 | determine when an interaction should occur (GPIL). In order to
|
|---|
| 84 | accommodate various types of interactions <span class="emphasis"><em>G4VProcess</em></span>
|
|---|
| 85 | provides three <code class="literal">DoIt</code> methods:
|
|---|
| 86 |
|
|---|
| 87 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 88 | <code class="literal">G4VParticleChange* AlongStepDoIt( const G4Track& track,
|
|---|
| 89 | const G4Step& stepData )</code>
|
|---|
| 90 | </p><p>
|
|---|
| 91 | This method is invoked while <span class="emphasis"><em>G4SteppingManager</em></span> is
|
|---|
| 92 | transporting a particle through one step. The corresponding
|
|---|
| 93 | <code class="literal">AlongStepDoIt</code> for each defined process is applied for
|
|---|
| 94 | every step regardless of which process produces the minimum step
|
|---|
| 95 | length. Each resulting change to the track information is recorded
|
|---|
| 96 | and accumulated in <span class="emphasis"><em>G4Step</em></span>. After all processes have been
|
|---|
| 97 | invoked, changes due to <code class="literal">AlongStepDoIt</code> are applied to
|
|---|
| 98 | <span class="emphasis"><em>G4Track</em></span>, including the particle relocation and the safety
|
|---|
| 99 | update. Note that after the invocation of <code class="literal">AlongStepDoIt</code>,
|
|---|
| 100 | the endpoint of the <span class="emphasis"><em>G4Track</em></span> object is in a new volume if the
|
|---|
| 101 | step was limited by a geometric boundary. In order to obtain
|
|---|
| 102 | information about the old volume, <span class="emphasis"><em>G4Step</em></span> must be accessed,
|
|---|
| 103 | since it contains information about both endpoints of a step.
|
|---|
| 104 | </p><p>
|
|---|
| 105 | </p></li><li><p>
|
|---|
| 106 | <code class="literal">G4VParticleChange* PostStepDoIt( const G4Track& track,
|
|---|
| 107 | const G4Step& stepData )</code>
|
|---|
| 108 | </p><p>
|
|---|
| 109 | This method is invoked at the end point of a step, only if its
|
|---|
| 110 | process has produced the minimum step length, or if the process is
|
|---|
| 111 | forced to occur. <span class="emphasis"><em>G4Track</em></span> will be updated after each
|
|---|
| 112 | invocation of <code class="literal">PostStepDoIt</code>, in contrast to the
|
|---|
| 113 | <code class="literal">AlongStepDoIt</code> method.
|
|---|
| 114 | </p><p>
|
|---|
| 115 | </p></li><li><p>
|
|---|
| 116 | <code class="literal">G4VParticleChange* AtRestDoIt( const G4Track& track,
|
|---|
| 117 | const G4Step& stepData )</code>
|
|---|
| 118 | </p><p>
|
|---|
| 119 | This method is invoked only for stopped particles, and only if
|
|---|
| 120 | its process produced the minimum step length or the process is
|
|---|
| 121 | forced to occur.
|
|---|
| 122 | </p><p>
|
|---|
| 123 | </p></li></ul></div><p>
|
|---|
| 124 | </p><p>
|
|---|
| 125 | For each of the above <code class="literal">DoIt</code> methods <span class="emphasis"><em>G4VProcess</em></span>
|
|---|
| 126 | provides a corresponding pure virtual GPIL method:
|
|---|
| 127 |
|
|---|
| 128 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 129 | <code class="literal">G4double PostStepGetPhysicalInteractionLength( const
|
|---|
| 130 | G4Track& track, G4double previousStepSize, G4ForceCondition*
|
|---|
| 131 | condition )</code>
|
|---|
| 132 | </p><p>
|
|---|
| 133 | This method generates the step length allowed by its process. It
|
|---|
| 134 | also provides a flag to force the interaction to occur regardless
|
|---|
| 135 | of its step length.
|
|---|
| 136 | </p><p>
|
|---|
| 137 | </p></li><li><p>
|
|---|
| 138 | <code class="literal">G4double AlongStepGetPhysicalInteractionLength( const
|
|---|
| 139 | G4Track& track, G4double previousStepSize, G4double
|
|---|
| 140 | currentMinimumStep, G4double& proposedSafety, G4GPILSelection*
|
|---|
| 141 | selection )</code>
|
|---|
| 142 | </p><p>
|
|---|
| 143 | This method generates the step length allowed by its process.
|
|---|
| 144 | </p><p>
|
|---|
| 145 | </p></li><li><p>
|
|---|
| 146 | <code class="literal">G4double AtRestGetPhysicalInteractionLength( const
|
|---|
| 147 | G4Track& track, G4ForceCondition* condition )</code>
|
|---|
| 148 | </p><p>
|
|---|
| 149 | This method generates the step length in time allowed by its
|
|---|
| 150 | process. It also provides a flag to force the interaction to occur
|
|---|
| 151 | regardless of its step length.
|
|---|
| 152 | </p><p>
|
|---|
| 153 | </p></li></ul></div><p>
|
|---|
| 154 | </p><p>
|
|---|
| 155 | Other pure virtual methods in <span class="emphasis"><em>G4VProcess</em></span> follow:
|
|---|
| 156 |
|
|---|
| 157 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 158 | <code class="literal">virtual G4bool IsApplicable(const
|
|---|
| 159 | G4ParticleDefinition&)</code>
|
|---|
| 160 | </p><p>
|
|---|
| 161 | returns true if this process object is applicable to the
|
|---|
| 162 | particle type.
|
|---|
| 163 | </p><p>
|
|---|
| 164 | </p></li><li><p>
|
|---|
| 165 | <code class="literal">virtual void PreparePhysicsTable(const
|
|---|
| 166 | G4ParticleDefinition&)</code> and
|
|---|
| 167 | </p></li><li><p>
|
|---|
| 168 | <code class="literal">virtual void BuildPhysicsTable(const
|
|---|
| 169 | G4ParticleDefinition&)</code>
|
|---|
| 170 | </p><p>
|
|---|
| 171 | is messaged by the process manager, whenever cross section
|
|---|
| 172 | tables should be prepared and rebuilt due to changing cut-off
|
|---|
| 173 | values. It is not mandatory if the process is not affected by
|
|---|
| 174 | cut-off values.
|
|---|
| 175 | </p><p>
|
|---|
| 176 | </p></li><li><p>
|
|---|
| 177 | <code class="literal">virtual void StartTracking()</code> and
|
|---|
| 178 | </p></li><li><p>
|
|---|
| 179 | <code class="literal">virtual void EndTracking()</code>
|
|---|
| 180 | </p><p>
|
|---|
| 181 | are messaged by the tracking manager at the beginning and end of
|
|---|
| 182 | tracking the current track.
|
|---|
| 183 | </p><p>
|
|---|
| 184 | </p></li></ul></div><p>
|
|---|
| 185 | </p><h5><a name="id457064"></a>
|
|---|
| 186 | Other base classes for processes
|
|---|
| 187 | </h5><p>
|
|---|
| 188 | Specialized processes may be derived from seven additional
|
|---|
| 189 | virtual base classes which are themselves derived from
|
|---|
| 190 | <span class="emphasis"><em>G4VProcess</em></span>. Three of these classes are used for simple
|
|---|
| 191 | processes:
|
|---|
| 192 |
|
|---|
| 193 | </p><div class="variablelist"><dl><dt><span class="term"><span class="emphasis"><em>G4VRestProcess</em></span></span></dt><dd><p>
|
|---|
| 194 | Processes using only the <code class="literal">AtRestDoIt</code> method.
|
|---|
| 195 | </p><p>
|
|---|
| 196 | example: neutron capture
|
|---|
| 197 | </p></dd><dt><span class="term"><span class="emphasis"><em>G4VDiscreteProcess</em></span></span></dt><dd><p>
|
|---|
| 198 | Processes using only the <code class="literal">PostStepDoIt</code> method.
|
|---|
| 199 | </p><p>
|
|---|
| 200 | example: compton scattering, hadron inelastic interaction
|
|---|
| 201 | </p></dd></dl></div><p>
|
|---|
| 202 | </p><p>
|
|---|
| 203 | The other four classes are provided for rather complex
|
|---|
| 204 | processes:
|
|---|
| 205 |
|
|---|
| 206 | </p><div class="variablelist"><dl><dt><span class="term"><span class="emphasis"><em>G4VContinuousDiscreteProcess</em></span></span></dt><dd><p>
|
|---|
| 207 | Processes using both <code class="literal">AlongStepDoIt</code> and
|
|---|
| 208 | <code class="literal">PostStepDoIt</code> methods.
|
|---|
| 209 | </p><p>
|
|---|
| 210 | example: transportation, ionisation(energy loss and delta ray)
|
|---|
| 211 | </p></dd><dt><span class="term"><span class="emphasis"><em>G4VRestDiscreteProcess</em></span></span></dt><dd><p>
|
|---|
| 212 | Processes using both <code class="literal">AtRestDoIt</code> and
|
|---|
| 213 | <code class="literal">PostStepDoIt</code> methods.
|
|---|
| 214 | </p><p>
|
|---|
| 215 | example: positron annihilation, decay (both in flight and at rest)
|
|---|
| 216 | </p></dd><dt><span class="term"><span class="emphasis"><em>G4VRestContinuousProcess</em></span></span></dt><dd><p>
|
|---|
| 217 | Processes using both <code class="literal">AtRestDoIt</code> and
|
|---|
| 218 | <code class="literal">AlongStepDoIt</code> methods.
|
|---|
| 219 | </p></dd><dt><span class="term"><span class="emphasis"><em>G4VRestContinuousDiscreteProcess</em></span></span></dt><dd><p>
|
|---|
| 220 | Processes using <code class="literal">AtRestDoIt</code>,
|
|---|
| 221 | <code class="literal">AlongStepDoIt and</code> PostStepDoIt methods.
|
|---|
| 222 | </p></dd></dl></div><p>
|
|---|
| 223 | </p><h5><a name="brhead.PhysProc.PrtChng"></a>
|
|---|
| 224 | Particle change
|
|---|
| 225 | </h5><p>
|
|---|
| 226 | <span class="emphasis"><em>G4VParticleChange</em></span> and its descendants are used to store
|
|---|
| 227 | the final state information of the track, including secondary
|
|---|
| 228 | tracks, which has been generated by the <code class="literal">DoIt</code> methods. The
|
|---|
| 229 | instance of <span class="emphasis"><em>G4VParticleChange</em></span> is the only object whose
|
|---|
| 230 | information is updated by the physics processes, hence it is
|
|---|
| 231 | responsible for updating the step. The stepping manager collects
|
|---|
| 232 | secondary tracks and only sends requests via particle change to
|
|---|
| 233 | update <span class="emphasis"><em>G4Step</em></span>.
|
|---|
| 234 | </p><p>
|
|---|
| 235 | <span class="emphasis"><em>G4VParticleChange</em></span> is introduced as an abstract class. It
|
|---|
| 236 | has a minimal set of methods for updating <span class="emphasis"><em>G4Step</em></span> and
|
|---|
| 237 | handling secondaries. A physics process can therefore define its
|
|---|
| 238 | own particle change derived from <span class="emphasis"><em>G4VParticleChange</em></span>. Three
|
|---|
| 239 | pure virtual methods are provided,
|
|---|
| 240 |
|
|---|
| 241 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 242 | <code class="literal">virtual G4Step* UpdateStepForAtRest( G4Step* step)</code>,
|
|---|
| 243 | </p></li><li><p>
|
|---|
| 244 | <code class="literal">virtual G4Step* UpdateStepForAlongStep( G4Step* step )</code>
|
|---|
| 245 | and
|
|---|
| 246 | </p></li><li><p>
|
|---|
| 247 | <code class="literal">virtual G4Step* UpdateStepForPostStep( G4Step* step)</code>,
|
|---|
| 248 | </p></li></ul></div><p>
|
|---|
| 249 |
|
|---|
| 250 | which correspond to the three <code class="literal">DoIt</code> methods of
|
|---|
| 251 | <span class="emphasis"><em>G4VProcess</em></span>. Each derived class should implement these
|
|---|
| 252 | methods.
|
|---|
| 253 | </p><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.EleMag"></a>5.2.1.
|
|---|
| 254 | Electromagnetic Interactions
|
|---|
| 255 | </h3></div></div></div><p>
|
|---|
| 256 | This section summarizes the electromagnetic physics processes which
|
|---|
| 257 | are installed in Geant4. For details on the implementation of these
|
|---|
| 258 | processes please refer to the
|
|---|
| 259 | <a href="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html" target="_top">
|
|---|
| 260 | <span class="bold"><strong>Physics Reference Manual</strong></span></a>.
|
|---|
| 261 | </p><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.EleMag.Stand"></a>5.2.1.1.
|
|---|
| 262 | "Standard" Electromagnetic Processes
|
|---|
| 263 | </h4></div></div></div><p>
|
|---|
| 264 | The following is a summary of the standard electromagnetic
|
|---|
| 265 | processes available in Geant4.
|
|---|
| 266 |
|
|---|
| 267 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 268 | Photon processes
|
|---|
| 269 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 270 | Compton scattering (class name <span class="emphasis"><em>G4ComptonScattering</em></span>)
|
|---|
| 271 | </p></li><li><p>
|
|---|
| 272 | Gamma conversion (also called pair production, class name
|
|---|
| 273 | <span class="emphasis"><em>G4GammaConversion</em></span>)
|
|---|
| 274 | </p></li><li><p>
|
|---|
| 275 | Photo-electric effect (class name <span class="emphasis"><em>G4PhotoElectricEffect</em></span>)
|
|---|
| 276 | </p></li><li><p>
|
|---|
| 277 | Muon pair production (class name <span class="emphasis"><em>G4GammaConversionToMuons</em></span>)
|
|---|
| 278 | </p></li></ul></div><p>
|
|---|
| 279 | </p></li><li><p>
|
|---|
| 280 | Electron/positron processes
|
|---|
| 281 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 282 | Ionisation and delta ray production (class name
|
|---|
| 283 | <span class="emphasis"><em>G4eIonisation</em></span>)
|
|---|
| 284 | </p></li><li><p>
|
|---|
| 285 | Bremsstrahlung (class name <span class="emphasis"><em>G4eBremsstrahlung</em></span>)
|
|---|
| 286 | </p></li><li><p>
|
|---|
| 287 | Positron annihilation into two gammas (class name
|
|---|
| 288 | <span class="emphasis"><em>G4eplusAnnihilation</em></span>)
|
|---|
| 289 | </p></li><li><p>
|
|---|
| 290 | Positron annihilation into two muons (class name
|
|---|
| 291 | <span class="emphasis"><em>G4AnnihiToMuPair</em></span>)
|
|---|
| 292 | </p></li><li><p>
|
|---|
| 293 | Positron annihilation into hadrons (class name
|
|---|
| 294 | <span class="emphasis"><em>G4eeToHadrons</em></span>)
|
|---|
| 295 | </p></li></ul></div><p>
|
|---|
| 296 | </p></li><li><p>
|
|---|
| 297 | Muon processes
|
|---|
| 298 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 299 | Ionisation and delta ray production (class name
|
|---|
| 300 | <span class="emphasis"><em>G4MuIonisation</em></span>)
|
|---|
| 301 | </p></li><li><p>
|
|---|
| 302 | Bremsstrahlung (class name <span class="emphasis"><em>G4MuBremsstrahlung</em></span>)
|
|---|
| 303 | </p></li><li><p>
|
|---|
| 304 | e+e- pair production (class name
|
|---|
| 305 | <span class="emphasis"><em>G4MuPairProduction</em></span>)
|
|---|
| 306 | </p></li></ul></div><p>
|
|---|
| 307 | </p></li><li><p>
|
|---|
| 308 | Hadron/ion processes
|
|---|
| 309 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 310 | Ionisation (class name <span class="emphasis"><em>G4hIonisation</em></span>)
|
|---|
| 311 | </p></li><li><p>
|
|---|
| 312 | Ionisation for ions (class name <span class="emphasis"><em>G4ionIonisation</em></span>)
|
|---|
| 313 | </p></li><li><p>
|
|---|
| 314 | Ionisation for ions in low-density media (class name <span class="emphasis"><em>G4ionGasIonisation</em></span>)
|
|---|
| 315 | </p></li><li><p>
|
|---|
| 316 | Ionisation for heavy exotic particles (class name
|
|---|
| 317 | <span class="emphasis"><em>G4hhIonisation</em></span>)
|
|---|
| 318 | </p></li><li><p>
|
|---|
| 319 | Ionisation for classical magnetic monopole (class name
|
|---|
| 320 | <span class="emphasis"><em>G4mplIonisation</em></span>)
|
|---|
| 321 | </p></li></ul></div><p>
|
|---|
| 322 | </p></li><li><p>
|
|---|
| 323 | Coulomb scattering processes
|
|---|
| 324 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 325 | A general process in the sense that the same process/class
|
|---|
| 326 | is used to simulate the multiple scattering of the all charged
|
|---|
| 327 | particles (class name <span class="emphasis"><em>G4MultipleScattering</em></span>)
|
|---|
| 328 | </p></li><li><p>
|
|---|
| 329 | Specialised process for more fast simulation the multiple scattering
|
|---|
| 330 | of muons and hadrons (class name <span class="emphasis"><em>G4hMultipleScattering</em></span>)
|
|---|
| 331 | </p></li><li><p>
|
|---|
| 332 | Alternative process (beta-version) for the multiple scattering
|
|---|
| 333 | of muons (class name <span class="emphasis"><em>G4MuMultipleScattering</em></span>)
|
|---|
| 334 | </p></li><li><p>
|
|---|
| 335 | Alternative process for simulation of single Coulomb scattering
|
|---|
| 336 | of all charged particles (class name <span class="emphasis"><em>G4CoulombScattering</em></span>)
|
|---|
| 337 | </p></li><li><p>
|
|---|
| 338 | Alternative process for simulation of single Coulomb scattering
|
|---|
| 339 | of ions (class name <span class="emphasis"><em>G4ScreenedNuclearRecoil</em></span>)
|
|---|
| 340 | </p></li></ul></div><p>
|
|---|
| 341 | </p></li><li><p>
|
|---|
| 342 | Processes for simulation of polarized electron and gamma beams
|
|---|
| 343 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 344 | Compton scattering of circularly polarized gamma beam on
|
|---|
| 345 | polarized target (class name <span class="emphasis"><em>G4PolarizedCompton</em></span>)
|
|---|
| 346 | </p></li><li><p>
|
|---|
| 347 | Pair production induced by circularly polarized gamma beam
|
|---|
| 348 | (class name <span class="emphasis"><em>G4PolarizedGammaConversion</em></span>)
|
|---|
| 349 | </p></li><li><p>
|
|---|
| 350 | Photo-electric effect induced by circularly polarized gamma beam
|
|---|
| 351 | (class name <span class="emphasis"><em>G4PolarizedPhotoElectricEffect</em></span>)
|
|---|
| 352 | </p></li><li><p>
|
|---|
| 353 | Bremsstrahlung of polarized electrons and positrons
|
|---|
| 354 | (class name <span class="emphasis"><em>G4ePolarizedBremsstrahlung</em></span>)
|
|---|
| 355 | </p></li><li><p>
|
|---|
| 356 | Ionisation of polarized electron and positron beam
|
|---|
| 357 | (class name <span class="emphasis"><em>G4ePolarizedIonisation</em></span>)
|
|---|
| 358 | </p></li><li><p>
|
|---|
| 359 | Annihilation of polarized positrons
|
|---|
| 360 | (class name <span class="emphasis"><em>G4eplusPolarizedAnnihilation</em></span>)
|
|---|
| 361 | </p></li></ul></div><p>
|
|---|
| 362 | </p></li><li><p>
|
|---|
| 363 | Processes for simulation of X-rays and optical protons production by charged particles
|
|---|
| 364 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 365 | Synchrotron radiation (class name <span class="emphasis"><em>G4SynchrotronRadiation</em></span>)
|
|---|
| 366 | </p></li><li><p>
|
|---|
| 367 | Transition radiation
|
|---|
| 368 | (class name <span class="emphasis"><em>G4TransitionRadiation</em></span>)
|
|---|
| 369 | </p></li><li><p>
|
|---|
| 370 | Cerenkov radiation
|
|---|
| 371 | (class name <span class="emphasis"><em>G4Cerenkov</em></span>)
|
|---|
| 372 | </p></li><li><p>
|
|---|
| 373 | Scintillations
|
|---|
| 374 | (class name <span class="emphasis"><em>G4Scintillation</em></span>)
|
|---|
| 375 | </p></li></ul></div><p>
|
|---|
| 376 | </p></li><li><p>
|
|---|
| 377 | The processes described above use physics model classes, which
|
|---|
| 378 | may be combined according to particle energy. It is possible to
|
|---|
| 379 | change the energy range over which different models are valid, and
|
|---|
| 380 | to apply other models specific to particle type, energy range, and
|
|---|
| 381 | G4Region. The following alternative models are available:
|
|---|
| 382 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 383 | Ionisation in thin absorbers (class name <span class="emphasis"><em>G4PAIModel</em></span>)
|
|---|
| 384 | </p></li></ul></div><p>
|
|---|
| 385 | </p></li></ul></div><p>
|
|---|
| 386 | </p><p>
|
|---|
| 387 | An example of the registration of these processes in a physics list
|
|---|
| 388 | is given in <a href="ch05s02.html#programlist_PhysProc_1" title="Example 5.1.
|
|---|
| 389 | Registration of standard electromagnetic processes
|
|---|
| 390 | ">Example 5.1</a>,
|
|---|
| 391 | similar method is used in EM-builders of reference physics
|
|---|
| 392 | lists ($G4INSTALL/source/physics_lists/builders) and in
|
|---|
| 393 | EM examples ($G4INSTALL/examples/extended/electromagnetic).
|
|---|
| 394 |
|
|---|
| 395 | </p><div class="example"><a name="programlist_PhysProc_1"></a><p class="title"><b>Example 5.1.
|
|---|
| 396 | <code class="literal">Registration of standard electromagnetic processes</code>
|
|---|
| 397 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 398 | void PhysicsList::ConstructEM()
|
|---|
| 399 |
|
|---|
| 400 | {
|
|---|
| 401 |
|
|---|
| 402 | theParticleIterator->reset();
|
|---|
| 403 |
|
|---|
| 404 | while( (*theParticleIterator)() ){
|
|---|
| 405 |
|
|---|
| 406 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 407 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 408 | G4String particleName = particle->GetParticleName();
|
|---|
| 409 |
|
|---|
| 410 | if (particleName == "gamma") {
|
|---|
| 411 |
|
|---|
| 412 | pmanager->AddDiscreteProcess(new G4PhotoElectricEffect);
|
|---|
| 413 | pmanager->AddDiscreteProcess(new G4ComptonScattering);
|
|---|
| 414 | pmanager->AddDiscreteProcess(new G4GammaConversion);
|
|---|
| 415 |
|
|---|
| 416 | } else if (particleName == "e-") {
|
|---|
| 417 |
|
|---|
| 418 | pmanager->AddProcess(new G4MultipleScattering, -1, 1, 1);
|
|---|
| 419 | pmanager->AddProcess(new G4eIonisation, -1, 2, 2);
|
|---|
| 420 | pmanager->AddProcess(new G4eBremsstrahlung, -1, 3, 3);
|
|---|
| 421 |
|
|---|
| 422 | } else if (particleName == "e+") {
|
|---|
| 423 |
|
|---|
| 424 | pmanager->AddProcess(new G4MultipleScattering, -1, 1, 1);
|
|---|
| 425 | pmanager->AddProcess(new G4eIonisation, -1, 2, 2);
|
|---|
| 426 | pmanager->AddProcess(new G4eBremsstrahlung, -1, 3, 3);
|
|---|
| 427 | pmanager->AddProcess(new G4eplusAnnihilation, 0,-1, 4);
|
|---|
| 428 |
|
|---|
| 429 | } else if( particleName == "mu+" ||
|
|---|
| 430 | particleName == "mu-" ) {
|
|---|
| 431 |
|
|---|
| 432 | pmanager->AddProcess(new G4hMultipleScattering,-1, 1, 1);
|
|---|
| 433 | pmanager->AddProcess(new G4MuIonisation, -1, 2, 2);
|
|---|
| 434 | pmanager->AddProcess(new G4MuBremsstrahlung, -1, 3, 3);
|
|---|
| 435 | pmanager->AddProcess(new G4MuPairProduction, -1, 4, 4);
|
|---|
| 436 |
|
|---|
| 437 | } else if (particleName == "alpha" ||
|
|---|
| 438 | particleName == "He3" ||
|
|---|
| 439 | particleName == "GenericIon") {
|
|---|
| 440 | // ions with charge >= +2
|
|---|
| 441 | pmanager->AddProcess(new G4hMultipleScattering,-1, 1, 1);
|
|---|
| 442 | pmanager->AddProcess(new G4ionIonisation, -1, 2, 2);
|
|---|
| 443 |
|
|---|
| 444 | } else if ((!particle->IsShortLived()) &&
|
|---|
| 445 | (particle->GetPDGCharge() != 0.0) &&
|
|---|
| 446 | (particle->GetParticleName() != "chargedgeantino")) {
|
|---|
| 447 | //all others charged particles except geantino and short-lived
|
|---|
| 448 | pmanager->AddProcess(new G4hMultipleScattering,-1, 1, 1);
|
|---|
| 449 | pmanager->AddProcess(new G4hIonisation, -1, 2, 2);
|
|---|
| 450 |
|
|---|
| 451 | }
|
|---|
| 452 | }
|
|---|
| 453 | }
|
|---|
| 454 | </pre></div></div><p><br class="example-break">
|
|---|
| 455 | </p><p>
|
|---|
| 456 | Novice and extended electromagnetic examples illustrating the use
|
|---|
| 457 | of electromagnetic processes are available as part of the Geant4
|
|---|
| 458 | <a href="http://geant4.web.cern.ch/geant4/support/download.shtml" target="_top">
|
|---|
| 459 | release</a>.
|
|---|
| 460 | </p><p>
|
|---|
| 461 | <span class="bold"><strong>Options</strong></span> are available for steering the standard
|
|---|
| 462 | electromagnetic processes. These options may be invoked either by
|
|---|
| 463 | UI commands or by the interface class G4EmProcessOptions. This
|
|---|
| 464 | class has the following public methods:
|
|---|
| 465 |
|
|---|
| 466 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 467 | SetLossFluctuations(G4bool)
|
|---|
| 468 | </p></li><li><p>
|
|---|
| 469 | SetSubCutoff(G4bool, const G4Region* r=0)
|
|---|
| 470 | </p></li><li><p>
|
|---|
| 471 | SetIntegral(G4bool)
|
|---|
| 472 | </p></li><li><p>
|
|---|
| 473 | SetMinSubRange(G4double)
|
|---|
| 474 | </p></li><li><p>
|
|---|
| 475 | SetMinEnergy(G4double)
|
|---|
| 476 | </p></li><li><p>
|
|---|
| 477 | SetMaxEnergy(G4double)
|
|---|
| 478 | </p></li><li><p>
|
|---|
| 479 | SetMaxEnergyForCSDARange(G4double)
|
|---|
| 480 | </p></li><li><p>
|
|---|
| 481 | SetMaxEnergyForMuons(G4double)
|
|---|
| 482 | </p></li><li><p>
|
|---|
| 483 | SetDEDXBinning(G4int)
|
|---|
| 484 | </p></li><li><p>
|
|---|
| 485 | SetDEDXBinningForCSDARange(G4int)
|
|---|
| 486 | </p></li><li><p>
|
|---|
| 487 | SetLambdaBinning(G4int)
|
|---|
| 488 | </p></li><li><p>
|
|---|
| 489 | SetStepFunction(G4double, G4double)
|
|---|
| 490 | </p></li><li><p>
|
|---|
| 491 | SetRandomStep(G4bool)
|
|---|
| 492 | </p></li><li><p>
|
|---|
| 493 | SetApplyCuts(G4bool)
|
|---|
| 494 | </p></li><li><p>
|
|---|
| 495 | SetBuildCSDARange(G4bool)
|
|---|
| 496 | </p></li><li><p>
|
|---|
| 497 | SetVerbose(G4int, const G4String name= "all")
|
|---|
| 498 | </p></li><li><p>
|
|---|
| 499 | SetLambdaFactor(G4double)
|
|---|
| 500 | </p></li><li><p>
|
|---|
| 501 | SetLinearLossLimit(G4double)
|
|---|
| 502 | </p></li><li><p>
|
|---|
| 503 | ActivateDeexcitation(G4bool val, const G4Region* r = 0)
|
|---|
| 504 | </p></li><li><p>
|
|---|
| 505 | SetMscStepLimitation(G4MscStepLimitType val)
|
|---|
| 506 | </p></li><li><p>
|
|---|
| 507 | SetMscLateralDisplacement(G4bool val)
|
|---|
| 508 | </p></li><li><p>
|
|---|
| 509 | SetSkin(G4double)
|
|---|
| 510 | </p></li><li><p>
|
|---|
| 511 | SetMscRangeFactor(G4double)
|
|---|
| 512 | </p></li><li><p>
|
|---|
| 513 | SetMscGeomFactor(G4double)
|
|---|
| 514 | </p></li><li><p>
|
|---|
| 515 | SetLPMFlag(G4bool)
|
|---|
| 516 | </p></li><li><p>
|
|---|
| 517 | SetBremsstrahlungTh(G4double)
|
|---|
| 518 | </p></li></ul></div><p>
|
|---|
| 519 | </p><p>
|
|---|
| 520 | The corresponding UI command can be accessed in the UI subdirectory
|
|---|
| 521 | "/process/eLoss". The following types of step limitation by multiple scattering
|
|---|
| 522 | are available:
|
|---|
| 523 |
|
|---|
| 524 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 525 | fSimple - step limitation used in g4 7.1 version (used in QGSP_EMV Physics List)
|
|---|
| 526 | </p></li><li><p>
|
|---|
| 527 | fUseSafety - default
|
|---|
| 528 | </p></li><li><p>
|
|---|
| 529 | fUseDistanceToBoundary - advance method of step limitation used in EM examples,
|
|---|
| 530 | required parameter <span class="emphasis"><em>skin > 0</em></span>, should be used for
|
|---|
| 531 | setup without magnetic field
|
|---|
| 532 | </p></li></ul></div><p>
|
|---|
| 533 | </p><p>
|
|---|
| 534 | <span class="bold"><strong>G4EmCalculator</strong></span> is a class which provides
|
|---|
| 535 | access to cross sections and stopping powers. This class can be used
|
|---|
| 536 | anywhere in the user code provided the physics list has already been
|
|---|
| 537 | initialised (G4State_Idle). G4EmCalculator has "Get" methods which
|
|---|
| 538 | can be applied to materials for which physics tables are already
|
|---|
| 539 | built, and "Compute" methods which can be applied to any material
|
|---|
| 540 | defined in the application or existing in the Geant4 internal
|
|---|
| 541 | database. The public methods of this class are:
|
|---|
| 542 |
|
|---|
| 543 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 544 | GetDEDX(kinEnergy,particle,material,G4Region region=0)
|
|---|
| 545 | </p></li><li><p>
|
|---|
| 546 | GetRangeFromRestrictedDEDX(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 547 | </p></li><li><p>
|
|---|
| 548 | GetCSDARange(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 549 | </p></li><li><p>
|
|---|
| 550 | GetRange(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 551 | </p></li><li><p>
|
|---|
| 552 | GetKinEnergy(range,particle,material,G4Region* region=0)
|
|---|
| 553 | </p></li><li><p>
|
|---|
| 554 | GetCrosSectionPerVolume(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 555 | </p></li><li><p>
|
|---|
| 556 | GetMeanFreePath(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 557 | </p></li><li><p>
|
|---|
| 558 | PrintDEDXTable(particle)
|
|---|
| 559 | </p></li><li><p>
|
|---|
| 560 | PrintRangeTable(particle)
|
|---|
| 561 | </p></li><li><p>
|
|---|
| 562 | PrintInverseRangeTable(particle)
|
|---|
| 563 | </p></li><li><p>
|
|---|
| 564 | ComputeDEDX(kinEnergy,particle,process,material,cut=DBL_MAX)
|
|---|
| 565 | </p></li><li><p>
|
|---|
| 566 | ComputeElectronicDEDX(kinEnergy,particle,material,cut=DBL_MAX)
|
|---|
| 567 | </p></li><li><p>
|
|---|
| 568 | ComputeNuclearDEDX(kinEnergy,particle,material,cut=DBL_MAX)
|
|---|
| 569 | </p></li><li><p>
|
|---|
| 570 | ComputeTotalDEDX(kinEnergy,particle,material,cut=DBL_MAX)
|
|---|
| 571 | </p></li><li><p>
|
|---|
| 572 | ComputeCrosSectionPerVolume(kinEnergy,particle,process,material,cut=0)
|
|---|
| 573 | </p></li><li><p>
|
|---|
| 574 | ComputeCrosSectionPerAtom(kinEnergy,particle,process,Z,A,cut=0)
|
|---|
| 575 | </p></li><li><p>
|
|---|
| 576 | ComputeMeanFreePath(kinEnergy,particle,process,material,cut=0)
|
|---|
| 577 | </p></li><li><p>
|
|---|
| 578 | ComputeEnergyCutFromRangeCut(range,particle,material)
|
|---|
| 579 | </p></li><li><p>
|
|---|
| 580 | FindParticle(const G4String&)
|
|---|
| 581 | </p></li><li><p>
|
|---|
| 582 | FindMaterial(const G4String&)
|
|---|
| 583 | </p></li><li><p>
|
|---|
| 584 | FindRegion(const G4String&)
|
|---|
| 585 | </p></li><li><p>
|
|---|
| 586 | FindCouple(const G4Material*, const G4Region* region=0)
|
|---|
| 587 | </p></li><li><p>
|
|---|
| 588 | SetVerbose(G4int)
|
|---|
| 589 | </p></li></ul></div><p>
|
|---|
| 590 | </p><p>
|
|---|
| 591 | For these interfaces, particles, materials, or processes may be
|
|---|
| 592 | pointers or strings with names.
|
|---|
| 593 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.EleMag.LowE"></a>5.2.1.2.
|
|---|
| 594 | Low Energy Electromagnetic Processes
|
|---|
| 595 | </h4></div></div></div><p>
|
|---|
| 596 | The following is a summary of the Low Energy Electromagnetic
|
|---|
| 597 | processes available in Geant4. Further information is available in
|
|---|
| 598 | the
|
|---|
| 599 | <a href="http://www.ge.infn.it/geant4/lowE/index.html" target="_top">
|
|---|
| 600 | homepage
|
|---|
| 601 | </a>
|
|---|
| 602 | of the Geant4 Low Energy Electromagnetic Physics Working Group.
|
|---|
| 603 | The physics content of these processes is documented in Geant4
|
|---|
| 604 | <a href="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html" target="_top">
|
|---|
| 605 | Physics Reference Manual
|
|---|
| 606 | </a>
|
|---|
| 607 | and in other
|
|---|
| 608 | <a href="http://www.ge.infn.it/geant4/lowE/papers.html" target="_top">
|
|---|
| 609 | papers</a>.
|
|---|
| 610 | </p><p>
|
|---|
| 611 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 612 | <span class="bold"><strong>Photon processes</strong></span>
|
|---|
| 613 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 614 | Compton scattering (class <span class="emphasis"><em>G4LowEnergyCompton</em></span>)
|
|---|
| 615 | </p></li><li><p>
|
|---|
| 616 | Polarized Compton scattering (class
|
|---|
| 617 | <span class="emphasis"><em>G4LowEnergyPolarizedCompton</em></span>)
|
|---|
| 618 | </p></li><li><p>
|
|---|
| 619 | Rayleigh scattering (class <span class="emphasis"><em>G4LowEnergyRayleigh</em></span>)
|
|---|
| 620 | </p></li><li><p>
|
|---|
| 621 | Gamma conversion (also called pair production, class
|
|---|
| 622 | <span class="emphasis"><em>G4LowEnergyGammaConversion</em></span>)
|
|---|
| 623 | </p></li><li><p>
|
|---|
| 624 | Photo-electric effect (class<span class="emphasis"><em>G4LowEnergyPhotoElectric</em></span>)
|
|---|
| 625 | </p></li></ul></div><p>
|
|---|
| 626 | </p></li><li><p>
|
|---|
| 627 | <span class="bold"><strong>Electron processes</strong></span>
|
|---|
| 628 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 629 | Bremsstrahlung (class <span class="emphasis"><em>G4LowEnergyBremsstrahlung</em></span>)
|
|---|
| 630 | </p></li><li><p>
|
|---|
| 631 | Ionisation and delta ray production (class
|
|---|
| 632 | <span class="emphasis"><em>G4LowEnergyIonisation</em></span>)
|
|---|
| 633 | </p></li></ul></div><p>
|
|---|
| 634 | </p></li><li><p>
|
|---|
| 635 | <span class="bold"><strong>Hadron and ion processes</strong></span>
|
|---|
| 636 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 637 | Ionisation and delta ray production (class
|
|---|
| 638 | <span class="emphasis"><em>G4hLowEnergyIonisation</em></span>)
|
|---|
| 639 | </p></li></ul></div><p>
|
|---|
| 640 | </p></li></ul></div><p>
|
|---|
| 641 | </p><p>
|
|---|
| 642 | An example of the registration of these processes in a physics list
|
|---|
| 643 | is given in <a href="ch05s02.html#programlist_PhysProc_2" title="Example 5.2.
|
|---|
| 644 | Registration of electromagnetic low energy electron/photon processes.
|
|---|
| 645 | ">Example 5.2</a>.
|
|---|
| 646 |
|
|---|
| 647 | </p><div class="example"><a name="programlist_PhysProc_2"></a><p class="title"><b>Example 5.2.
|
|---|
| 648 | Registration of electromagnetic low energy electron/photon processes.
|
|---|
| 649 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 650 | void LowEnPhysicsList::ConstructEM()
|
|---|
| 651 | {
|
|---|
| 652 | theParticleIterator->reset();
|
|---|
| 653 |
|
|---|
| 654 | while( (*theParticleIterator)() ){
|
|---|
| 655 |
|
|---|
| 656 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 657 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 658 | G4String particleName = particle->GetParticleName();
|
|---|
| 659 |
|
|---|
| 660 | if (particleName == "gamma") {
|
|---|
| 661 |
|
|---|
| 662 | theLEPhotoElectric = new G4LowEnergyPhotoElectric();
|
|---|
| 663 | theLECompton = new G4LowEnergyCompton();
|
|---|
| 664 | theLEGammaConversion = new G4LowEnergyGammaConversion();
|
|---|
| 665 | theLERayleigh = new G4LowEnergyRayleigh();
|
|---|
| 666 |
|
|---|
| 667 | pmanager->AddDiscreteProcess(theLEPhotoElectric);
|
|---|
| 668 | pmanager->AddDiscreteProcess(theLECompton);
|
|---|
| 669 | pmanager->AddDiscreteProcess(theLERayleigh);
|
|---|
| 670 | pmanager->AddDiscreteProcess(theLEGammaConversion);
|
|---|
| 671 |
|
|---|
| 672 | }
|
|---|
| 673 | else if (particleName == "e-") {
|
|---|
| 674 |
|
|---|
| 675 | theLEIonisation = new G4LowEnergyIonisation();
|
|---|
| 676 | theLEBremsstrahlung = new G4LowEnergyBremsstrahlung();
|
|---|
| 677 | theeminusMultipleScattering = new G4MultipleScattering();
|
|---|
| 678 |
|
|---|
| 679 | pmanager->AddProcess(theeminusMultipleScattering,-1,1,1);
|
|---|
| 680 | pmanager->AddProcess(theLEIonisation,-1,2,2);
|
|---|
| 681 | pmanager->AddProcess(theLEBremsstrahlung,-1,-1,3);
|
|---|
| 682 |
|
|---|
| 683 | }
|
|---|
| 684 | else if (particleName == "e+") {
|
|---|
| 685 |
|
|---|
| 686 | theeplusMultipleScattering = new G4MultipleScattering();
|
|---|
| 687 | theeplusIonisation = new G4eIonisation();
|
|---|
| 688 | theeplusBremsstrahlung = new G4eBremsstrahlung();
|
|---|
| 689 | theeplusAnnihilation = new G4eplusAnnihilation();
|
|---|
| 690 |
|
|---|
| 691 | pmanager->AddProcess(theeplusMultipleScattering,-1,1,1);
|
|---|
| 692 | pmanager->AddProcess(theeplusIonisation,-1,2,2);
|
|---|
| 693 | pmanager->AddProcess(theeplusBremsstrahlung,-1,-1,3);
|
|---|
| 694 | pmanager->AddProcess(theeplusAnnihilation,0,-1,4);
|
|---|
| 695 | }
|
|---|
| 696 | }
|
|---|
| 697 | }
|
|---|
| 698 | </pre></div></div><p><br class="example-break">
|
|---|
| 699 | </p><p>
|
|---|
| 700 | Advanced <span class="bold"><strong>examples</strong></span> illustrating the use of Low Energy
|
|---|
| 701 | Electromagnetic processes are available as part of the Geant4
|
|---|
| 702 | <a href="http://geant4.web.cern.ch/geant4/support/download.shtml" target="_top">
|
|---|
| 703 | release
|
|---|
| 704 | </a>
|
|---|
| 705 | and are further documented
|
|---|
| 706 | <a href="http://www.ge.infn.it/geant4/lowE/examples/index.html" target="_top">
|
|---|
| 707 | here</a>.
|
|---|
| 708 | </p><p>
|
|---|
| 709 | To run the Low Energy code for photon and electron
|
|---|
| 710 | electromagnetic processes, <span class="bold"><strong>
|
|---|
| 711 | <a href="http://geant4.web.cern.ch/geant4/support/download.shtml" target="_top">
|
|---|
| 712 | data files
|
|---|
| 713 | </a>
|
|---|
| 714 | </strong></span>
|
|---|
| 715 | need to be copied by the user to his/her code
|
|---|
| 716 | repository. These files are distributed together with Geant4
|
|---|
| 717 | <a href="http://geant4.web.cern.ch/geant4/support/download.shtml" target="_top">
|
|---|
| 718 | release</a>.
|
|---|
| 719 | </p><p>
|
|---|
| 720 | The user should set the environment variable
|
|---|
| 721 | <span class="bold"><strong>G4LEDATA</strong></span> to the
|
|---|
| 722 | directory where he/she has copied the files.
|
|---|
| 723 | </p><p>
|
|---|
| 724 | <span class="bold"><strong>Options</strong></span> are available for low energy electromagnetic
|
|---|
| 725 | processes for hadrons and ions in terms of public member functions
|
|---|
| 726 | of the G4hLowEnergyIonisation class:
|
|---|
| 727 |
|
|---|
| 728 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 729 | SetHighEnergyForProtonParametrisation(G4double)
|
|---|
| 730 | </p></li><li><p>
|
|---|
| 731 | SetLowEnergyForProtonParametrisation(G4double)
|
|---|
| 732 | </p></li><li><p>
|
|---|
| 733 | SetHighEnergyForAntiProtonParametrisation(G4double)
|
|---|
| 734 | </p></li><li><p>
|
|---|
| 735 | SetLowEnergyForAntiProtonParametrisation(G4double)
|
|---|
| 736 | </p></li><li><p>
|
|---|
| 737 | SetElectronicStoppingPowerModel(const G4ParticleDefinition*,const G4String& )
|
|---|
| 738 | </p></li><li><p>
|
|---|
| 739 | SetNuclearStoppingPowerModel(const G4String&)
|
|---|
| 740 | </p></li><li><p>
|
|---|
| 741 | SetNuclearStoppingOn()
|
|---|
| 742 | </p></li><li><p>
|
|---|
| 743 | SetNuclearStoppingOff()
|
|---|
| 744 | </p></li><li><p>
|
|---|
| 745 | SetBarkasOn()
|
|---|
| 746 | </p></li><li><p>
|
|---|
| 747 | SetBarkasOff()
|
|---|
| 748 | </p></li><li><p>
|
|---|
| 749 | SetFluorescence(const G4bool)
|
|---|
| 750 | </p></li><li><p>
|
|---|
| 751 | ActivateAugerElectronProduction(G4bool)
|
|---|
| 752 | </p></li><li><p>
|
|---|
| 753 | SetCutForSecondaryPhotons(G4double)
|
|---|
| 754 | </p></li><li><p>
|
|---|
| 755 | SetCutForSecondaryElectrons(G4double)
|
|---|
| 756 | </p></li></ul></div><p>
|
|---|
| 757 | </p><p>
|
|---|
| 758 | The available models for ElectronicStoppingPower and
|
|---|
| 759 | NuclearStoppingPower are documented in the
|
|---|
| 760 | <a href="http://www.ge.infn.it/geant4/lowE/swprocess/design/" target="_top">
|
|---|
| 761 | class diagrams</a>.
|
|---|
| 762 | </p><p>
|
|---|
| 763 | <span class="bold"><strong>Options</strong></span> are available for low energy electromagnetic
|
|---|
| 764 | processes for electrons in the G4LowEnergyIonisation class:
|
|---|
| 765 |
|
|---|
| 766 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 767 | ActivateAuger(G4bool)
|
|---|
| 768 | </p></li><li><p>
|
|---|
| 769 | SetCutForLowEnSecPhotons(G4double)
|
|---|
| 770 | </p></li><li><p>
|
|---|
| 771 | SetCutForLowEnSecElectrons(G4double)
|
|---|
| 772 | </p></li></ul></div><p>
|
|---|
| 773 | </p><p>
|
|---|
| 774 | <span class="bold"><strong>Options</strong></span> are available for low energy electromagnetic
|
|---|
| 775 | processes for electrons/positrons in the G4LowEnergyBremsstrahlung
|
|---|
| 776 | class, that allow the use of alternative bremsstrahlung angular
|
|---|
| 777 | generators:
|
|---|
| 778 |
|
|---|
| 779 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 780 | SetAngularGenerator(G4VBremAngularDistribution* distribution);
|
|---|
| 781 | </p></li><li><p>
|
|---|
| 782 | SetAngularGenerator(const G4String& name);
|
|---|
| 783 | </p></li></ul></div><p>
|
|---|
| 784 | </p><p>
|
|---|
| 785 | Currently three angular generators are available: G4ModifiedTsai,
|
|---|
| 786 | 2BNGenerator and 2BSGenerator. G4ModifiedTsai is set by default,
|
|---|
| 787 | but it can be forced using the string "tsai". 2BNGenerator and
|
|---|
| 788 | 2BSGenerator can be set using the strings "2bs" and "2bn".
|
|---|
| 789 | Information regarding conditions of use, performance and energy
|
|---|
| 790 | limits of different models are available in the
|
|---|
| 791 | <a href="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html" target="_top">
|
|---|
| 792 | Physics Reference Manual
|
|---|
| 793 | </a>
|
|---|
| 794 | and in the Geant4 Low Energy Electromagnetic Physics Working Group
|
|---|
| 795 | <a href="http://www.ge.infn.it/geant4/lowE/index.html" target="_top">
|
|---|
| 796 | homepage</a>.
|
|---|
| 797 | </p><p>
|
|---|
| 798 | Other <span class="bold"><strong>options</strong></span> G4LowEnergyBremsstrahlung class are:
|
|---|
| 799 |
|
|---|
| 800 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 801 | SetCutForLowEnSecPhotons(G4double)
|
|---|
| 802 | </p></li></ul></div><p>
|
|---|
| 803 | </p><p>
|
|---|
| 804 | <span class="bold"><strong>Options</strong></span> can also be set in the G4LowEnergyPhotoElectric
|
|---|
| 805 | class, that allow the use of alternative photoelectron angular
|
|---|
| 806 | generators:
|
|---|
| 807 |
|
|---|
| 808 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 809 | SetAngularGenerator(G4VPhotoElectricAngularDistribution* distribution);
|
|---|
| 810 | </p></li><li><p>
|
|---|
| 811 | SetAngularGenerator(const G4String& name);
|
|---|
| 812 | </p></li><li><p>
|
|---|
| 813 |
|
|---|
| 814 | </p></li><li><p>
|
|---|
| 815 |
|
|---|
| 816 | </p></li><li><p>
|
|---|
| 817 |
|
|---|
| 818 | </p></li></ul></div><p>
|
|---|
| 819 | </p><p>
|
|---|
| 820 | Currently three angular generators are available:
|
|---|
| 821 | G4PhotoElectricAngularGeneratorSimple,
|
|---|
| 822 | G4PhotoElectricAngularGeneratorSauterGavrilla and
|
|---|
| 823 | G4PhotoElectricAngularGeneratorPolarized.
|
|---|
| 824 | G4PhotoElectricAngularGeneratorSimple is set by default, but it can
|
|---|
| 825 | be forced using the string "default".
|
|---|
| 826 | G4PhotoElectricAngularGeneratorSauterGavrilla and
|
|---|
| 827 | G4PhotoElectricAngularGeneratorPolarized can be set using the
|
|---|
| 828 | strings "standard" and "polarized". Information regarding
|
|---|
| 829 | conditions of use, performance and energy limits of different
|
|---|
| 830 | models are available in the
|
|---|
| 831 | <a href="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html" target="_top">
|
|---|
| 832 | Physics Reference Manual
|
|---|
| 833 | </a>
|
|---|
| 834 | and in the Geant4 Low Energy Electromagnetic Physics Working Group
|
|---|
| 835 | <a href="http://www.ge.infn.it/geant4/lowE/index.html" target="_top">
|
|---|
| 836 | homepage</a>.
|
|---|
| 837 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.EleMag.VeryLowE"></a>5.2.1.3.
|
|---|
| 838 | Very Low energy Electromagnetic Processes (Geant4 DNA extension)
|
|---|
| 839 | </h4></div></div></div><p>
|
|---|
| 840 | Geant4 low energy electromagnetic Physics processes have been extended down
|
|---|
| 841 | to energies of a few electronVolts suitable for the simulation of radiation
|
|---|
| 842 | effects in liquid water for applications at the cellular and sub-cellular
|
|---|
| 843 | level. These developments take place in the framework of the Geant4 DNA
|
|---|
| 844 | project
|
|---|
| 845 | [
|
|---|
| 846 | <a href="http://www.ge.infn.it/geant4/dna" target="_top">
|
|---|
| 847 | http://www.ge.infn.it/geant4/dna
|
|---|
| 848 | </a>
|
|---|
| 849 | ] and are fully described in the paper
|
|---|
| 850 | [<span class="citation">
|
|---|
| 851 | <a href="bi01.html#biblio.chauvie2007">
|
|---|
| 852 | Chauvie2007
|
|---|
| 853 | </a>
|
|---|
| 854 | </span>].
|
|---|
| 855 | </p><p>
|
|---|
| 856 | Their implementation in Geant4 is based on the usage of innovative techniques
|
|---|
| 857 | first introduced in Monte Carlo simulation (policy-based class design), to
|
|---|
| 858 | ensure openness to future extension and evolution as well as flexibility of
|
|---|
| 859 | configuration in user applications. In this new design, a generic Geant4-DNA
|
|---|
| 860 | physics process is configured by template specialization in order to acquire
|
|---|
| 861 | physical properties (cross section, final state), using policy classes :
|
|---|
| 862 | a Cross Section policy class and a Final State policy class.
|
|---|
| 863 | </p><p>
|
|---|
| 864 | These processes apply to electrons, protons, hydrogen, alpha particles and
|
|---|
| 865 | their charge states.
|
|---|
| 866 | </p><h5><a name="id456546"></a>
|
|---|
| 867 | Electron processes
|
|---|
| 868 | </h5><p>
|
|---|
| 869 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 870 | Elastic scattering (two complementary models available depending on energy range)
|
|---|
| 871 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 872 | Cross section policy class name, common to both models :
|
|---|
| 873 | G4CrossSectionElasticScreenedRutherford
|
|---|
| 874 | </p></li><li><p>
|
|---|
| 875 | Final state policy class names : G4FinalStateElasticScreenedRutherford
|
|---|
| 876 | or G4FinalStateElasticBrennerZaider
|
|---|
| 877 | </p></li></ul></div><p>
|
|---|
| 878 | </p></li><li><p>
|
|---|
| 879 | Excitation (one model)
|
|---|
| 880 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 881 | Cross section policy class name : G4CrossSectionExcitationEmfietzoglou
|
|---|
| 882 | </p></li><li><p>
|
|---|
| 883 | Final state policy class name : G4FinalStateExcitationEmfietzoglou
|
|---|
| 884 | </p></li></ul></div><p>
|
|---|
| 885 | </p></li><li><p>
|
|---|
| 886 | Ionisation (one model)
|
|---|
| 887 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 888 | Cross section policy class name : G4CrossSectionIonisationBorn
|
|---|
| 889 | </p></li><li><p>
|
|---|
| 890 | Final state policy class names : G4FinalStateIonisationBorn
|
|---|
| 891 | </p></li></ul></div><p>
|
|---|
| 892 | </p></li></ul></div><p>
|
|---|
| 893 | </p><h5><a name="id458868"></a>
|
|---|
| 894 | Proton processes
|
|---|
| 895 | </h5><p>
|
|---|
| 896 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 897 | Excitation (two complementary models available depending on energy range)
|
|---|
| 898 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 899 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 900 | </p></li><li><p>
|
|---|
| 901 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 902 | </p></li><li><p>
|
|---|
| 903 | Cross section policy class name : G4CrossSectionExcitationBorn
|
|---|
| 904 | </p></li><li><p>
|
|---|
| 905 | Final state policy class name : G4FinalStateExcitationBorn
|
|---|
| 906 | </p></li></ul></div><p>
|
|---|
| 907 | </p></li><li><p>
|
|---|
| 908 | Ionisation (two complementary models available depending on energy range)
|
|---|
| 909 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 910 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 911 | </p></li><li><p>
|
|---|
| 912 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 913 | </p></li><li><p>
|
|---|
| 914 | Cross section policy class name : G4CrossSectionIonisationBorn
|
|---|
| 915 | </p></li><li><p>
|
|---|
| 916 | Final state policy class name : G4FinalStateIonisationBorn
|
|---|
| 917 | </p></li></ul></div><p>
|
|---|
| 918 | </p></li><li><p>
|
|---|
| 919 | Charge decrease (one model)
|
|---|
| 920 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 921 | Cross section policy class name : G4CrossSectionChargeDecrease
|
|---|
| 922 | </p></li><li><p>
|
|---|
| 923 | Final state policy class name : G4FinalStateChargeDecrease
|
|---|
| 924 | </p></li></ul></div><p>
|
|---|
| 925 | </p></li></ul></div><p>
|
|---|
| 926 | </p><h5><a name="id458967"></a>
|
|---|
| 927 | Hydrogen processes
|
|---|
| 928 | </h5><p>
|
|---|
| 929 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 930 | Ionisation (one model)
|
|---|
| 931 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 932 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 933 | </p></li><li><p>
|
|---|
| 934 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 935 | </p></li></ul></div><p>
|
|---|
| 936 | </p></li><li><p>
|
|---|
| 937 | Charge increase (one model)
|
|---|
| 938 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 939 | Cross section policy class name : G4CrossSectionChargeIncrease
|
|---|
| 940 | </p></li><li><p>
|
|---|
| 941 | Final state policy class name : G4FinalStateChargeIncrease
|
|---|
| 942 | </p></li></ul></div><p>
|
|---|
| 943 | </p></li></ul></div><p>
|
|---|
| 944 | </p><h5><a name="id459025"></a>
|
|---|
| 945 | Helium (neutral) processes
|
|---|
| 946 | </h5><p>
|
|---|
| 947 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 948 | Excitation (one model)
|
|---|
| 949 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 950 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 951 | </p></li><li><p>
|
|---|
| 952 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 953 | </p></li></ul></div><p>
|
|---|
| 954 | </p></li><li><p>
|
|---|
| 955 | Ionisation (one model)
|
|---|
| 956 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 957 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 958 | </p></li><li><p>
|
|---|
| 959 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 960 | </p></li></ul></div><p>
|
|---|
| 961 | </p></li><li><p>
|
|---|
| 962 | Charge increase (one model)
|
|---|
| 963 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 964 | Cross section policy class name : G4CrossSectionChargeIncrease
|
|---|
| 965 | </p></li><li><p>
|
|---|
| 966 | Final state policy class name : G4FinalStateChargeIncrease
|
|---|
| 967 | </p></li></ul></div><p>
|
|---|
| 968 | </p></li></ul></div><p>
|
|---|
| 969 | </p><h5><a name="id459103"></a>
|
|---|
| 970 | Helium+ (ionized once) processes
|
|---|
| 971 | </h5><p>
|
|---|
| 972 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 973 | Excitation (one model)
|
|---|
| 974 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 975 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 976 | </p></li><li><p>
|
|---|
| 977 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 978 | </p></li></ul></div><p>
|
|---|
| 979 | </p></li><li><p>
|
|---|
| 980 | Ionisation (one model)
|
|---|
| 981 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 982 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 983 | </p></li><li><p>
|
|---|
| 984 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 985 | </p></li></ul></div><p>
|
|---|
| 986 | </p></li><li><p>
|
|---|
| 987 | Charge increase (one model)
|
|---|
| 988 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 989 | Cross section policy class name : G4CrossSectionChargeIncrease
|
|---|
| 990 | </p></li><li><p>
|
|---|
| 991 | Final state policy class name : G4FinalStateChargeIncrease
|
|---|
| 992 | </p></li></ul></div><p>
|
|---|
| 993 | </p></li><li><p>
|
|---|
| 994 | Charge decrease (one model)
|
|---|
| 995 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 996 | Cross section policy class name : G4CrossSectionChargeDecrease
|
|---|
| 997 | </p></li><li><p>
|
|---|
| 998 | Final state policy class name : G4FinalStateChargeDecrease
|
|---|
| 999 | </p></li></ul></div><p>
|
|---|
| 1000 | </p></li></ul></div><p>
|
|---|
| 1001 | </p><h5><a name="id459202"></a>
|
|---|
| 1002 | Helium++ (ionised twice) processes
|
|---|
| 1003 | </h5><p>
|
|---|
| 1004 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 1005 | Excitation (one model)
|
|---|
| 1006 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 1007 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 1008 | </p></li><li><p>
|
|---|
| 1009 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 1010 | </p></li></ul></div><p>
|
|---|
| 1011 | </p></li><li><p>
|
|---|
| 1012 | Ionisation (one model)
|
|---|
| 1013 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 1014 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 1015 | </p></li><li><p>
|
|---|
| 1016 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 1017 | </p></li></ul></div><p>
|
|---|
| 1018 | </p></li><li><p>
|
|---|
| 1019 | Charge decrease (one model)
|
|---|
| 1020 | </p><div class="itemizedlist"><ul type="circle" compact><li><p>
|
|---|
| 1021 | Cross section policy class name : G4CrossSectionChargeDecrease
|
|---|
| 1022 | </p></li><li><p>
|
|---|
| 1023 | Final state policy class name : G4FinalStateChargeDecrease
|
|---|
| 1024 | </p></li></ul></div><p>
|
|---|
| 1025 | </p></li></ul></div><p>
|
|---|
| 1026 | </p><p>
|
|---|
| 1027 | An example of the registration of these processes in a physics list is given here below :
|
|---|
| 1028 |
|
|---|
| 1029 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1030 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1031 |
|
|---|
| 1032 | // Geant4 DNA header files
|
|---|
| 1033 |
|
|---|
| 1034 | #include "G4DNAGenericIonsManager.hh"
|
|---|
| 1035 | #include "G4FinalStateProduct.hh"
|
|---|
| 1036 | #include "G4DNAProcess.hh"
|
|---|
| 1037 |
|
|---|
| 1038 | #include "G4CrossSectionExcitationEmfietzoglou.hh"
|
|---|
| 1039 | #include "G4FinalStateExcitationEmfietzoglou.hh"
|
|---|
| 1040 |
|
|---|
| 1041 | #include "G4CrossSectionElasticScreenedRutherford.hh"
|
|---|
| 1042 | #include "G4FinalStateElasticScreenedRutherford.hh"
|
|---|
| 1043 | #include "G4FinalStateElasticBrennerZaider.hh"
|
|---|
| 1044 |
|
|---|
| 1045 | #include "G4CrossSectionExcitationBorn.hh"
|
|---|
| 1046 | #include "G4FinalStateExcitationBorn.hh"
|
|---|
| 1047 |
|
|---|
| 1048 | #include "G4CrossSectionIonisationBorn.hh"
|
|---|
| 1049 | #include "G4FinalStateIonisationBorn.hh"
|
|---|
| 1050 |
|
|---|
| 1051 | #include "G4CrossSectionIonisationRudd.hh"
|
|---|
| 1052 | #include "G4FinalStateIonisationRudd.hh"
|
|---|
| 1053 |
|
|---|
| 1054 | #include "G4CrossSectionExcitationMillerGreen.hh"
|
|---|
| 1055 | #include "G4FinalStateExcitationMillerGreen.hh"
|
|---|
| 1056 |
|
|---|
| 1057 | #include "G4CrossSectionChargeDecrease.hh"
|
|---|
| 1058 | #include "G4FinalStateChargeDecrease.hh"
|
|---|
| 1059 |
|
|---|
| 1060 | #include "G4CrossSectionChargeIncrease.hh"
|
|---|
| 1061 | #include "G4FinalStateChargeIncrease.hh"
|
|---|
| 1062 |
|
|---|
| 1063 | // Processes definition
|
|---|
| 1064 |
|
|---|
| 1065 | typedef G4DNAProcess<G4CrossSectionElasticScreenedRutherford,G4FinalStateElasticScreenedRutherford>
|
|---|
| 1066 | ElasticScreenedRutherford;
|
|---|
| 1067 | typedef G4DNAProcess<G4CrossSectionElasticScreenedRutherford,G4FinalStateElasticBrennerZaider>
|
|---|
| 1068 | ElasticBrennerZaider;
|
|---|
| 1069 | typedef G4DNAProcess<G4CrossSectionExcitationEmfietzoglou,G4FinalStateExcitationEmfietzoglou>
|
|---|
| 1070 | ExcitationEmfietzoglou;
|
|---|
| 1071 | typedef G4DNAProcess<G4CrossSectionExcitationBorn,G4FinalStateExcitationBorn>
|
|---|
| 1072 | ExcitationBorn;
|
|---|
| 1073 | typedef G4DNAProcess<G4CrossSectionIonisationBorn,G4FinalStateIonisationBorn>
|
|---|
| 1074 | IonisationBorn;
|
|---|
| 1075 | typedef G4DNAProcess<G4CrossSectionIonisationRudd,G4FinalStateIonisationRudd>
|
|---|
| 1076 | IonisationRudd;
|
|---|
| 1077 | typedef G4DNAProcess<G4CrossSectionExcitationMillerGreen,G4FinalStateExcitationMillerGreen>
|
|---|
| 1078 | ExcitationMillerGreen;
|
|---|
| 1079 | typedef G4DNAProcess<G4CrossSectionChargeDecrease,G4FinalStateChargeDecrease>
|
|---|
| 1080 | ChargeDecrease;
|
|---|
| 1081 | typedef G4DNAProcess<G4CrossSectionChargeIncrease,G4FinalStateChargeIncrease>
|
|---|
| 1082 | ChargeIncrease;
|
|---|
| 1083 |
|
|---|
| 1084 | // Processes registration
|
|---|
| 1085 |
|
|---|
| 1086 | void MicrodosimetryPhysicsList::ConstructEM()
|
|---|
| 1087 | {
|
|---|
| 1088 | theParticleIterator->reset();
|
|---|
| 1089 |
|
|---|
| 1090 | while( (*theParticleIterator)() ){
|
|---|
| 1091 |
|
|---|
| 1092 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 1093 | G4ProcessManager* processManager = particle->GetProcessManager();
|
|---|
| 1094 | G4String particleName = particle->GetParticleName();
|
|---|
| 1095 |
|
|---|
| 1096 | if (particleName == "e-") {
|
|---|
| 1097 | processManager->AddDiscreteProcess(new ExcitationEmfietzoglou);
|
|---|
| 1098 | processManager->AddDiscreteProcess(new ElasticScreenedRutherford);
|
|---|
| 1099 | processManager->AddDiscreteProcess(new ElasticBrennerZaider);
|
|---|
| 1100 | processManager->AddDiscreteProcess(new IonisationBorn);
|
|---|
| 1101 |
|
|---|
| 1102 | } else if ( particleName == "proton" ) {
|
|---|
| 1103 | processManager->AddDiscreteProcess(new ExcitationMillerGreen);
|
|---|
| 1104 | processManager->AddDiscreteProcess(new ExcitationBorn);
|
|---|
| 1105 | processManager->AddDiscreteProcess(new IonisationRudd);
|
|---|
| 1106 | processManager->AddDiscreteProcess(new IonisationBorn);
|
|---|
| 1107 | processManager->AddDiscreteProcess(new ChargeDecrease);
|
|---|
| 1108 |
|
|---|
| 1109 | } else if ( particleName == "hydrogen" ) {
|
|---|
| 1110 | processManager->AddDiscreteProcess(new IonisationRudd);
|
|---|
| 1111 | processManager->AddDiscreteProcess(new ChargeIncrease);
|
|---|
| 1112 |
|
|---|
| 1113 | } else if ( particleName == "alpha" ) {
|
|---|
| 1114 | processManager->AddDiscreteProcess(new ExcitationMillerGreen);
|
|---|
| 1115 | processManager->AddDiscreteProcess(new IonisationRudd);
|
|---|
| 1116 | processManager->AddDiscreteProcess(new ChargeDecrease);
|
|---|
| 1117 |
|
|---|
| 1118 | } else if ( particleName == "alpha+" ) {
|
|---|
| 1119 | processManager->AddDiscreteProcess(new ExcitationMillerGreen);
|
|---|
| 1120 | processManager->AddDiscreteProcess(new IonisationRudd);
|
|---|
| 1121 | processManager->AddDiscreteProcess(new ChargeDecrease);
|
|---|
| 1122 | processManager->AddDiscreteProcess(new ChargeIncrease);
|
|---|
| 1123 |
|
|---|
| 1124 | } else if ( particleName == "helium" ) {
|
|---|
| 1125 | processManager->AddDiscreteProcess(new ExcitationMillerGreen);
|
|---|
| 1126 | processManager->AddDiscreteProcess(new IonisationRudd);
|
|---|
| 1127 | processManager->AddDiscreteProcess(new ChargeIncrease);
|
|---|
| 1128 | }
|
|---|
| 1129 |
|
|---|
| 1130 | }
|
|---|
| 1131 | }
|
|---|
| 1132 |
|
|---|
| 1133 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1134 | </pre></div><p>
|
|---|
| 1135 | </p><p>
|
|---|
| 1136 | Note that in the above example, "alpha" particles are helium atoms ionised
|
|---|
| 1137 | twice and "helium" particles are neutral helium atoms. The definition of
|
|---|
| 1138 | particles in the physics list may be for example implemented as follows :
|
|---|
| 1139 |
|
|---|
| 1140 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1141 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1142 |
|
|---|
| 1143 | #include "G4DNAGenericIonsManager.hh"
|
|---|
| 1144 |
|
|---|
| 1145 | void MicrodosimetryPhysicsList::ConstructBaryons()
|
|---|
| 1146 | {
|
|---|
| 1147 | // construct baryons ---
|
|---|
| 1148 |
|
|---|
| 1149 | // Geant4 DNA particles
|
|---|
| 1150 |
|
|---|
| 1151 | G4DNAGenericIonsManager * genericIonsManager;
|
|---|
| 1152 | genericIonsManager=G4DNAGenericIonsManager::Instance();
|
|---|
| 1153 | genericIonsManager->GetIon("alpha++");
|
|---|
| 1154 | genericIonsManager->GetIon("alpha+");
|
|---|
| 1155 | genericIonsManager->GetIon("helium");
|
|---|
| 1156 | genericIonsManager->GetIon("hydrogen");
|
|---|
| 1157 |
|
|---|
| 1158 | }
|
|---|
| 1159 |
|
|---|
| 1160 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1161 | </pre></div><p>
|
|---|
| 1162 | </p><p>
|
|---|
| 1163 | To run the Geant4 DNA extension, data files need to be copied by the user to
|
|---|
| 1164 | his/her code repository. These files are distributed together with the Geant4 release.
|
|---|
| 1165 | </p><p>
|
|---|
| 1166 | The user should set the environment variable G4LEDATA to the directory where
|
|---|
| 1167 | he/she has copied the files.
|
|---|
| 1168 | </p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.Had"></a>5.2.2.
|
|---|
| 1169 | Hadronic Interactions
|
|---|
| 1170 | </h3></div></div></div><p>
|
|---|
| 1171 | This section briefly introduces the hadronic physics processes
|
|---|
| 1172 | installed in Geant4. For details of the implementation of hadronic
|
|---|
| 1173 | interactions available in Geant4, please refer to the
|
|---|
| 1174 | <a href="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html" target="_top">
|
|---|
| 1175 | <span class="bold"><strong>Physics Reference Manual</strong></span></a>.
|
|---|
| 1176 | </p><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Had.TreatCross"></a>5.2.2.1.
|
|---|
| 1177 | Treatment of Cross Sections
|
|---|
| 1178 | </h4></div></div></div><h5><a name="id459402"></a>
|
|---|
| 1179 | Cross section data sets
|
|---|
| 1180 | </h5><p>
|
|---|
| 1181 | Each hadronic process object (derived from
|
|---|
| 1182 | <span class="emphasis"><em>G4HadronicProcess</em></span>) may have one or more cross section data
|
|---|
| 1183 | sets associated with it. The term "data set" is meant, in a broad
|
|---|
| 1184 | sense, to be an object that encapsulates methods and data for
|
|---|
| 1185 | calculating total cross sections for a given process. The methods
|
|---|
| 1186 | and data may take many forms, from a simple equation using a few
|
|---|
| 1187 | hard-wired numbers to a sophisticated parameterisation using large
|
|---|
| 1188 | data tables. Cross section data sets are derived from the abstract
|
|---|
| 1189 | class <span class="emphasis"><em>G4VCrossSectionDataSet</em></span>, and are required to implement
|
|---|
| 1190 | the following methods:
|
|---|
| 1191 |
|
|---|
| 1192 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1193 | G4bool IsApplicable( const G4DynamicParticle*, const G4Element* )
|
|---|
| 1194 | </pre></div><p>
|
|---|
| 1195 | </p><p>
|
|---|
| 1196 | This method must return <code class="literal">True</code> if the data set is able to
|
|---|
| 1197 | calculate a total cross section for the given particle and
|
|---|
| 1198 | material, and <code class="literal">False</code> otherwise.
|
|---|
| 1199 |
|
|---|
| 1200 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1201 | G4double GetCrossSection( const G4DynamicParticle*, const G4Element* )
|
|---|
| 1202 | </pre></div><p>
|
|---|
| 1203 | </p><p>
|
|---|
| 1204 | This method, which will be invoked only if <code class="literal">True</code> was
|
|---|
| 1205 | returned by <code class="literal">IsApplicable</code>, must return a cross section, in
|
|---|
| 1206 | Geant4 default units, for the given particle and material.
|
|---|
| 1207 |
|
|---|
| 1208 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1209 | void BuildPhysicsTable( const G4ParticleDefinition& )
|
|---|
| 1210 | </pre></div><p>
|
|---|
| 1211 | </p><p>
|
|---|
| 1212 | This method may be invoked to request the data set to recalculate
|
|---|
| 1213 | its internal database or otherwise reset its state after a change
|
|---|
| 1214 | in the cuts or other parameters of the given particle type.
|
|---|
| 1215 |
|
|---|
| 1216 |
|
|---|
| 1217 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1218 | void DumpPhysicsTable( const G4ParticleDefinition& ) = 0
|
|---|
| 1219 | </pre></div><p>
|
|---|
| 1220 | </p><p>
|
|---|
| 1221 | This method may be invoked to request the data set to print its
|
|---|
| 1222 | internal database and/or other state information, for the given
|
|---|
| 1223 | particle type, to the standard output stream.
|
|---|
| 1224 | </p><h5><a name="id459505"></a>
|
|---|
| 1225 | Cross section data store
|
|---|
| 1226 | </h5><p>
|
|---|
| 1227 | Cross section data sets are used by the process for the
|
|---|
| 1228 | calculation of the physical interaction length. A given cross
|
|---|
| 1229 | section data set may only apply to a certain energy range, or may
|
|---|
| 1230 | only be able to calculate cross sections for a particular type of
|
|---|
| 1231 | particle. The class <span class="emphasis"><em>G4CrossSectionDataStore</em></span> has been
|
|---|
| 1232 | provided to allow the user to specify, if desired, a series of data
|
|---|
| 1233 | sets for a process, and to arrange the priority of data sets so
|
|---|
| 1234 | that the appropriate one is used for a given energy range,
|
|---|
| 1235 | particle, and material. It implements the following public
|
|---|
| 1236 | methods:
|
|---|
| 1237 |
|
|---|
| 1238 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1239 | G4CrossSectionDataStore()
|
|---|
| 1240 |
|
|---|
| 1241 | ~G4CrossSectionDataStore()
|
|---|
| 1242 | </pre></div><p>
|
|---|
| 1243 |
|
|---|
| 1244 | and
|
|---|
| 1245 |
|
|---|
| 1246 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1247 | G4double GetCrossSection( const G4DynamicParticle*, const G4Element* )
|
|---|
| 1248 | </pre></div><p>
|
|---|
| 1249 | </p><p>
|
|---|
| 1250 | For a given particle and material, this method returns a cross
|
|---|
| 1251 | section value provided by one of the collection of cross section
|
|---|
| 1252 | data sets listed in the data store object. If there are no known
|
|---|
| 1253 | data sets, a <code class="literal">G4Exception</code> is thrown and <code class="literal">DBL_MIN</code> is
|
|---|
| 1254 | returned. Otherwise, each data set in the list is queried, in
|
|---|
| 1255 | reverse list order, by invoking its <code class="literal">IsApplicable</code> method
|
|---|
| 1256 | for the given particle and material. The first data set object that
|
|---|
| 1257 | responds positively will then be asked to return a cross section
|
|---|
| 1258 | value via its <code class="literal">GetCrossSection</code> method. If no data set
|
|---|
| 1259 | responds positively, a <code class="literal">G4Exception</code> is thrown and
|
|---|
| 1260 | <code class="literal">DBL_MIN</code> is returned.
|
|---|
| 1261 | </p><p>
|
|---|
| 1262 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1263 | void AddDataSet( G4VCrossSectionDataSet* aDataSet )
|
|---|
| 1264 | </pre></div><p>
|
|---|
| 1265 |
|
|---|
| 1266 | This method adds the given cross section data set to the end of the
|
|---|
| 1267 | list of data sets in the data store. For the evaluation of cross
|
|---|
| 1268 | sections, the list has a LIFO (Last In First Out) priority, meaning
|
|---|
| 1269 | that data sets added later to the list will have priority over
|
|---|
| 1270 | those added earlier to the list. Another way of saying this, is
|
|---|
| 1271 | that the data store, when given a <code class="literal">GetCrossSection</code> request,
|
|---|
| 1272 | does the <code class="literal">IsApplicable</code> queries in the reverse list order,
|
|---|
| 1273 | starting with the last data set in the list and proceeding to the
|
|---|
| 1274 | first, and the first data set that responds positively is used to
|
|---|
| 1275 | calculate the cross section.
|
|---|
| 1276 | </p><p>
|
|---|
| 1277 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1278 | void BuildPhysicsTable( const G4ParticleDefinition& aParticleType )
|
|---|
| 1279 | </pre></div><p>
|
|---|
| 1280 |
|
|---|
| 1281 | This method may be invoked to indicate to the data store that there
|
|---|
| 1282 | has been a change in the cuts or other parameters of the given
|
|---|
| 1283 | particle type. In response, the data store will invoke the
|
|---|
| 1284 | <code class="literal">BuildPhysicsTable</code> of each of its data sets.
|
|---|
| 1285 | </p><p>
|
|---|
| 1286 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1287 | void DumpPhysicsTable( const G4ParticleDefinition& )
|
|---|
| 1288 | </pre></div><p>
|
|---|
| 1289 |
|
|---|
| 1290 | This method may be used to request the data store to invoke the
|
|---|
| 1291 | <code class="literal">DumpPhysicsTable</code> method of each of its data sets.
|
|---|
| 1292 | </p><h5><a name="id459658"></a>
|
|---|
| 1293 | Default cross sections
|
|---|
| 1294 | </h5><p>
|
|---|
| 1295 | The defaults for total cross section data and calculations have
|
|---|
| 1296 | been encapsulated in the singleton class
|
|---|
| 1297 | <span class="emphasis"><em>G4HadronCrossSections</em></span>. Each hadronic process:
|
|---|
| 1298 | <span class="emphasis"><em>G4HadronInelasticProcess</em></span>,
|
|---|
| 1299 | <span class="emphasis"><em>G4HadronElasticProcess</em></span>,
|
|---|
| 1300 | <span class="emphasis"><em>G4HadronFissionProcess</em></span>,
|
|---|
| 1301 | and <span class="emphasis"><em>G4HadronCaptureProcess</em></span>,
|
|---|
| 1302 | comes already equipped with a cross section data store and a
|
|---|
| 1303 | default cross section data set. The data set objects are really
|
|---|
| 1304 | just shells that invoke the singleton <span class="emphasis"><em>G4HadronCrossSections</em></span>
|
|---|
| 1305 | to do the real work of calculating cross sections.
|
|---|
| 1306 | </p><p>
|
|---|
| 1307 | The default cross sections can be overridden in whole or in part
|
|---|
| 1308 | by the user. To this end, the base class <span class="emphasis"><em>G4HadronicProcess</em></span>
|
|---|
| 1309 | has a ``get'' method:
|
|---|
| 1310 |
|
|---|
| 1311 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1312 | G4CrossSectionDataStore* GetCrossSectionDataStore()
|
|---|
| 1313 | </pre></div><p>
|
|---|
| 1314 |
|
|---|
| 1315 | which gives public access to the data store for each process. The
|
|---|
| 1316 | user's cross section data sets can be added to the data store
|
|---|
| 1317 | according to the following framework:
|
|---|
| 1318 |
|
|---|
| 1319 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1320 | G4Hadron...Process aProcess(...)
|
|---|
| 1321 |
|
|---|
| 1322 | MyCrossSectionDataSet myDataSet(...)
|
|---|
| 1323 |
|
|---|
| 1324 | aProcess.GetCrossSectionDataStore()->AddDataSet( &MyDataSet )
|
|---|
| 1325 | </pre></div><p>
|
|---|
| 1326 | </p><p>
|
|---|
| 1327 | The added data set will override the default cross section data
|
|---|
| 1328 | whenever so indicated by its <code class="literal">IsApplicable</code> method.
|
|---|
| 1329 | </p><p>
|
|---|
| 1330 | In addition to the ``get'' method, <span class="emphasis"><em>G4HadronicProcess</em></span> also
|
|---|
| 1331 | has the method
|
|---|
| 1332 |
|
|---|
| 1333 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1334 | void SetCrossSectionDataStore( G4CrossSectionDataStore* )
|
|---|
| 1335 | </pre></div><p>
|
|---|
| 1336 |
|
|---|
| 1337 | which allows the user to completely replace the default data
|
|---|
| 1338 | store with a new data store.
|
|---|
| 1339 | </p><p>
|
|---|
| 1340 | It should be noted that a process does not send any information
|
|---|
| 1341 | about itself to its associated data store (and hence data set)
|
|---|
| 1342 | objects. Thus, each data set is assumed to be formulated to
|
|---|
| 1343 | calculate cross sections for one and only one type of process. Of
|
|---|
| 1344 | course, this does not prevent different data sets from sharing
|
|---|
| 1345 | common data and/or calculation methods, as in the case of the
|
|---|
| 1346 | <span class="emphasis"><em>G4HadronCrossSections</em></span> class mentioned above. Indeed,
|
|---|
| 1347 | <span class="emphasis"><em>G4VCrossSectionDataSet</em></span> specifies only the abstract interface
|
|---|
| 1348 | between physics processes and their data sets, and leaves the user
|
|---|
| 1349 | free to implement whatever sort of underlying structure is
|
|---|
| 1350 | appropriate.
|
|---|
| 1351 | </p><p>
|
|---|
| 1352 | The current implementation of the data set
|
|---|
| 1353 | <span class="emphasis"><em>G4HadronCrossSections</em></span> reuses the total cross-sections for
|
|---|
| 1354 | inelastic and elastic scattering, radiative capture and fission as
|
|---|
| 1355 | used with <span class="bold"><strong>GHEISHA</strong></span> to provide cross-sections
|
|---|
| 1356 | for calculation
|
|---|
| 1357 | of the respective mean free paths of a given particle in a given
|
|---|
| 1358 | material.
|
|---|
| 1359 | </p><h5><a name="id459782"></a>
|
|---|
| 1360 | Cross-sections for low energy neutron transport
|
|---|
| 1361 | </h5><p>
|
|---|
| 1362 | The cross section data for low energy neutron transport are
|
|---|
| 1363 | organized in a set of files that are read in by the corresponding
|
|---|
| 1364 | data set classes at time zero. Hereby the file system is used, in
|
|---|
| 1365 | order to allow highly granular access to the data. The ``root''
|
|---|
| 1366 | directory of the cross-section directory structure is accessed
|
|---|
| 1367 | through an environment variable, <code class="literal">NeutronHPCrossSections</code>,
|
|---|
| 1368 | which is to be set by the user. The classes accessing the total
|
|---|
| 1369 | cross-sections of the individual processes, i.e., the cross-section
|
|---|
| 1370 | data set classes for low energy neutron transport, are
|
|---|
| 1371 | <span class="emphasis"><em>G4NeutronHPElasticData</em></span>,
|
|---|
| 1372 | <span class="emphasis"><em>G4NeutronHPCaptureData</em></span>,
|
|---|
| 1373 | <span class="emphasis"><em>G4NeutronHPFissionData</em></span>,
|
|---|
| 1374 | and <span class="emphasis"><em>G4NeutronHPInelasticData</em></span>.
|
|---|
| 1375 | </p><p>
|
|---|
| 1376 | For detailed descriptions of the low energy neutron total
|
|---|
| 1377 | cross-sections, they may be registered by the user as described
|
|---|
| 1378 | above with the data stores of the corresponding processes for
|
|---|
| 1379 | neutron interactions.
|
|---|
| 1380 | </p><p>
|
|---|
| 1381 | It should be noted that using these total cross section classes
|
|---|
| 1382 | does not require that the neutron_hp models also be used. It is up
|
|---|
| 1383 | to the user to decide whethee this is desirable or not for his
|
|---|
| 1384 | particular problem.
|
|---|
| 1385 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Had.AtRest"></a>5.2.2.2.
|
|---|
| 1386 | Hadrons at Rest
|
|---|
| 1387 | </h4></div></div></div><h5><a name="id459844"></a>
|
|---|
| 1388 | List of implemented "Hadron at Rest" processes
|
|---|
| 1389 | </h5><p>
|
|---|
| 1390 | The following process classes have been implemented:
|
|---|
| 1391 |
|
|---|
| 1392 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 1393 | pi- absorption (class name <span class="emphasis"><em>G4PionMinusAbsorptionAtRest</em></span>
|
|---|
| 1394 | or <span class="emphasis"><em>G4PiMinusAbsorptionAtRest</em></span>)
|
|---|
| 1395 | </p></li><li><p>
|
|---|
| 1396 | kaon- absorption (class name <span class="emphasis"><em>G4KaonMinusAbsorptionAtRest</em></span>
|
|---|
| 1397 | or <span class="emphasis"><em>G4KaonMinusAbsorption</em></span>)
|
|---|
| 1398 | </p></li><li><p>
|
|---|
| 1399 | neutron capture (class name <span class="emphasis"><em>G4NeutronCaptureAtRest</em></span>)
|
|---|
| 1400 | </p></li><li><p>
|
|---|
| 1401 | anti-proton annihilation (class name
|
|---|
| 1402 | <span class="emphasis"><em>G4AntiProtonAnnihilationAtRest</em></span>)
|
|---|
| 1403 | </p></li><li><p>
|
|---|
| 1404 | anti-neutron annihilation (class name
|
|---|
| 1405 | <span class="emphasis"><em>G4AntiNeutronAnnihilationAtRest</em></span>)
|
|---|
| 1406 | </p></li><li><p>
|
|---|
| 1407 | mu- capture (class name <span class="emphasis"><em>G4MuonMinusCaptureAtRest</em></span>)
|
|---|
| 1408 | </p></li><li><p>
|
|---|
| 1409 | alternative CHIPS model for any negativly charged particle
|
|---|
| 1410 | (class name <span class="emphasis"><em>G4QCaptureAtRest</em></span>)
|
|---|
| 1411 | </p></li></ul></div><p>
|
|---|
| 1412 | </p><p>
|
|---|
| 1413 | Obviously the last process does not, strictly speaking, deal with a
|
|---|
| 1414 | ``hadron at rest''. It does, nonetheless, share common features
|
|---|
| 1415 | with the others in the above list because of the implementation
|
|---|
| 1416 | model chosen. The differences between the alternative
|
|---|
| 1417 | implementation for kaon and pion absorption concern the fast part
|
|---|
| 1418 | of the emitted particle spectrum. G4PiMinusAbsorptionAtRest, and
|
|---|
| 1419 | G4KaonMinusAbsorptionAtRest focus especially on a good description
|
|---|
| 1420 | of this part of the spectrum.
|
|---|
| 1421 | </p><h5><a name="id459937"></a>
|
|---|
| 1422 | Implementation Interface to Geant4
|
|---|
| 1423 | </h5><p>
|
|---|
| 1424 | All of these classes are derived from the abstract class
|
|---|
| 1425 | <span class="emphasis"><em>G4VRestProcess</em></span>. In addition to the constructor and
|
|---|
| 1426 | destructor methods, the following public methods of the abstract
|
|---|
| 1427 | class have been implemented for each of the above six
|
|---|
| 1428 | processes:
|
|---|
| 1429 |
|
|---|
| 1430 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 1431 | </p><p>
|
|---|
| 1432 | <code class="literal">AtRestGetPhysicalInteractionLength( const G4Track&,
|
|---|
| 1433 | G4ForceCondition* )</code>
|
|---|
| 1434 | </p><p>
|
|---|
| 1435 | </p><p>
|
|---|
| 1436 | This method returns the time taken before the interaction actually
|
|---|
| 1437 | occurs. In all processes listed above, except for muon capture, a
|
|---|
| 1438 | value of zero is returned. For the muon capture process the muon
|
|---|
| 1439 | capture lifetime is returned.
|
|---|
| 1440 | </p><p>
|
|---|
| 1441 | </p></li><li><p>
|
|---|
| 1442 | </p><p>
|
|---|
| 1443 | <code class="literal">AtRestDoIt( const G4Track&, const G4Step&)</code>
|
|---|
| 1444 | </p><p>
|
|---|
| 1445 | </p><p>
|
|---|
| 1446 | This method generates the secondary particles produced by the
|
|---|
| 1447 | process.
|
|---|
| 1448 | </p><p>
|
|---|
| 1449 | </p></li><li><p>
|
|---|
| 1450 | </p><p>
|
|---|
| 1451 | <code class="literal">IsApplicable( const G4ParticleDefinition& )</code>
|
|---|
| 1452 | </p><p>
|
|---|
| 1453 | </p><p>
|
|---|
| 1454 | This method returns the result of a check to see if the process is
|
|---|
| 1455 | possible for a given particle.
|
|---|
| 1456 | </p><p>
|
|---|
| 1457 | </p></li></ul></div><p>
|
|---|
| 1458 | </p><h5><a name="id460014"></a>
|
|---|
| 1459 | Example of how to use a hadron at rest process
|
|---|
| 1460 | </h5><p>
|
|---|
| 1461 | Including a ``hadron at rest'' process for a particle, a pi- for
|
|---|
| 1462 | example, into the Geant4 system is straightforward and can be done
|
|---|
| 1463 | in the following way:
|
|---|
| 1464 |
|
|---|
| 1465 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 1466 | create a process:
|
|---|
| 1467 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1468 | theProcess = new G4PionMinusAbsorptionAtRest();
|
|---|
| 1469 | </pre></div><p>
|
|---|
| 1470 | </p></li><li><p>
|
|---|
| 1471 | register the process with the particle's process manager:
|
|---|
| 1472 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1473 | theParticleDef = G4PionMinus::PionMinus();
|
|---|
| 1474 | G4ProcessManager* pman = theParticleDef->GetProcessManager();
|
|---|
| 1475 | pman->AddRestProcess( theProcess );
|
|---|
| 1476 | </pre></div><p>
|
|---|
| 1477 | </p></li></ul></div><p>
|
|---|
| 1478 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Had.Flight"></a>5.2.2.3.
|
|---|
| 1479 | Hadrons in Flight
|
|---|
| 1480 | </h4></div></div></div><h5><a name="id460076"></a>
|
|---|
| 1481 | What processes do you need?
|
|---|
| 1482 | </h5><p>
|
|---|
| 1483 | For hadrons in motion, there are four physics process classes.
|
|---|
| 1484 | <a href="ch05s02.html#table.PhysProc_1" title="Table 5.1.
|
|---|
| 1485 | Hadronic processes and relevant particles.
|
|---|
| 1486 | ">Table 5.1</a> shows each process and the
|
|---|
| 1487 | particles for which it is relevant.
|
|---|
| 1488 |
|
|---|
| 1489 | </p><div class="table"><a name="table.PhysProc_1"></a><div class="table-contents"><table summary="
|
|---|
| 1490 | Hadronic processes and relevant particles.
|
|---|
| 1491 | " border="1"><colgroup><col><col></colgroup><tbody><tr><td>
|
|---|
| 1492 | <span class="emphasis"><em>G4HadronElasticProcess</em></span>
|
|---|
| 1493 | </td><td>
|
|---|
| 1494 | pi+, pi-, K<sup>+</sup>,
|
|---|
| 1495 | K<sup>0</sup><sub>S</sub>,
|
|---|
| 1496 | K<sup>0</sup><sub>L</sub>,
|
|---|
| 1497 | K<sup>-</sup>,
|
|---|
| 1498 | p, p-bar, n, n-bar, lambda, lambda-bar,
|
|---|
| 1499 | Sigma<sup>+</sup>, Sigma<sup>-</sup>,
|
|---|
| 1500 | Sigma<sup>+</sup>-bar,
|
|---|
| 1501 | Sigma<sup>-</sup>-bar,
|
|---|
| 1502 | Xi<sup>0</sup>, Xi<sup>-</sup>,
|
|---|
| 1503 | Xi<sup>0</sup>-bar, Xi<sup>-</sup>-bar
|
|---|
| 1504 | </td></tr><tr><td>
|
|---|
| 1505 | <span class="emphasis"><em>G4HadronInelasticProcess</em></span>
|
|---|
| 1506 | </td><td>
|
|---|
| 1507 | pi+, pi-, K<sup>+</sup>,
|
|---|
| 1508 | K<sup>0</sup><sub>S</sub>,
|
|---|
| 1509 | K<sup>0</sup><sub>L</sub>,
|
|---|
| 1510 | K<sup>-</sup>,
|
|---|
| 1511 | p, p-bar, n, n-bar, lambda, lambda-bar,
|
|---|
| 1512 | Sigma<sup>+</sup>, Sigma<sup>-</sup>,
|
|---|
| 1513 | Sigma<sup>+</sup>-bar,
|
|---|
| 1514 | Sigma<sup>-</sup>-bar, Xi<sup>0</sup>,
|
|---|
| 1515 | Xi<sup>-</sup>, Xi<sup>0</sup>-bar,
|
|---|
| 1516 | Xi<sup>-</sup>-bar
|
|---|
| 1517 | </td></tr><tr><td>
|
|---|
| 1518 | <span class="emphasis"><em>G4HadronFissionProcess</em></span>
|
|---|
| 1519 | </td><td>
|
|---|
| 1520 | all
|
|---|
| 1521 | </td></tr><tr><td>
|
|---|
| 1522 | <span class="emphasis"><em>G4CaptureProcess</em></span>
|
|---|
| 1523 | </td><td>
|
|---|
| 1524 | n, n-bar
|
|---|
| 1525 | </td></tr></tbody></table></div><p class="title"><b>Table 5.1.
|
|---|
| 1526 | Hadronic processes and relevant particles.
|
|---|
| 1527 | </b></p></div><p><br class="table-break">
|
|---|
| 1528 | </p><h5><a name="id460260"></a>
|
|---|
| 1529 | How to register Models
|
|---|
| 1530 | </h5><p>
|
|---|
| 1531 | To register an inelastic process model for a particle, a proton
|
|---|
| 1532 | for example, first get the pointer to the particle's process
|
|---|
| 1533 | manager:
|
|---|
| 1534 |
|
|---|
| 1535 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1536 | G4ParticleDefinition *theProton = G4Proton::ProtonDefinition();
|
|---|
| 1537 | G4ProcessManager *theProtonProcMan = theProton->GetProcessManager();
|
|---|
| 1538 | </pre></div><p>
|
|---|
| 1539 | </p><p>
|
|---|
| 1540 | Create an instance of the particle's inelastic process:
|
|---|
| 1541 |
|
|---|
| 1542 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1543 | G4ProtonInelasticProcess *theProtonIEProc = new G4ProtonInelasticProcess();
|
|---|
| 1544 | </pre></div><p>
|
|---|
| 1545 | </p><p>
|
|---|
| 1546 | Create an instance of the model which determines the secondaries
|
|---|
| 1547 | produced in the interaction, and calculates the momenta of the
|
|---|
| 1548 | particles:
|
|---|
| 1549 |
|
|---|
| 1550 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1551 | G4LEProtonInelastic *theProtonIE = new G4LEProtonInelastic();
|
|---|
| 1552 | </pre></div><p>
|
|---|
| 1553 | </p><p>
|
|---|
| 1554 | Register the model with the particle's inelastic process:
|
|---|
| 1555 |
|
|---|
| 1556 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1557 | theProtonIEProc->RegisterMe( theProtonIE );
|
|---|
| 1558 | </pre></div><p>
|
|---|
| 1559 | </p><p>
|
|---|
| 1560 | Finally, add the particle's inelastic process to the list of
|
|---|
| 1561 | discrete processes:
|
|---|
| 1562 |
|
|---|
| 1563 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1564 | theProtonProcMan->AddDiscreteProcess( theProtonIEProc );
|
|---|
| 1565 | </pre></div><p>
|
|---|
| 1566 | </p><p>
|
|---|
| 1567 | The particle's inelastic process class,
|
|---|
| 1568 | <span class="emphasis"><em>G4ProtonInelasticProcess</em></span> in the example above, derives from
|
|---|
| 1569 | the <span class="emphasis"><em>G4HadronicInelasticProcess</em></span> class, and simply defines the
|
|---|
| 1570 | process name and calls the <span class="emphasis"><em>G4HadronicInelasticProcess</em></span>
|
|---|
| 1571 | constructor. All of the specific particle inelastic processes
|
|---|
| 1572 | derive from the <span class="emphasis"><em>G4HadronicInelasticProcess</em></span> class, which
|
|---|
| 1573 | calls the <code class="literal">PostStepDoIt</code> function, which returns the
|
|---|
| 1574 | particle change object from the <span class="emphasis"><em>G4HadronicProcess</em></span> function
|
|---|
| 1575 | <code class="literal">GeneralPostStepDoIt</code>. This class also gets the mean free
|
|---|
| 1576 | path, builds the physics table, and gets the microscopic cross
|
|---|
| 1577 | section. The <span class="emphasis"><em>G4HadronicInelasticProcess</em></span> class derives from
|
|---|
| 1578 | the <span class="emphasis"><em>G4HadronicProcess</em></span> class, which is the top level hadronic
|
|---|
| 1579 | process class. The <span class="emphasis"><em>G4HadronicProcess</em></span> class derives from the
|
|---|
| 1580 | <span class="emphasis"><em>G4VDiscreteProcess</em></span> class. The inelastic, elastic, capture,
|
|---|
| 1581 | and fission processes derive from the <span class="emphasis"><em>G4HadronicProcess</em></span>
|
|---|
| 1582 | class. This pure virtual class also provides the energy range
|
|---|
| 1583 | manager object and the <code class="literal">RegisterMe</code> access function.
|
|---|
| 1584 | </p><p>
|
|---|
| 1585 | A sample case for the proton's inelastic interaction model class
|
|---|
| 1586 | is shown in <a href="ch05s02.html#programlist_PhysProc_3" title="Example 5.3.
|
|---|
| 1587 | An example of a proton inelastic interaction model class.
|
|---|
| 1588 | ">Example 5.3</a>, where
|
|---|
| 1589 | <code class="literal">G4LEProtonInelastic.hh</code> is the name of the include
|
|---|
| 1590 | file:
|
|---|
| 1591 |
|
|---|
| 1592 | </p><div class="example"><a name="programlist_PhysProc_3"></a><p class="title"><b>Example 5.3.
|
|---|
| 1593 | An example of a proton inelastic interaction model class.
|
|---|
| 1594 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 1595 | ----------------------------- include file ------------------------------------------
|
|---|
| 1596 |
|
|---|
| 1597 | #include "G4InelasticInteraction.hh"
|
|---|
| 1598 | class G4LEProtonInelastic : public G4InelasticInteraction
|
|---|
| 1599 | {
|
|---|
| 1600 | public:
|
|---|
| 1601 | G4LEProtonInelastic() : G4InelasticInteraction()
|
|---|
| 1602 | {
|
|---|
| 1603 | SetMinEnergy( 0.0 );
|
|---|
| 1604 | SetMaxEnergy( 25.*GeV );
|
|---|
| 1605 | }
|
|---|
| 1606 | ~G4LEProtonInelastic() { }
|
|---|
| 1607 | G4ParticleChange *ApplyYourself( const G4Track &aTrack,
|
|---|
| 1608 | G4Nucleus &targetNucleus );
|
|---|
| 1609 | private:
|
|---|
| 1610 | void CascadeAndCalculateMomenta( required arguments );
|
|---|
| 1611 | };
|
|---|
| 1612 |
|
|---|
| 1613 | ----------------------------- source file ------------------------------------------
|
|---|
| 1614 |
|
|---|
| 1615 | #include "G4LEProtonInelastic.hh"
|
|---|
| 1616 | G4ParticleChange *
|
|---|
| 1617 | G4LEProton Inelastic::ApplyYourself( const G4Track &aTrack,
|
|---|
| 1618 | G4Nucleus &targetNucleus )
|
|---|
| 1619 | {
|
|---|
| 1620 | theParticleChange.Initialize( aTrack );
|
|---|
| 1621 | const G4DynamicParticle *incidentParticle = aTrack.GetDynamicParticle();
|
|---|
| 1622 | // create the target particle
|
|---|
| 1623 | G4DynamicParticle *targetParticle = targetNucleus.ReturnTargetParticle();
|
|---|
| 1624 | CascadeAndCalculateMomenta( required arguments )
|
|---|
| 1625 | { ... }
|
|---|
| 1626 | return &theParticleChange;
|
|---|
| 1627 | }
|
|---|
| 1628 | </pre></div></div><p><br class="example-break">
|
|---|
| 1629 | </p><p>
|
|---|
| 1630 | The <code class="literal">CascadeAndCalculateMomenta</code> function is the bulk of
|
|---|
| 1631 | the model and is to be provided by the model's creator. It should
|
|---|
| 1632 | determine what secondary particles are produced in the interaction,
|
|---|
| 1633 | calculate the momenta for all the particles, and put this
|
|---|
| 1634 | information into the <span class="emphasis"><em>ParticleChange</em></span> object which is
|
|---|
| 1635 | returned.
|
|---|
| 1636 | </p><p>
|
|---|
| 1637 | The <span class="emphasis"><em>G4LEProtonInelastic</em></span> class derives from the
|
|---|
| 1638 | <span class="emphasis"><em>G4InelasticInteraction</em></span> class, which is an abstract base
|
|---|
| 1639 | class since the pure virtual function <code class="literal">ApplyYourself</code> is not
|
|---|
| 1640 | defined there. <span class="emphasis"><em>G4InelasticInteraction</em></span> itself derives from
|
|---|
| 1641 | the <span class="emphasis"><em>G4HadronicInteraction</em></span> abstract base class. This class is
|
|---|
| 1642 | the base class for all the model classes. It sorts out the energy
|
|---|
| 1643 | range for the models and provides class utilities. The
|
|---|
| 1644 | <span class="emphasis"><em>G4HadronicInteraction</em></span> class provides the
|
|---|
| 1645 | <code class="literal">Set/GetMinEnergy</code> and the <code class="literal">Set/GetMaxEnergy</code>
|
|---|
| 1646 | functions which determine the minimum and maximum energy range for
|
|---|
| 1647 | the model. An energy range can be set for a specific element, a
|
|---|
| 1648 | specific material, or for general applicability:
|
|---|
| 1649 |
|
|---|
| 1650 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1651 | void SetMinEnergy( G4double anEnergy, G4Element *anElement )
|
|---|
| 1652 | void SetMinEnergy( G4double anEnergy, G4Material *aMaterial )
|
|---|
| 1653 | void SetMinEnergy( const G4double anEnergy )
|
|---|
| 1654 | void SetMaxEnergy( G4double anEnergy, G4Element *anElement )
|
|---|
| 1655 | void SetMaxEnergy( G4double anEnergy, G4Material *aMaterial )
|
|---|
| 1656 | void SetMaxEnergy( const G4double anEnergy )
|
|---|
| 1657 | </pre></div><p>
|
|---|
| 1658 | </p><h5><a name="id460525"></a>
|
|---|
| 1659 | Which models are there, and what are the defaults
|
|---|
| 1660 | </h5><p>
|
|---|
| 1661 | In Geant4, any model can be run together with any other model
|
|---|
| 1662 | without the need for the implementation of a special interface, or
|
|---|
| 1663 | batch suite, and the ranges of applicability for the different
|
|---|
| 1664 | models can be steered at initialisation time. This way, highly
|
|---|
| 1665 | specialised models (valid only for one material and particle, and
|
|---|
| 1666 | applicable only in a very restricted energy range) can be used in
|
|---|
| 1667 | the same application, together with more general code, in a
|
|---|
| 1668 | coherent fashion.
|
|---|
| 1669 | </p><p>
|
|---|
| 1670 | Each model has an intrinsic range of applicability, and the
|
|---|
| 1671 | model chosen for a simulation depends very much on the use-case.
|
|---|
| 1672 | Consequently, there are no ``defaults''. However, physics lists are
|
|---|
| 1673 | provided which specify sets of models for various purposes.
|
|---|
| 1674 | </p><p>
|
|---|
| 1675 | Three types of hadronic shower models have been implemented:
|
|---|
| 1676 | parametrisation driven models, data driven models, and theory
|
|---|
| 1677 | driven models.
|
|---|
| 1678 |
|
|---|
| 1679 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 1680 | Parametrisation driven models are used for all processes
|
|---|
| 1681 | pertaining to particles coming to rest, and interacting with the
|
|---|
| 1682 | nucleus. For particles in flight, two sets of models exist for
|
|---|
| 1683 | inelastic scattering; low energy, and high energy models. Both sets
|
|---|
| 1684 | are based originally on the <span class="bold"><strong>GHEISHA</strong></span>
|
|---|
| 1685 | package of Geant3.21,
|
|---|
| 1686 | and the original approaches to primary interaction, nuclear
|
|---|
| 1687 | excitation, intra-nuclear cascade and evaporation is kept. The
|
|---|
| 1688 | models are located in the sub-directories
|
|---|
| 1689 | <code class="literal">hadronics/models/low_energy</code> and
|
|---|
| 1690 | <code class="literal">hadronics/models/high_energy</code>. The low energy models are
|
|---|
| 1691 | targeted towards energies below 20 GeV; the high energy models
|
|---|
| 1692 | cover the energy range from 20 GeV to O(TeV). Fission, capture and
|
|---|
| 1693 | coherent elastic scattering are also modeled through parametrised
|
|---|
| 1694 | models.
|
|---|
| 1695 | </p></li><li><p>
|
|---|
| 1696 | Data driven models are available for the transport of low
|
|---|
| 1697 | energy neutrons in matter in sub-directory
|
|---|
| 1698 | <code class="literal">hadronics/models/neutron_hp</code>. The modeling is based
|
|---|
| 1699 | on the data formats of <span class="bold"><strong>ENDF/B-VI</strong></span>,
|
|---|
| 1700 | and all distributions of this standard data format are implemented.
|
|---|
| 1701 | The data sets used are selected from data libraries that conform to
|
|---|
| 1702 | these standard formats. The file system is used in order to allow granular
|
|---|
| 1703 | access to, and flexibility in, the use of the cross sections for different
|
|---|
| 1704 | isotopes, and channels. The energy coverage of these models is from
|
|---|
| 1705 | thermal energies to 20 MeV.
|
|---|
| 1706 | </p></li><li><p>
|
|---|
| 1707 | Theory driven models are available for inelastic scattering in
|
|---|
| 1708 | a first implementation, covering the full energy range of LHC
|
|---|
| 1709 | experiments. They are located in sub-directory
|
|---|
| 1710 | <code class="literal">hadronics/models/generator</code>. The current philosophy
|
|---|
| 1711 | implies the usage of parton string models at high energies, of
|
|---|
| 1712 | intra-nuclear transport models at intermediate energies, and of
|
|---|
| 1713 | statistical break-up models for de-excitation.
|
|---|
| 1714 | </p></li></ul></div><p>
|
|---|
| 1715 | </p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.Decay"></a>5.2.3.
|
|---|
| 1716 | Particle Decay Process
|
|---|
| 1717 | </h3></div></div></div><p>
|
|---|
| 1718 | This section briefly introduces decay processes installed in
|
|---|
| 1719 | Geant4. For details of the implementation of particle decays,
|
|---|
| 1720 | please refer to the
|
|---|
| 1721 | <a href="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html" target="_top">
|
|---|
| 1722 | <span class="bold"><strong>Physics Reference Manual</strong></span></a>.
|
|---|
| 1723 | </p><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Decay.Class"></a>5.2.3.1.
|
|---|
| 1724 | Particle Decay Class
|
|---|
| 1725 | </h4></div></div></div><p>
|
|---|
| 1726 | Geant4 provides a <span class="emphasis"><em>G4Decay</em></span> class for both ``at rest'' and
|
|---|
| 1727 | ``in flight'' particle decays. <span class="emphasis"><em>G4Decay</em></span> can be applied to all
|
|---|
| 1728 | particles except:
|
|---|
| 1729 |
|
|---|
| 1730 | </p><div class="variablelist"><dl><dt><span class="term">
|
|---|
| 1731 | massless particles, i.e.,
|
|---|
| 1732 | </span></dt><dd><code class="literal">G4ParticleDefinition::thePDGMass <= 0</code></dd><dt><span class="term">
|
|---|
| 1733 | particles with ``negative'' life time, i.e.,
|
|---|
| 1734 | </span></dt><dd><code class="literal">G4ParticleDefinition::thePDGLifeTime < 0</code></dd><dt><span class="term">
|
|---|
| 1735 | shortlived particles, i.e.,
|
|---|
| 1736 | </span></dt><dd><code class="literal">G4ParticleDefinition::fShortLivedFlag = True</code></dd></dl></div><p>
|
|---|
| 1737 | </p><p>
|
|---|
| 1738 | Decay for some particles may be switched on or off by using
|
|---|
| 1739 | <code class="literal">G4ParticleDefinition::SetPDGStable()</code> as well as
|
|---|
| 1740 | <code class="literal">ActivateProcess()</code> and <code class="literal">InActivateProcess()</code>
|
|---|
| 1741 | methods of <span class="emphasis"><em>G4ProcessManager</em></span>.
|
|---|
| 1742 | </p><p>
|
|---|
| 1743 | <span class="emphasis"><em>G4Decay</em></span> proposes the step length (or step time for
|
|---|
| 1744 | <code class="literal">AtRest</code>) according to the lifetime of the particle unless
|
|---|
| 1745 | <code class="literal">PreAssignedDecayProperTime</code> is defined in
|
|---|
| 1746 | <span class="emphasis"><em>G4DynamicParticle</em></span>.
|
|---|
| 1747 | </p><p>
|
|---|
| 1748 | The <span class="emphasis"><em>G4Decay</em></span> class itself does not define decay modes of
|
|---|
| 1749 | the particle. Geant4 provides two ways of doing this:
|
|---|
| 1750 |
|
|---|
| 1751 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 1752 | using <span class="emphasis"><em>G4DecayChannel</em></span> in <span class="emphasis"><em>G4DecayTable</em></span>,
|
|---|
| 1753 | and
|
|---|
| 1754 | </p></li><li><p>
|
|---|
| 1755 | using <code class="literal">thePreAssignedDecayProducts</code> of
|
|---|
| 1756 | <span class="emphasis"><em>G4DynamicParticle</em></span>
|
|---|
| 1757 | </p></li></ul></div><p>
|
|---|
| 1758 | </p><p>
|
|---|
| 1759 | The <span class="emphasis"><em>G4Decay</em></span> class calculates the
|
|---|
| 1760 | <code class="literal">PhysicalInteractionLength</code> and boosts decay products
|
|---|
| 1761 | created by <span class="emphasis"><em>G4VDecayChannel</em></span> or event generators. See below
|
|---|
| 1762 | for information on the determination of the decay modes.
|
|---|
| 1763 | </p><p>
|
|---|
| 1764 | An object of <span class="emphasis"><em>G4Decay</em></span> can be shared by particles.
|
|---|
| 1765 | Registration of the decay process to particles in the
|
|---|
| 1766 | <code class="literal">ConstructPhysics</code> method of <span class="emphasis"><em>PhysicsList</em></span>
|
|---|
| 1767 | (see <a href="ch02s05.html#sect.HowToSpecPhysProc.SpecPhysProc" title="2.5.3.
|
|---|
| 1768 | Specifying Physics Processes
|
|---|
| 1769 | ">Section 2.5.3</a>)
|
|---|
| 1770 | is shown in <a href="ch05s02.html#programlist_PhysProc_4" title="Example 5.4.
|
|---|
| 1771 | Registration of the decay process to particles in the
|
|---|
| 1772 | ConstructPhysics method of PhysicsList.
|
|---|
| 1773 | ">Example 5.4</a>.
|
|---|
| 1774 |
|
|---|
| 1775 | </p><div class="example"><a name="programlist_PhysProc_4"></a><p class="title"><b>Example 5.4.
|
|---|
| 1776 | Registration of the decay process to particles in the
|
|---|
| 1777 | <code class="literal">ConstructPhysics</code> method of <span class="emphasis"><em>PhysicsList</em></span>.
|
|---|
| 1778 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 1779 | #include "G4Decay.hh"
|
|---|
| 1780 | void ExN02PhysicsList::ConstructGeneral()
|
|---|
| 1781 | {
|
|---|
| 1782 | // Add Decay Process
|
|---|
| 1783 | G4Decay* theDecayProcess = new G4Decay();
|
|---|
| 1784 | theParticleIterator->reset();
|
|---|
| 1785 | while( (*theParticleIterator)() ){
|
|---|
| 1786 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 1787 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 1788 | if (theDecayProcess->IsApplicable(*particle)) {
|
|---|
| 1789 | pmanager ->AddProcess(theDecayProcess);
|
|---|
| 1790 | // set ordering for PostStepDoIt and AtRestDoIt
|
|---|
| 1791 | pmanager ->SetProcessOrdering(theDecayProcess, idxPostStep);
|
|---|
| 1792 | pmanager ->SetProcessOrdering(theDecayProcess, idxAtRest);
|
|---|
| 1793 | }
|
|---|
| 1794 | }
|
|---|
| 1795 | }
|
|---|
| 1796 | </pre></div></div><p><br class="example-break">
|
|---|
| 1797 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Decay.Table"></a>5.2.3.2.
|
|---|
| 1798 | Decay Table
|
|---|
| 1799 | </h4></div></div></div><p>
|
|---|
| 1800 | Each particle has its <span class="emphasis"><em>G4DecayTable</em></span>, which stores information
|
|---|
| 1801 | on the decay modes of the particle. Each decay mode, with its
|
|---|
| 1802 | branching ratio, corresponds to an object of various ``decay
|
|---|
| 1803 | channel'' classes derived from <span class="emphasis"><em>G4VDecayChannel</em></span>. Default
|
|---|
| 1804 | decay modes are created in the constructors of particle classes.
|
|---|
| 1805 | For example, the decay table of the neutral pion has
|
|---|
| 1806 | <span class="emphasis"><em>G4PhaseSpaceDecayChannel</em></span> and
|
|---|
| 1807 | <span class="emphasis"><em>G4DalitzDecayChannel</em></span> as follows:
|
|---|
| 1808 |
|
|---|
| 1809 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 1810 | // create a decay channel
|
|---|
| 1811 | G4VDecayChannel* mode;
|
|---|
| 1812 | // pi0 -> gamma + gamma
|
|---|
| 1813 | mode = new G4PhaseSpaceDecayChannel("pi0",0.988,2,"gamma","gamma");
|
|---|
| 1814 | table->Insert(mode);
|
|---|
| 1815 | // pi0 -> gamma + e+ + e-
|
|---|
| 1816 | mode = new G4DalitzDecayChannel("pi0",0.012,"e-","e+");
|
|---|
| 1817 | table->Insert(mode);
|
|---|
| 1818 | </pre></div><p>
|
|---|
| 1819 | </p><p>
|
|---|
| 1820 | Decay modes and branching ratios defined in Geant4 are listed in
|
|---|
| 1821 | <a href="ch05s03.html#sect.Parti.Def" title="5.3.2.
|
|---|
| 1822 | Definition of a particle
|
|---|
| 1823 | ">Section 5.3.2</a>.
|
|---|
| 1824 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Decay.PreAssgn"></a>5.2.3.3.
|
|---|
| 1825 | Pre-assigned Decay Modes by Event Generators
|
|---|
| 1826 | </h4></div></div></div><p>
|
|---|
| 1827 | Decays of heavy flavor particles such as B mesons are very complex,
|
|---|
| 1828 | with many varieties of decay modes and decay mechanisms. There are
|
|---|
| 1829 | many models for heavy particle decay provided by various event
|
|---|
| 1830 | generators and it is impossible to define all the decay modes of
|
|---|
| 1831 | heavy particles by using <span class="emphasis"><em>G4VDecayChannel</em></span>. In other words,
|
|---|
| 1832 | decays of heavy particles cannot be defined by the Geant4 decay
|
|---|
| 1833 | process, but should be defined by event generators or other
|
|---|
| 1834 | external packages. Geant4 provides two ways to do this:
|
|---|
| 1835 | <code class="literal">pre-assigned decay mode</code> and <code class="literal">external decayer</code>.
|
|---|
| 1836 | </p><p>
|
|---|
| 1837 | In the latter approach, the class <span class="emphasis"><em>G4VExtDecayer</em></span> is used
|
|---|
| 1838 | for the interface to an external package which defines decay modes
|
|---|
| 1839 | for a particle. If an instance of <span class="emphasis"><em>G4VExtDecayer</em></span> is attached
|
|---|
| 1840 | to <span class="emphasis"><em>G4Decay</em></span>, daughter particles will be generated by the
|
|---|
| 1841 | external decay handler.
|
|---|
| 1842 | </p><p>
|
|---|
| 1843 | In the former case, decays of heavy particles are simulated by
|
|---|
| 1844 | an event generator and the primary event contains the decay
|
|---|
| 1845 | information. <span class="emphasis"><em>G4VPrimaryGenerator</em></span> automatically attaches any
|
|---|
| 1846 | daughter particles to the parent particle as the
|
|---|
| 1847 | PreAssignedDecayProducts member of <span class="emphasis"><em>G4DynamicParticle</em></span>.
|
|---|
| 1848 | <span class="emphasis"><em>G4Decay</em></span> adopts these pre-assigned daughter particles instead
|
|---|
| 1849 | of asking <span class="emphasis"><em>G4VDecayChannel</em></span> to generate decay products.
|
|---|
| 1850 | </p><p>
|
|---|
| 1851 | In addition, the user may assign a <code class="literal">pre-assigned</code> decay
|
|---|
| 1852 | time for a specific track in its rest frame (i.e. decay time is
|
|---|
| 1853 | defined in the proper time) by using the
|
|---|
| 1854 | <span class="emphasis"><em>G4PrimaryParticle::SetProperTime()</em></span> method.
|
|---|
| 1855 | <span class="emphasis"><em>G4VPrimaryGenerator</em></span> sets the PreAssignedDecayProperTime
|
|---|
| 1856 | member of <span class="emphasis"><em>G4DynamicParticle</em></span>. <span class="emphasis"><em>G4Decay</em></span>
|
|---|
| 1857 | uses this decay time instead of the life time of the particle type.
|
|---|
| 1858 | </p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.PhotoHad"></a>5.2.4.
|
|---|
| 1859 | Photolepton-hadron Processes
|
|---|
| 1860 | </h3></div></div></div><p>
|
|---|
| 1861 | To be delivered.
|
|---|
| 1862 | </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.Photo"></a>5.2.5.
|
|---|
| 1863 | Optical Photon Processes
|
|---|
| 1864 | </h3></div></div></div><p>
|
|---|
| 1865 | A photon is considered to be <span class="emphasis"><em>optical</em></span> when its wavelength
|
|---|
| 1866 | is much greater than the typical atomic spacing. In GEANT4 optical
|
|---|
| 1867 | photons are treated as a class of particle distinct from their
|
|---|
| 1868 | higher energy <span class="emphasis"><em>gamma</em></span> cousins. This implementation allows the
|
|---|
| 1869 | wave-like properties of electromagnetic radiation to be
|
|---|
| 1870 | incorporated into the optical photon process. Because this
|
|---|
| 1871 | theoretical description breaks down at higher energies, there is no
|
|---|
| 1872 | smooth transition as a function of energy between the optical
|
|---|
| 1873 | photon and gamma particle classes.
|
|---|
| 1874 | </p><p>
|
|---|
| 1875 | For the simulation of optical photons to work correctly in
|
|---|
| 1876 | GEANT4, they must be imputed a linear polarization. This is unlike
|
|---|
| 1877 | most other particles in GEANT4 but is automatically and correctly
|
|---|
| 1878 | done for optical photons that are generated as secondaries by
|
|---|
| 1879 | existing processes in GEANT4. Not so, if the user wishes to start
|
|---|
| 1880 | optical photons as primary particles. In this case, the user must
|
|---|
| 1881 | set the linear polarization using particle gun methods, the General
|
|---|
| 1882 | Particle Source, or his/her PrimaryGeneratorAction. For an
|
|---|
| 1883 | unpolarized source, the linear polarization should be sampled
|
|---|
| 1884 | randomly for each new primary photon.
|
|---|
| 1885 | </p><p>
|
|---|
| 1886 | The GEANT4 catalogue of processes at optical wavelengths
|
|---|
| 1887 | includes refraction and reflection at medium boundaries, bulk
|
|---|
| 1888 | absorption and Rayleigh scattering. Processes which produce optical
|
|---|
| 1889 | photons include the Cerenkov effect, transition radiation and
|
|---|
| 1890 | scintillation. Optical photons are generated in GEANT4 without
|
|---|
| 1891 | energy conservation and their energy must therefore not be tallied
|
|---|
| 1892 | as part of the energy balance of an event.
|
|---|
| 1893 | </p><p>
|
|---|
| 1894 | The optical properties of the medium which are key to the
|
|---|
| 1895 | implementation of these types of processes are stored as entries in
|
|---|
| 1896 | a <code class="literal">G4MaterialPropertiesTable</code> which is linked to the
|
|---|
| 1897 | <code class="literal">G4Material</code> in question. These properties may be constants
|
|---|
| 1898 | or they may be expressed as a function of the photon's wavelength.
|
|---|
| 1899 | This table is a private data member of the <code class="literal">G4Material</code>
|
|---|
| 1900 | class. The <code class="literal">G4MaterialPropertiesTable</code> is implemented as a
|
|---|
| 1901 | hash directory, in which each entry consists of a <span class="emphasis"><em>value</em></span> and
|
|---|
| 1902 | a <span class="emphasis"><em>key</em></span>. The key is used to quickly and efficiently retrieve
|
|---|
| 1903 | the corresponding value. All values in the dictionary are either
|
|---|
| 1904 | instantiations of <code class="literal">G4double</code> or the class
|
|---|
| 1905 | <code class="literal">G4MaterialPropertyVector</code>, and all keys are of type
|
|---|
| 1906 | <code class="literal">G4String</code>.
|
|---|
| 1907 | </p><p>
|
|---|
| 1908 | A <code class="literal">G4MaterialPropertyVector</code> is composed of
|
|---|
| 1909 | instantiations of the class <code class="literal">G4MPVEntry</code>. The
|
|---|
| 1910 | <code class="literal">G4MPVEntry</code> is a pair of numbers, which in the case of an
|
|---|
| 1911 | optical property, are the photon momentum and corresponding
|
|---|
| 1912 | property value. The <code class="literal">G4MaterialPropertyVector</code> is
|
|---|
| 1913 | implemented as a <code class="literal">G4std::vector</code>, with the sorting operation
|
|---|
| 1914 | defined as
|
|---|
| 1915 | MPVEntry<sub>1</sub> < MPVEntry<sub>2</sub> ==
|
|---|
| 1916 | photon_momentum<sub>1</sub> < photon_momentum<sub>2</sub>.
|
|---|
| 1917 | This results in all <code class="literal">G4MaterialPropertyVector</code>s being sorted in
|
|---|
| 1918 | ascending order of photon momenta. It is possible for the user to
|
|---|
| 1919 | add as many material (optical) properties to the material as he
|
|---|
| 1920 | wishes using the methods supplied by the
|
|---|
| 1921 | <code class="literal">G4MaterialPropertiesTable</code> class. An example of this is
|
|---|
| 1922 | shown in <a href="ch05s02.html#programlist_PhysProc_5" title="Example 5.5.
|
|---|
| 1923 | Optical properties added to a G4MaterialPropertiesTable
|
|---|
| 1924 | and linked to a G4Material
|
|---|
| 1925 | ">Example 5.5</a>.
|
|---|
| 1926 |
|
|---|
| 1927 | </p><div class="example"><a name="programlist_PhysProc_5"></a><p class="title"><b>Example 5.5.
|
|---|
| 1928 | Optical properties added to a <code class="literal">G4MaterialPropertiesTable</code>
|
|---|
| 1929 | and linked to a <code class="literal">G4Material</code>
|
|---|
| 1930 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 1931 | const G4int NUMENTRIES = 32;
|
|---|
| 1932 |
|
|---|
| 1933 | G4double ppckov[NUMENTRIES] = {2.034*eV, ......, 4.136*eV};
|
|---|
| 1934 | G4double rindex[NUMENTRIES] = {1.3435, ......, 1.3608};
|
|---|
| 1935 | G4double absorption[NUMENTRIES] = {344.8*cm, ......, 1450.0*cm];
|
|---|
| 1936 |
|
|---|
| 1937 | G4MaterialPropertiesTable *MPT = new G4MaterialPropertiesTable();
|
|---|
| 1938 |
|
|---|
| 1939 | MPT -> AddConstProperty("SCINTILLATIONYIELD",100./MeV);
|
|---|
| 1940 |
|
|---|
| 1941 | MPT -> AddProperty("RINDEX",ppckov,rindex,NUMENTRIES};
|
|---|
| 1942 | MPT -> AddProperty("ABSLENGTH",ppckov,absorption,NUMENTRIES};
|
|---|
| 1943 |
|
|---|
| 1944 | scintillator -> SetMaterialPropertiesTable(MPT);
|
|---|
| 1945 | </pre></div></div><p><br class="example-break">
|
|---|
| 1946 | </p><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Photo.Cerenkov"></a>5.2.5.1.
|
|---|
| 1947 | Generation of Photons in
|
|---|
| 1948 | <code class="literal">processes/electromagnetic/xrays</code> - Cerenkov Effect
|
|---|
| 1949 | </h4></div></div></div><p>
|
|---|
| 1950 | The radiation of Cerenkov light occurs when a charged particle
|
|---|
| 1951 | moves through a dispersive medium faster than the group velocity of
|
|---|
| 1952 | light in that medium. Photons are emitted on the surface of a cone,
|
|---|
| 1953 | whose opening angle with respect to the particle's instantaneous
|
|---|
| 1954 | direction decreases as the particle slows down. At the same time,
|
|---|
| 1955 | the frequency of the photons emitted increases, and the number
|
|---|
| 1956 | produced decreases. When the particle velocity drops below the
|
|---|
| 1957 | local speed of light, the radiation ceases and the emission cone
|
|---|
| 1958 | angle collapses to zero. The photons produced by this process have
|
|---|
| 1959 | an inherent polarization perpendicular to the cone's surface at
|
|---|
| 1960 | production.
|
|---|
| 1961 | </p><p>
|
|---|
| 1962 | The flux, spectrum, polarization and emission of Cerenkov
|
|---|
| 1963 | radiation in the <code class="literal">AlongStepDoIt</code> method of the class
|
|---|
| 1964 | <code class="literal">G4Cerenkov</code> follow well-known formulae, with two inherent
|
|---|
| 1965 | computational limitations. The first arises from step-wise
|
|---|
| 1966 | simulation, and the second comes from the requirement that
|
|---|
| 1967 | numerical integration calculate the average number of Cerenkov
|
|---|
| 1968 | photons per step. The process makes use of a
|
|---|
| 1969 | <code class="literal">G4PhysicsTable</code> which contains incremental integrals to
|
|---|
| 1970 | expedite this calculation.
|
|---|
| 1971 | </p><p>
|
|---|
| 1972 | The time and position of Cerenkov photon emission are calculated
|
|---|
| 1973 | from quantities known at the beginning of a charged particle's
|
|---|
| 1974 | step. The step is assumed to be rectilinear even in the presence of
|
|---|
| 1975 | a magnetic field. The user may limit the step size by specifying a
|
|---|
| 1976 | maximum (average) number of Cerenkov photons created during the
|
|---|
| 1977 | step, using the <code class="literal">SetMaxNumPhotonsPerStep(const G4int
|
|---|
| 1978 | NumPhotons)</code> method. The actual number generated will
|
|---|
| 1979 | necessarily be different due to the Poissonian nature of the
|
|---|
| 1980 | production. In the present implementation, the production density
|
|---|
| 1981 | of photons is distributed evenly along the particle's track
|
|---|
| 1982 | segment, even if the particle has slowed significantly during the
|
|---|
| 1983 | step.
|
|---|
| 1984 | </p><p>
|
|---|
| 1985 | The frequently very large number of secondaries produced in a
|
|---|
| 1986 | single step (about 300/cm in water), compelled the idea in
|
|---|
| 1987 | GEANT3.21 of suspending the primary particle until all its progeny
|
|---|
| 1988 | have been tracked. Despite the fact that GEANT4 employs dynamic
|
|---|
| 1989 | memory allocation and thus does not suffer from the limitations of
|
|---|
| 1990 | GEANT3.21 with its fixed large initial ZEBRA store, GEANT4
|
|---|
| 1991 | nevertheless provides for an analogous functionality with the
|
|---|
| 1992 | public method <code class="literal">SetTrackSecondariesFirst</code>. An example of the
|
|---|
| 1993 | registration of the Cerenkov process is given in
|
|---|
| 1994 | <a href="ch05s02.html#programlist_PhysProc_6" title="Example 5.6.
|
|---|
| 1995 | Registration of the Cerenkov process in PhysicsList.
|
|---|
| 1996 | ">Example 5.6</a>.
|
|---|
| 1997 |
|
|---|
| 1998 | </p><div class="example"><a name="programlist_PhysProc_6"></a><p class="title"><b>Example 5.6.
|
|---|
| 1999 | Registration of the Cerenkov process in <code class="literal">PhysicsList</code>.
|
|---|
| 2000 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 2001 | #include "G4Cerenkov.hh"
|
|---|
| 2002 |
|
|---|
| 2003 | void ExptPhysicsList::ConstructOp(){
|
|---|
| 2004 |
|
|---|
| 2005 | G4Cerenkov* theCerenkovProcess = new G4Cerenkov("Cerenkov");
|
|---|
| 2006 |
|
|---|
| 2007 | G4int MaxNumPhotons = 300;
|
|---|
| 2008 |
|
|---|
| 2009 | theCerenkovProcess->SetTrackSecondariesFirst(true);
|
|---|
| 2010 | theCerenkovProcess->SetMaxNumPhotonsPerStep(MaxNumPhotons);
|
|---|
| 2011 |
|
|---|
| 2012 | theParticleIterator->reset();
|
|---|
| 2013 | while( (*theParticleIterator)() ){
|
|---|
| 2014 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2015 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2016 | G4String particleName = particle->GetParticleName();
|
|---|
| 2017 | if (theCerenkovProcess->IsApplicable(*particle)) {
|
|---|
| 2018 | pmanager->AddContinuousProcess(theCerenkovProcess);
|
|---|
| 2019 | }
|
|---|
| 2020 | }
|
|---|
| 2021 | }
|
|---|
| 2022 | </pre></div></div><p><br class="example-break">
|
|---|
| 2023 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Photo.Scinti"></a>5.2.5.2.
|
|---|
| 2024 | Generation of Photons in
|
|---|
| 2025 | <code class="literal">processes/electromagnetic/xrays</code> - Scintillation
|
|---|
| 2026 | </h4></div></div></div><p>
|
|---|
| 2027 | Every scintillating material has a characteristic light yield,
|
|---|
| 2028 | <code class="literal">SCINTILLATIONYIELD</code>, and an intrinsic resolution,
|
|---|
| 2029 | <code class="literal">RESOLUTIONSCALE</code>, which generally broadens the statistical
|
|---|
| 2030 | distribution of generated photons. A wider intrinsic resolution is
|
|---|
| 2031 | due to impurities which are typical for doped crystals like NaI(Tl)
|
|---|
| 2032 | and CsI(Tl). On the other hand, the intrinsic resolution can also
|
|---|
| 2033 | be narrower when the Fano factor plays a role. The actual number of
|
|---|
| 2034 | emitted photons during a step fluctuates around the mean number of
|
|---|
| 2035 | photons with a width given by
|
|---|
| 2036 | <code class="literal">ResolutionScale*sqrt(MeanNumberOfPhotons)</code>. The average
|
|---|
| 2037 | light yield, <code class="literal">MeanNumberOfPhotons</code>, has a linear dependence
|
|---|
| 2038 | on the local energy deposition, but it may be different for minimum
|
|---|
| 2039 | ionizing and non-minimum ionizing particles.
|
|---|
| 2040 | </p><p>
|
|---|
| 2041 | A scintillator is also characterized by its photon emission
|
|---|
| 2042 | spectrum and by the exponential decay of its time spectrum. In
|
|---|
| 2043 | GEANT4 the scintillator can have a fast and a slow component. The
|
|---|
| 2044 | relative strength of the fast component as a fraction of total
|
|---|
| 2045 | scintillation yield is given by the <code class="literal">YIELDRATIO</code>.
|
|---|
| 2046 | Scintillation may be simulated by specifying these empirical
|
|---|
| 2047 | parameters for each material. It is sufficient to specify in the
|
|---|
| 2048 | user's <code class="literal">DetectorConstruction</code> class a relative spectral
|
|---|
| 2049 | distribution as a function of photon energy for the scintillating
|
|---|
| 2050 | material. An example of this is shown in
|
|---|
| 2051 | <a href="ch05s02.html#programlist_PhysProc_7" title="Example 5.7.
|
|---|
| 2052 | Specification of scintillation properties in
|
|---|
| 2053 | DetectorConstruction.
|
|---|
| 2054 | ">Example 5.7</a>
|
|---|
| 2055 |
|
|---|
| 2056 | </p><div class="example"><a name="programlist_PhysProc_7"></a><p class="title"><b>Example 5.7.
|
|---|
| 2057 | Specification of scintillation properties in
|
|---|
| 2058 | <code class="literal">DetectorConstruction</code>.
|
|---|
| 2059 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 2060 | const G4int NUMENTRIES = 9;
|
|---|
| 2061 | G4double Scnt_PP[NUMENTRIES] = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,
|
|---|
| 2062 | 7.0*eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV };
|
|---|
| 2063 |
|
|---|
| 2064 | G4double Scnt_FAST[NUMENTRIES] = { 0.000134, 0.004432, 0.053991, 0.241971,
|
|---|
| 2065 | 0.398942, 0.000134, 0.004432, 0.053991,
|
|---|
| 2066 | 0.241971 };
|
|---|
| 2067 | G4double Scnt_SLOW[NUMENTRIES] = { 0.000010, 0.000020, 0.000030, 0.004000,
|
|---|
| 2068 | 0.008000, 0.005000, 0.020000, 0.001000,
|
|---|
| 2069 | 0.000010 };
|
|---|
| 2070 |
|
|---|
| 2071 | G4Material* Scnt;
|
|---|
| 2072 | G4MaterialPropertiesTable* Scnt_MPT = new G4MaterialPropertiesTable();
|
|---|
| 2073 |
|
|---|
| 2074 | Scnt_MPT->AddProperty("FASTCOMPONENT", Scnt_PP, Scnt_FAST, NUMENTRIES);
|
|---|
| 2075 | Scnt_MPT->AddProperty("SLOWCOMPONENT", Scnt_PP, Scnt_SLOW, NUMENTRIES);
|
|---|
| 2076 |
|
|---|
| 2077 | Scnt_MPT->AddConstProperty("SCINTILLATIONYIELD", 5000./MeV);
|
|---|
| 2078 | Scnt_MPT->AddConstProperty("RESOLUTIONSCALE", 2.0);
|
|---|
| 2079 | Scnt_MPT->AddConstProperty("FASTTIMECONSTANT", 1.*ns);
|
|---|
| 2080 | Scnt_MPT->AddConstProperty("SLOWTIMECONSTANT", 10.*ns);
|
|---|
| 2081 | Scnt_MPT->AddConstProperty("YIELDRATIO", 0.8);
|
|---|
| 2082 |
|
|---|
| 2083 | Scnt->SetMaterialPropertiesTable(Scnt_MPT);
|
|---|
| 2084 | </pre></div></div><p><br class="example-break">
|
|---|
| 2085 | </p><p>
|
|---|
| 2086 | In cases where the scintillation yield of a scintillator depends
|
|---|
| 2087 | on the particle type, different scintillation processes may be
|
|---|
| 2088 | defined for them. How this yield scales to the one specified for
|
|---|
| 2089 | the material is expressed with the
|
|---|
| 2090 | <code class="literal">ScintillationYieldFactor</code> in the user's
|
|---|
| 2091 | <code class="literal">PhysicsList</code> as shown in
|
|---|
| 2092 | <a href="ch05s02.html#programlist_PhysProc_8" title="Example 5.8.
|
|---|
| 2093 | Implementation of the scintillation process in
|
|---|
| 2094 | PhysicsList.
|
|---|
| 2095 | ">Example 5.8</a>.
|
|---|
| 2096 | In those cases where the fast to slow excitation ratio changes with particle
|
|---|
| 2097 | type, the method <code class="literal">SetScintillationExcitationRatio</code> can be
|
|---|
| 2098 | called for each scintillation process (see the advanced
|
|---|
| 2099 | underground_physics example). This overwrites the
|
|---|
| 2100 | <code class="literal">YieldRatio</code> obtained from the
|
|---|
| 2101 | <code class="literal">G4MaterialPropertiesTable</code>.
|
|---|
| 2102 |
|
|---|
| 2103 | </p><div class="example"><a name="programlist_PhysProc_8"></a><p class="title"><b>Example 5.8.
|
|---|
| 2104 | Implementation of the scintillation process in
|
|---|
| 2105 | <code class="literal">PhysicsList</code>.
|
|---|
| 2106 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 2107 | G4Scintillation* theMuonScintProcess = new G4Scintillation("Scintillation");
|
|---|
| 2108 |
|
|---|
| 2109 | theMuonScintProcess->SetTrackSecondariesFirst(true);
|
|---|
| 2110 | theMuonScintProcess->SetScintillationYieldFactor(0.8);
|
|---|
| 2111 |
|
|---|
| 2112 | theParticleIterator->reset();
|
|---|
| 2113 | while( (*theParticleIterator)() ){
|
|---|
| 2114 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2115 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2116 | G4String particleName = particle->GetParticleName();
|
|---|
| 2117 | if (theMuonScintProcess->IsApplicable(*particle)) {
|
|---|
| 2118 | if (particleName == "mu+") {
|
|---|
| 2119 | pmanager->AddProcess(theMuonScintProcess);
|
|---|
| 2120 | pmanager->SetProcessOrderingToLast(theMuonScintProcess, idxAtRest);
|
|---|
| 2121 | pmanager->SetProcessOrderingToLast(theMuonScintProcess, idxPostStep);
|
|---|
| 2122 | }
|
|---|
| 2123 | }
|
|---|
| 2124 | }
|
|---|
| 2125 | </pre></div></div><p><br class="example-break">
|
|---|
| 2126 | </p><p>
|
|---|
| 2127 | A Gaussian-distributed number of photons is generated according
|
|---|
| 2128 | to the energy lost during the step. A resolution scale of 1.0
|
|---|
| 2129 | produces a statistical fluctuation around the average yield set
|
|---|
| 2130 | with <code class="literal">AddConstProperty("SCINTILLATIONYIELD")</code>, while values
|
|---|
| 2131 | > 1 broaden the fluctuation. A value of zero produces no
|
|---|
| 2132 | fluctuation. Each photon's frequency is sampled from the empirical
|
|---|
| 2133 | spectrum. The photons originate evenly along the track segment and
|
|---|
| 2134 | are emitted uniformly into 4π with a random linear polarization
|
|---|
| 2135 | and at times characteristic for the scintillation component.
|
|---|
| 2136 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Photo.WaveShift"></a>5.2.5.3.
|
|---|
| 2137 | Generation of Photons in
|
|---|
| 2138 | <code class="literal">processes/optical</code> - Wavelength Shifting
|
|---|
| 2139 | </h4></div></div></div><p>
|
|---|
| 2140 | Wavelength Shifting (WLS) fibers are used in many high-energy
|
|---|
| 2141 | particle physics experiments. They absorb light at one wavelength
|
|---|
| 2142 | and re-emit light at a different wavelength and are used for
|
|---|
| 2143 | several reasons. For one, they tend to decrease the self-absorption
|
|---|
| 2144 | of the detector so that as much light reaches the PMTs as possible.
|
|---|
| 2145 | WLS fibers are also used to match the emission spectrum of the
|
|---|
| 2146 | detector with the input spectrum of the PMT.
|
|---|
| 2147 | </p><p>
|
|---|
| 2148 | A WLS material is characterized by its photon absorption and
|
|---|
| 2149 | photon emission spectrum and by a possible time delay between the
|
|---|
| 2150 | absorption and re-emission of the photon. Wavelength Shifting may
|
|---|
| 2151 | be simulated by specifying these empirical parameters for each WLS
|
|---|
| 2152 | material in the simulation. It is sufficient to specify in the
|
|---|
| 2153 | user's <code class="literal">DetectorConstruction</code> class a relative spectral
|
|---|
| 2154 | distribution as a function of photon energy for the WLS material.
|
|---|
| 2155 | WLSABSLENGTH is the absorption length of the material as a function
|
|---|
| 2156 | of the photon's momentum. WLSCOMPONENT is the relative emission
|
|---|
| 2157 | spectrum of the material as a function of the photon's momentum,
|
|---|
| 2158 | and WLSTIMECONSTANT accounts for any time delay which may occur
|
|---|
| 2159 | between absorption and re-emission of the photon. An example is
|
|---|
| 2160 | shown in <a href="ch05s02.html#programlist_PhysProc_9" title="Example 5.9.
|
|---|
| 2161 | Specification of WLS properties in DetectorConstruction.
|
|---|
| 2162 | ">Example 5.9</a>.
|
|---|
| 2163 |
|
|---|
| 2164 | </p><div class="example"><a name="programlist_PhysProc_9"></a><p class="title"><b>Example 5.9.
|
|---|
| 2165 | Specification of WLS properties in <code class="literal">DetectorConstruction</code>.
|
|---|
| 2166 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 2167 | const G4int nEntries = 9;
|
|---|
| 2168 |
|
|---|
| 2169 | G4double PhotonEnergy[nEntries] = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,
|
|---|
| 2170 | 7.0*eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV };
|
|---|
| 2171 |
|
|---|
| 2172 | G4double RIndexFiber[nEntries] =
|
|---|
| 2173 | { 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60 };
|
|---|
| 2174 | G4double AbsFiber[nEntries] =
|
|---|
| 2175 | {0.1*mm,0.2*mm,0.3*mm,0.4*cm,1.0*cm,10*cm,1.0*m,10.0*m,10.0*m};
|
|---|
| 2176 | G4double EmissionFiber[nEntries] =
|
|---|
| 2177 | {0.0, 0.0, 0.0, 0.1, 0.5, 1.0, 5.0, 10.0, 10.0 };
|
|---|
| 2178 |
|
|---|
| 2179 | G4Material* WLSFiber;
|
|---|
| 2180 | G4MaterialPropertiesTable* MPTFiber = new G4MaterialPropertiesTable();
|
|---|
| 2181 |
|
|---|
| 2182 | MPTFiber->AddProperty("RINDEX",PhotonEnergy,RIndexFiber,nEntries);
|
|---|
| 2183 | MPTFiber->AddProperty("WLSABSLENGTH",PhotonEnergy,AbsFiber,nEntries);
|
|---|
| 2184 | MPTFiber->AddProperty("WLSCOMPONENT",PhotonEnergy,EmissionFiber,nEntries);
|
|---|
| 2185 | MPTFiber->AddConstProperty("WLSTIMECONSTANT", 0.5*ns);
|
|---|
| 2186 |
|
|---|
| 2187 | WLSFiber->SetMaterialPropertiesTable(MPTFiber);
|
|---|
| 2188 | </pre></div></div><p><br class="example-break">
|
|---|
| 2189 | </p><p>
|
|---|
| 2190 | The process is defined in the PhysicsList in the usual way. The
|
|---|
| 2191 | process class name is G4OpWLS. It should be instantiated with
|
|---|
| 2192 | theWLSProcess = new G4OpWLS("OpWLS") and attached to the process
|
|---|
| 2193 | manager of the optical photon as a DiscreteProcess. The way the
|
|---|
| 2194 | WLSTIMECONSTANT is used depends on the time profile method chosen
|
|---|
| 2195 | by the user. If in the PhysicsList
|
|---|
| 2196 | theWLSProcess->UseTimeGenerator("exponential") option is set,
|
|---|
| 2197 | the time delay between absorption and re-emission of the photon is
|
|---|
| 2198 | sampled from an exponential distribution, with the decay term equal
|
|---|
| 2199 | to WLSTIMECONSTANT. If, on the other hand,
|
|---|
| 2200 | theWLSProcess->UseTimeGenerator("delta") is chosen, the time
|
|---|
| 2201 | delay is a delta function and equal to WLSTIMECONSTANT. The default
|
|---|
| 2202 | is "delta" in case the G4OpWLS::UseTimeGenerator(const G4String
|
|---|
| 2203 | name) method is not used.
|
|---|
| 2204 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Photo.Track"></a>5.2.5.4.
|
|---|
| 2205 | Tracking of Photons in <code class="literal">processes/optical</code>
|
|---|
| 2206 | </h4></div></div></div><h5><a name="id461706"></a>
|
|---|
| 2207 | Absorption
|
|---|
| 2208 | </h5><p>
|
|---|
| 2209 | The implementation of optical photon bulk absorption,
|
|---|
| 2210 | <code class="literal">G4OpAbsorption</code>, is trivial in that the process merely
|
|---|
| 2211 | kills the particle. The procedure requires the user to fill the
|
|---|
| 2212 | relevant <code class="literal">G4MaterialPropertiesTable</code> with empirical data for
|
|---|
| 2213 | the absorption length, using <code class="literal">ABSLENGTH</code> as the property key
|
|---|
| 2214 | in the public method <code class="literal">AddProperty</code>. The absorption length is
|
|---|
| 2215 | the average distance traveled by a photon before being absorpted by
|
|---|
| 2216 | the medium; i.e. it is the mean free path returned by the
|
|---|
| 2217 | <code class="literal">GetMeanFreePath</code> method.
|
|---|
| 2218 | </p><h5><a name="id461751"></a>
|
|---|
| 2219 | Rayleigh Scattering
|
|---|
| 2220 | </h5><p>
|
|---|
| 2221 | The differential cross section in Rayleigh scattering,
|
|---|
| 2222 | σ/ω, is proportional
|
|---|
| 2223 | to cos<sup>2</sup>(θ),
|
|---|
| 2224 | where θ is the polar of the new polarization vector with
|
|---|
| 2225 | respect to the old polarization vector. The <code class="literal">G4OpRayleigh</code>
|
|---|
| 2226 | scattering process samples this angle accordingly and then
|
|---|
| 2227 | calculates the scattered photon's new direction by requiring that
|
|---|
| 2228 | it be perpendicular to the photon's new polarization in such a way
|
|---|
| 2229 | that the final direction, initial and final polarizations are all
|
|---|
| 2230 | in one plane. This process thus depends on the particle's
|
|---|
| 2231 | polarization (spin). The photon's polarization is a data member of
|
|---|
| 2232 | the <code class="literal">G4DynamicParticle</code> class.
|
|---|
| 2233 | </p><p>
|
|---|
| 2234 | A photon which is not assigned a polarization at production,
|
|---|
| 2235 | either via the <code class="literal">SetPolarization</code> method of the
|
|---|
| 2236 | <code class="literal">G4PrimaryParticle</code> class, or indirectly with the
|
|---|
| 2237 | <code class="literal">SetParticlePolarization</code> method of the
|
|---|
| 2238 | <code class="literal">G4ParticleGun</code> class, may not be Rayleigh scattered.
|
|---|
| 2239 | Optical photons produced by the <code class="literal">G4Cerenkov</code> process have
|
|---|
| 2240 | inherently a polarization perpendicular to the cone's surface at
|
|---|
| 2241 | production. Scintillation photons have a random linear polarization
|
|---|
| 2242 | perpendicular to their direction.
|
|---|
| 2243 | </p><p>
|
|---|
| 2244 | The process requires a <code class="literal">G4MaterialPropertiesTable</code> to be
|
|---|
| 2245 | filled by the user with Rayleigh scattering length data. The
|
|---|
| 2246 | Rayleigh scattering attenuation length is the average distance
|
|---|
| 2247 | traveled by a photon before it is Rayleigh scattered in the medium
|
|---|
| 2248 | and it is the distance returned by the <code class="literal">GetMeanFreePath</code>
|
|---|
| 2249 | method. The <code class="literal">G4OpRayleigh</code> class provides a
|
|---|
| 2250 | <code class="literal">RayleighAttenuationLengthGenerator</code> method which calculates
|
|---|
| 2251 | the attenuation coefficient of a medium following the
|
|---|
| 2252 | Einstein-Smoluchowski formula whose derivation requires the use of
|
|---|
| 2253 | statistical mechanics, includes temperature, and depends on the
|
|---|
| 2254 | isothermal compressibility of the medium. This generator is
|
|---|
| 2255 | convenient when the Rayleigh attenuation length is not known from
|
|---|
| 2256 | measurement but may be calculated from first principles using the
|
|---|
| 2257 | above material constants. For a medium named <span class="emphasis"><em>Water</em></span> and no
|
|---|
| 2258 | Rayleigh scattering attenutation length specified by the user, the
|
|---|
| 2259 | program automatically calls the
|
|---|
| 2260 | <code class="literal">RayleighAttenuationLengthGenerator</code>
|
|---|
| 2261 | which calculates it for 10 degrees Celsius liquid water.
|
|---|
| 2262 | </p><h5><a name="id461867"></a>
|
|---|
| 2263 | Boundary Process
|
|---|
| 2264 | </h5><p>
|
|---|
| 2265 | Reference: E. Hecht and A. Zajac, Optics
|
|---|
| 2266 | [<span class="citation">
|
|---|
| 2267 | <a href="bi01.html#biblio.hecht1974">
|
|---|
| 2268 | Hecht1974
|
|---|
| 2269 | </a>
|
|---|
| 2270 | </span>]
|
|---|
| 2271 | </p><p>
|
|---|
| 2272 | For the simple case of a perfectly smooth interface between two
|
|---|
| 2273 | dielectric materials, all the user needs to provide are the
|
|---|
| 2274 | refractive indices of the two materials stored in their respective
|
|---|
| 2275 | <code class="literal">G4MaterialPropertiesTable</code>. In all other cases, the optical
|
|---|
| 2276 | boundary process design relies on the concept of <span class="emphasis"><em>surfaces</em></span>.
|
|---|
| 2277 | The information is split into two classes. One class in the
|
|---|
| 2278 | material category keeps information about the physical properties
|
|---|
| 2279 | of the surface itself, and a second class in the geometry category
|
|---|
| 2280 | holds pointers to the relevant physical and logical volumes
|
|---|
| 2281 | involved and has an association to the physical class. Surface
|
|---|
| 2282 | objects of the second type are stored in a related table and can be
|
|---|
| 2283 | retrieved by either specifying the two ordered pairs of physical
|
|---|
| 2284 | volumes touching at the surface, or by the logical volume entirely
|
|---|
| 2285 | surrounded by this surface. The former is called a <span class="emphasis"><em>border
|
|---|
| 2286 | surface</em></span> while the latter is referred to as the <span class="emphasis"><em>skin
|
|---|
| 2287 | surface</em></span>. This second type of surface is useful in situations
|
|---|
| 2288 | where a volume is coded with a reflector and is placed into many
|
|---|
| 2289 | different mother volumes. A limitation is that the skin surface can
|
|---|
| 2290 | only have one and the same optical property for all of the enclosed
|
|---|
| 2291 | volume's sides. The border surface is an ordered pair of physical
|
|---|
| 2292 | volumes, so in principle, the user can choose different optical
|
|---|
| 2293 | properties for photons arriving from the reverse side of the same
|
|---|
| 2294 | interface. For the optical boundary process to use a border
|
|---|
| 2295 | surface, the two volumes must have been positioned with
|
|---|
| 2296 | <code class="literal">G4PVPlacement</code>. The ordered combination can exist at many
|
|---|
| 2297 | places in the simulation. When the surface concept is not needed,
|
|---|
| 2298 | and a perfectly smooth surface exists beteen two dielectic
|
|---|
| 2299 | materials, the only relevant property is the index of refraction, a
|
|---|
| 2300 | quantity stored with the material, and no restriction exists on how
|
|---|
| 2301 | the volumes were positioned.
|
|---|
| 2302 | </p><p>
|
|---|
| 2303 | The physical surface object also specifies which model the
|
|---|
| 2304 | boundary process should use to simulate interactions with that
|
|---|
| 2305 | surface. In addition, the physical surface can have a material
|
|---|
| 2306 | property table all its own. The usage of this table allows all
|
|---|
| 2307 | specular constants to be wavelength dependent. In case the surface
|
|---|
| 2308 | is painted or wrapped (but not a cladding), the table may include
|
|---|
| 2309 | the thin layer's index of refraction. This allows the simulation of
|
|---|
| 2310 | boundary effects at the intersection between the medium and the
|
|---|
| 2311 | surface layer, as well as the Lambertian reflection at the far side
|
|---|
| 2312 | of the thin layer. This occurs within the process itself and does
|
|---|
| 2313 | not invoke the <code class="literal">G4Navigator</code>. Combinations of surface finish
|
|---|
| 2314 | properties, such as <span class="emphasis"><em>polished</em></span> or
|
|---|
| 2315 | <span class="emphasis"><em>ground</em></span> and <span class="emphasis"><em>front
|
|---|
| 2316 | painted</em></span> or <span class="emphasis"><em>back painted</em></span>, enumerate the different
|
|---|
| 2317 | situations which can be simulated.
|
|---|
| 2318 | </p><p>
|
|---|
| 2319 | When a photon arrives at a medium boundary its behavior depends
|
|---|
| 2320 | on the nature of the two materials that join at that boundary.
|
|---|
| 2321 | Medium boundaries may be formed between two dielectric materials or
|
|---|
| 2322 | a dielectric and a metal. In the case of two dielectric materials,
|
|---|
| 2323 | the photon can undergo total internal reflection, refraction or
|
|---|
| 2324 | reflection, depending on the photon's wavelength, angle of
|
|---|
| 2325 | incidence, and the refractive indices on both sides of the
|
|---|
| 2326 | boundary. Furthermore, reflection and transmission probabilites are
|
|---|
| 2327 | sensitive to the state of linear polarization. In the case of an
|
|---|
| 2328 | interface between a dielectric and a metal, the photon can be
|
|---|
| 2329 | absorbed by the metal or reflected back into the dielectric. If the
|
|---|
| 2330 | photon is absorbed it can be detected according to the
|
|---|
| 2331 | photoelectron efficiency of the metal.
|
|---|
| 2332 | </p><p>
|
|---|
| 2333 | As expressed in Maxwell's equations, Fresnel reflection and
|
|---|
| 2334 | refraction are intertwined through their relative probabilities of
|
|---|
| 2335 | occurrence. Therefore neither of these processes, nor total
|
|---|
| 2336 | internal reflection, are viewed as individual processes deserving
|
|---|
| 2337 | separate class implementation. Nonetheless, an attempt was made to
|
|---|
| 2338 | adhere to the abstraction of having independent processes by
|
|---|
| 2339 | splitting the code into different methods where practicable.
|
|---|
| 2340 | </p><p>
|
|---|
| 2341 | One implementation of the <code class="literal">G4OpBoundaryProcess</code> class
|
|---|
| 2342 | employs the
|
|---|
| 2343 | <a href="http://geant4.slac.stanford.edu/UsersWorkshop/G4Lectures/Peter/moisan.ps" target="_top">
|
|---|
| 2344 | UNIFIED model</a>
|
|---|
| 2345 | [A. Levin and C. Moisan, A More Physical Approach
|
|---|
| 2346 | to Model the Surface Treatment of Scintillation Counters and its
|
|---|
| 2347 | Implementation into DETECT, TRIUMF Preprint TRI-PP-96-64, Oct.
|
|---|
| 2348 | 1996] of the DETECT program [G.F. Knoll, T.F. Knoll and T.M.
|
|---|
| 2349 | Henderson, Light Collection Scintillation Detector Composites for
|
|---|
| 2350 | Neutron Detection, IEEE Trans. Nucl. Sci., 35 (1988) 872.]. It
|
|---|
| 2351 | applies to dielectric-dielectric interfaces and tries to provide a
|
|---|
| 2352 | realistic simulation, which deals with all aspects of surface
|
|---|
| 2353 | finish and reflector coating. The surface may be assumed as smooth
|
|---|
| 2354 | and covered with a metallized coating representing a specular
|
|---|
| 2355 | reflector with given reflection coefficient, or painted with a
|
|---|
| 2356 | diffuse reflecting material where Lambertian reflection occurs. The
|
|---|
| 2357 | surfaces may or may not be in optical contact with another
|
|---|
| 2358 | component and most importantly, one may consider a surface to be
|
|---|
| 2359 | made up of micro-facets with normal vectors that follow given
|
|---|
| 2360 | distributions around the nominal normal for the volume at the
|
|---|
| 2361 | impact point. For very rough surfaces, it is possible for the
|
|---|
| 2362 | photon to inversely aim at the same surface again after reflection
|
|---|
| 2363 | of refraction and so multiple interactions with the boundary are
|
|---|
| 2364 | possible within the process itself and without the need for
|
|---|
| 2365 | relocation by <code class="literal">G4Navigator</code>.
|
|---|
| 2366 | </p><p>
|
|---|
| 2367 | The UNIFIED model provides for a range of different reflection
|
|---|
| 2368 | mechanisms. The specular lobe constant represents the reflection
|
|---|
| 2369 | probability about the normal of a micro facet. The specular spike
|
|---|
| 2370 | constant, in turn, illustrates the probability of reflection about
|
|---|
| 2371 | the average surface normal. The diffuse lobe constant is for the
|
|---|
| 2372 | probability of internal Lambertian reflection, and finally the
|
|---|
| 2373 | back-scatter spike constant is for the case of several reflections
|
|---|
| 2374 | within a deep groove with the ultimate result of exact
|
|---|
| 2375 | back-scattering. The four probabilities must add up to one, with
|
|---|
| 2376 | the diffuse lobe constant being implicit. The reader may consult
|
|---|
| 2377 | the reference for a thorough description of the model.
|
|---|
| 2378 |
|
|---|
| 2379 | </p><div class="example"><a name="programlist_PhysProc_10"></a><p class="title"><b>Example 5.10.
|
|---|
| 2380 | Dielectric-dielectric surface properties
|
|---|
| 2381 | defined via the <span class="emphasis"><em>G4OpticalSurface</em></span>.
|
|---|
| 2382 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 2383 | G4VPhysicalVolume* volume1;
|
|---|
| 2384 | G4VPhysicalVolume* volume2;
|
|---|
| 2385 |
|
|---|
| 2386 | G4OpticalSurface* OpSurface = new G4OpticalSurface("name");
|
|---|
| 2387 |
|
|---|
| 2388 | G4LogicalBorderSurface* Surface = new
|
|---|
| 2389 | G4LogicalBorderSurface("name",volume1,volume2,OpSurface);
|
|---|
| 2390 |
|
|---|
| 2391 | G4double sigma_alpha = 0.1;
|
|---|
| 2392 |
|
|---|
| 2393 | OpSurface -> SetType(dielectric_dielectric);
|
|---|
| 2394 | OpSurface -> SetModel(unified);
|
|---|
| 2395 | OpSurface -> SetFinish(groundbackpainted);
|
|---|
| 2396 | OpSurface -> SetSigmaAlpha(sigma_alpha);
|
|---|
| 2397 |
|
|---|
| 2398 | const G4int NUM = 2;
|
|---|
| 2399 |
|
|---|
| 2400 | G4double pp[NUM] = {2.038*eV, 4.144*eV};
|
|---|
| 2401 | G4double specularlobe[NUM] = {0.3, 0.3};
|
|---|
| 2402 | G4double specularspike[NUM] = {0.2, 0.2};
|
|---|
| 2403 | G4double backscatter[NUM] = {0.1, 0.1};
|
|---|
| 2404 | G4double rindex[NUM] = {1.35, 1.40};
|
|---|
| 2405 | G4double reflectivity[NUM] = {0.3, 0.5};
|
|---|
| 2406 | G4double efficiency[NUM] = {0.8, 0.1};
|
|---|
| 2407 |
|
|---|
| 2408 | G4MaterialPropertiesTable* SMPT = new G4MaterialPropertiesTable();
|
|---|
| 2409 |
|
|---|
| 2410 | SMPT -> AddProperty("RINDEX",pp,rindex,NUM);
|
|---|
| 2411 | SMPT -> AddProperty("SPECULARLOBECONSTANT",pp,specularlobe,NUM);
|
|---|
| 2412 | SMPT -> AddProperty("SPECULARSPIKECONSTANT",pp,specularspike,NUM);
|
|---|
| 2413 | SMPT -> AddProperty("BACKSCATTERCONSTANT",pp,backscatter,NUM);
|
|---|
| 2414 | SMPT -> AddProperty("REFLECTIVITY",pp,reflectivity,NUM);
|
|---|
| 2415 | SMPT -> AddProperty("EFFICIENCY",pp,efficiency,NUM);
|
|---|
| 2416 |
|
|---|
| 2417 | OpSurface -> SetMaterialPropertiesTable(SMPT);
|
|---|
| 2418 | </pre></div></div><p><br class="example-break">
|
|---|
| 2419 | </p><p>
|
|---|
| 2420 | The original
|
|---|
| 2421 | <a href="http://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/node231.html" target="_top">
|
|---|
| 2422 | GEANT3.21 implementation</a> of this process is also available via
|
|---|
| 2423 | the GLISUR methods flag. [GEANT Detector Description and Simulation
|
|---|
| 2424 | Tool, Application Software Group, Computing and Networks Division,
|
|---|
| 2425 | CERN, PHYS260-6 tp 260-7.].
|
|---|
| 2426 |
|
|---|
| 2427 | </p><div class="example"><a name="programlist_PhysProc_11"></a><p class="title"><b>Example 5.11.
|
|---|
| 2428 | Dielectric metal surface properties defined via the
|
|---|
| 2429 | <span class="emphasis"><em>G4OpticalSurface</em></span>.
|
|---|
| 2430 | </b></p><div class="example-contents"><pre class="programlisting">
|
|---|
| 2431 | G4LogicalVolume* volume_log;
|
|---|
| 2432 |
|
|---|
| 2433 | G4OpticalSurface* OpSurface = new G4OpticalSurface("name");
|
|---|
| 2434 |
|
|---|
| 2435 | G4LogicalSkinSurface* Surface = new
|
|---|
| 2436 | G4LogicalSkinSurface("name",volume_log,OpSurface);
|
|---|
| 2437 |
|
|---|
| 2438 | OpSurface -> SetType(dielectric_metal);
|
|---|
| 2439 | OpSurface -> SetFinish(ground);
|
|---|
| 2440 | OpSurface -> SetModel(glisur);
|
|---|
| 2441 |
|
|---|
| 2442 | G4double polish = 0.8;
|
|---|
| 2443 |
|
|---|
| 2444 | G4MaterialPropertiesTable *OpSurfaceProperty = new G4MaterialPropertiesTable();
|
|---|
| 2445 |
|
|---|
| 2446 | OpSurfaceProperty -> AddProperty("REFLECTIVITY",pp,reflectivity,NUM);
|
|---|
| 2447 | OpSurfaceProperty -> AddProperty("EFFICIENCY",pp,efficiency,NUM);
|
|---|
| 2448 |
|
|---|
| 2449 | OpSurface -> SetMaterialPropertiesTable(OpSurfaceProperty);
|
|---|
| 2450 | </pre></div></div><p><br class="example-break">
|
|---|
| 2451 | </p><p>
|
|---|
| 2452 | The reflectivity off a metal surface can also be calculated by way of a complex
|
|---|
| 2453 | index of refraction. Instead of storing the REFLECTIVITY directly, the user
|
|---|
| 2454 | stores the real part (REALRINDEX) and the imaginary part (IMAGINARYRINDEX) as
|
|---|
| 2455 | a function of photon energy separately in the G4MaterialPropertyTable. Geant4
|
|---|
| 2456 | then
|
|---|
| 2457 | <a href="./AllResources/TrackingAndPhysics/physicsProcessOptical.src/GetReflectivity.pdf" target="_top">
|
|---|
| 2458 | calculates the reflectivity
|
|---|
| 2459 | </a>
|
|---|
| 2460 | depending on the incident angle, photon energy, degree of TE and TM
|
|---|
| 2461 | polarization, and this complex refractive index.
|
|---|
| 2462 | </p><p>
|
|---|
| 2463 | The program defaults to the GLISUR model and <span class="emphasis"><em>polished</em></span>
|
|---|
| 2464 | surface finish when no specific model and surface finish is
|
|---|
| 2465 | specified by the user. In the case of a dielectric-metal interface,
|
|---|
| 2466 | or when the GLISUR model is specified, the only surface finish
|
|---|
| 2467 | options available are <span class="emphasis"><em>polished</em></span> or <span class="emphasis"><em>ground</em></span>. For
|
|---|
| 2468 | dielectric-metal surfaces, the <code class="literal">G4OpBoundaryProcess</code> also
|
|---|
| 2469 | defaults to unit reflectivity and zero detection efficiency. In
|
|---|
| 2470 | cases where the user specifies the UNIFIED model, but does not
|
|---|
| 2471 | otherwise specify the model reflection probability constants, the
|
|---|
| 2472 | default becomes Lambertian reflection.
|
|---|
| 2473 | </p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.Param"></a>5.2.6.
|
|---|
| 2474 | Parameterization
|
|---|
| 2475 | </h3></div></div></div><p>
|
|---|
| 2476 | In this section we describe how to use the parameterization or
|
|---|
| 2477 | "fast simulation" facilities of GEANT4. Examples are provided in
|
|---|
| 2478 | the <span class="bold"><strong>examples/novice/N05 directory</strong></span>.
|
|---|
| 2479 | </p><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.Gene"></a>5.2.6.1.
|
|---|
| 2480 | Generalities:
|
|---|
| 2481 | </h4></div></div></div><p>
|
|---|
| 2482 | The Geant4 parameterization facilities allow you to shortcut the
|
|---|
| 2483 | detailed tracking in a given volume and for given particle types in
|
|---|
| 2484 | order for you to provide your own implementation of the physics and
|
|---|
| 2485 | of the detector response.
|
|---|
| 2486 | </p><p>
|
|---|
| 2487 | Parameterisations are bound to a
|
|---|
| 2488 | <span class="bold"><strong><code class="literal">G4Region</code></strong></span>
|
|---|
| 2489 | object, which, in the case of fast simulation is also called an
|
|---|
| 2490 | <span class="bold"><strong>envelope</strong></span>. Prior to release 8.0,
|
|---|
| 2491 | parameterisations were bound
|
|---|
| 2492 | to a <code class="literal">G4LogicalVolume</code>, the root of a volume hierarchy.
|
|---|
| 2493 | These root volumes are now attributes of the <code class="literal">G4Region</code>.
|
|---|
| 2494 | Envelopes often correspond to the volumes of sub-detectors:
|
|---|
| 2495 | electromagnetic calorimeters, tracking chambers, etc. With GEANT4
|
|---|
| 2496 | it is also possible to define envelopes by overlaying a parallel or
|
|---|
| 2497 | "ghost" geometry as discussed in <a href="ch05s02.html#sect.PhysProc.Param.Ghost" title="5.2.6.7.
|
|---|
| 2498 | Parameterisation Using Ghost Geometries
|
|---|
| 2499 | ">Section 5.2.6.7</a>.
|
|---|
| 2500 | </p><p>
|
|---|
| 2501 | In GEANT4, parameterisations have three main features. You must
|
|---|
| 2502 | specify:
|
|---|
| 2503 |
|
|---|
| 2504 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 2505 | the particle types for which your parameterisation is valid;
|
|---|
| 2506 | </p></li><li><p>
|
|---|
| 2507 | the dynamics conditions for which your parameterisation is
|
|---|
| 2508 | valid and must be triggered;
|
|---|
| 2509 | </p></li><li><p>
|
|---|
| 2510 | the parameterisation itself: where the primary will be killed
|
|---|
| 2511 | or moved, whether or not to create it or create secondaries, etc.,
|
|---|
| 2512 | and where the detector response will be computed.
|
|---|
| 2513 | </p></li></ul></div><p>
|
|---|
| 2514 | </p><p>
|
|---|
| 2515 | GEANT4 will message your parameterisation code for each step
|
|---|
| 2516 | starting in any root G4LogicalVolume (including daughters.
|
|---|
| 2517 | sub-daughters, etc. of this volume) of the <code class="literal">G4Region</code>.
|
|---|
| 2518 | It will proceed by first asking the available parameterisations for
|
|---|
| 2519 | the current particle type if one of them (and only one) wants to
|
|---|
| 2520 | issue a trigger. If so it will invoke its parameterisation. In this
|
|---|
| 2521 | case, the tracking
|
|---|
| 2522 | <span class="bold"><strong><span class="emphasis"><em>will not apply physics</em></span></strong></span>
|
|---|
| 2523 | to the particle in the step. Instead, the UserSteppingAction will be
|
|---|
| 2524 | invoked.
|
|---|
| 2525 | </p><p>
|
|---|
| 2526 | Parameterisations look like a "user stepping action" but are more
|
|---|
| 2527 | advanced because:
|
|---|
| 2528 |
|
|---|
| 2529 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 2530 | parameterisation code is messaged only in the
|
|---|
| 2531 | <code class="literal">G4Region</code> to which it is bound;
|
|---|
| 2532 | </p></li><li><p>
|
|---|
| 2533 | parameterisation code is messaged anywhere in the
|
|---|
| 2534 | <code class="literal">G4Region</code>, that is, any volume in which the track is
|
|---|
| 2535 | located;
|
|---|
| 2536 | </p></li><li><p>
|
|---|
| 2537 | GEANT4 will provide information to your parameterisation code
|
|---|
| 2538 | about the current root volume of the <code class="literal">G4Region</code>
|
|---|
| 2539 | in which the track is travelling.
|
|---|
| 2540 | </p></li></ul></div><p>
|
|---|
| 2541 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.OvComp"></a>5.2.6.2.
|
|---|
| 2542 | Overview of Parameterisation Components
|
|---|
| 2543 | </h4></div></div></div><p>
|
|---|
| 2544 | The GEANT4 components which allow the implementation and control
|
|---|
| 2545 | of parameterisations are:
|
|---|
| 2546 |
|
|---|
| 2547 | </p><div class="variablelist"><dl><dt><span class="term">
|
|---|
| 2548 | <code class="literal"><span class="bold"><strong>G4VFastSimulationModel</strong></span></code>
|
|---|
| 2549 | </span></dt><dd><p>
|
|---|
| 2550 | This is the abstract class for the implementation of parameterisations.
|
|---|
| 2551 | You must inherit from it to implement your concrete parameterisation model.
|
|---|
| 2552 | </p></dd><dt><span class="term">
|
|---|
| 2553 | <code class="literal"><span class="bold"><strong>G4FastSimulationManager</strong></span></code>
|
|---|
| 2554 | </span></dt><dd><p>
|
|---|
| 2555 | The G4VFastSimulationModel objects are attached to the
|
|---|
| 2556 | <code class="literal">G4Region</code> through a G4FastSimulationManager.
|
|---|
| 2557 | This object will manage the list of models and will message them at
|
|---|
| 2558 | tracking time.
|
|---|
| 2559 | </p></dd><dt><span class="term">
|
|---|
| 2560 | <code class="literal"><span class="bold"><strong>G4Region/Envelope</strong></span></code>
|
|---|
| 2561 | </span></dt><dd><p>
|
|---|
| 2562 | As mentioned before, an envelope in GEANT4 is a
|
|---|
| 2563 | <code class="literal"><span class="bold"><strong>G4Region</strong></span></code>.
|
|---|
| 2564 | The parameterisation is bound to the <code class="literal">G4Region</code> by
|
|---|
| 2565 | setting a <code class="literal">G4FastSimulationManager</code> pointer to it.
|
|---|
| 2566 | </p><p>
|
|---|
| 2567 | The figure below shows how the <code class="literal">G4VFastSimulationModel</code>
|
|---|
| 2568 | and <code class="literal">G4FastSimulationManager</code> objects are bound to the
|
|---|
| 2569 | <code class="literal">G4Region</code>. Then for all root G4LogicalVolume's held by
|
|---|
| 2570 | the G4Region, the fast simulation code is active.
|
|---|
| 2571 |
|
|---|
| 2572 | </p><div class="mediaobject" align="center"><img src="./AllResources/TrackingAndPhysics/physicsProcessPARAM.src/ComponentsWithRegion.gif" align="middle"><div class="caption"></div></div><p>
|
|---|
| 2573 |
|
|---|
| 2574 | </p></dd><dt><span class="term">
|
|---|
| 2575 | <code class="literal"><span class="bold"><strong>G4FastSimulationManagerProcess</strong></span></code>
|
|---|
| 2576 | </span></dt><dd><p>
|
|---|
| 2577 | This is a <code class="literal">G4VProcess</code>. It provides the interface
|
|---|
| 2578 | between the tracking and the parameterisation. It must be set in the
|
|---|
| 2579 | process list of the particles you want to parameterise.
|
|---|
| 2580 | </p></dd><dt><span class="term">
|
|---|
| 2581 | <code class="literal"><span class="bold"><strong>G4GlobalFastSimulationManager</strong></span></code>
|
|---|
| 2582 | </span></dt><dd><p>
|
|---|
| 2583 | This a singleton class which provides the management of the
|
|---|
| 2584 | <code class="literal">G4FastSimulationManager</code> objects and some ghost
|
|---|
| 2585 | facilities.
|
|---|
| 2586 | </p></dd></dl></div><p>
|
|---|
| 2587 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.FastSimModel"></a>5.2.6.3.
|
|---|
| 2588 | The <code class="literal">G4VFastSimulationModel</code> Abstract Class
|
|---|
| 2589 | </h4></div></div></div><h5><a name="id462556"></a>
|
|---|
| 2590 | Constructors:
|
|---|
| 2591 | </h5><p>
|
|---|
| 2592 | The <code class="literal">G4VFastSimulationModel</code> class has two constructors.
|
|---|
| 2593 | The second one allows you to get started quickly:
|
|---|
| 2594 |
|
|---|
| 2595 | </p><div class="variablelist"><dl><dt><span class="term">
|
|---|
| 2596 | <span class="bold"><strong><code class="literal">G4VFastSimulationModel(
|
|---|
| 2597 | const G4String& aName)</code></strong></span>:
|
|---|
| 2598 | </span></dt><dd><p>
|
|---|
| 2599 | Here <code class="literal">aName</code> identifies the parameterisation model.
|
|---|
| 2600 | </p></dd><dt><span class="term">
|
|---|
| 2601 | <span class="bold"><strong><code class="literal">G4VFastSimulationModel(const G4String&
|
|---|
| 2602 | aName, G4Region*, G4bool IsUnique=false):</code></strong></span>
|
|---|
| 2603 | </span></dt><dd><p>
|
|---|
| 2604 | In addition to the model name, this constructor accepts a G4Region pointer.
|
|---|
| 2605 | The needed G4FastSimulationManager object is constructed if necessary,
|
|---|
| 2606 | passing to it the G4Region pointer and the boolean value. If it
|
|---|
| 2607 | already exists, the model is simply added to this manager. Note
|
|---|
| 2608 | that the <span class="emphasis"><em>G4VFastSimulationModel object will not keep track of
|
|---|
| 2609 | the G4Region passed in the constructor</em></span>.
|
|---|
| 2610 | The boolean argument is there for optimization purposes: if you
|
|---|
| 2611 | know that the G4Region has a unique root G4LogicalVolume, uniquely
|
|---|
| 2612 | placed, you can set the boolean value to "true".
|
|---|
| 2613 | </p></dd></dl></div><p>
|
|---|
| 2614 | </p><h5><a name="id462636"></a>
|
|---|
| 2615 | Virtual methods:
|
|---|
| 2616 | </h5><p>
|
|---|
| 2617 | The G4VFastSimulationModel has three pure virtual methods which
|
|---|
| 2618 | must be overriden in your concrete class:
|
|---|
| 2619 |
|
|---|
| 2620 | </p><div class="variablelist"><dl><dt><span class="term">
|
|---|
| 2621 | <span class="bold"><strong><code class="literal">G4VFastSimulationModel(
|
|---|
| 2622 | <span class="emphasis"><em>const G4String& aName</em></span>):</code></strong></span>
|
|---|
| 2623 | </span></dt><dd><p>
|
|---|
| 2624 | Here aName identifies the parameterisation model.
|
|---|
| 2625 | </p></dd><dt><span class="term">
|
|---|
| 2626 | <span class="bold"><strong><code class="literal">G4bool ModelTrigger(
|
|---|
| 2627 | <span class="emphasis"><em>const G4FastTrack&</em></span>):</code></strong></span>
|
|---|
| 2628 | </span></dt><dd><p>
|
|---|
| 2629 | You must return "true" when the dynamic conditions to trigger your
|
|---|
| 2630 | parameterisation are fulfilled.
|
|---|
| 2631 | G4FastTrack provides access to the current G4Track, gives simple
|
|---|
| 2632 | access to the current root G4LogicalVolume related features (its
|
|---|
| 2633 | G4VSolid, and G4AffineTransform references between the global and
|
|---|
| 2634 | the root G4LogicalVolume local coordinates systems) and simple
|
|---|
| 2635 | access to the position and momentum expressed in the root
|
|---|
| 2636 | G4LogicalVolume coordinate system. Using these quantities and the
|
|---|
| 2637 | G4VSolid methods, you can for example easily check how far you are
|
|---|
| 2638 | from the root G4LogicalVolume boundary.
|
|---|
| 2639 | </p></dd><dt><span class="term">
|
|---|
| 2640 | <span class="bold"><strong><code class="literal">G4bool IsApplicable(
|
|---|
| 2641 | <span class="emphasis"><em>const G4ParticleDefinition&</em></span>):</code></strong></span>
|
|---|
| 2642 | </span></dt><dd><p>
|
|---|
| 2643 | In your implementation, you must return "true" when your model is
|
|---|
| 2644 | applicable to the G4ParticleDefinition passed to this method. The
|
|---|
| 2645 | G4ParticleDefinition provides all intrinsic particle information
|
|---|
| 2646 | (mass, charge, spin, name ...).
|
|---|
| 2647 | </p><p>
|
|---|
| 2648 | If you want to implement a model which is valid only for certain
|
|---|
| 2649 | particle types, it is recommended for efficiency that you use the
|
|---|
| 2650 | static pointer of the corresponding particle classes.
|
|---|
| 2651 | </p><p>
|
|---|
| 2652 | As an example, in a model valid for <span class="emphasis"><em>gamma</em></span>s only,
|
|---|
| 2653 | the IsApplicable() method should take the form:
|
|---|
| 2654 |
|
|---|
| 2655 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2656 | #include "G4Gamma.hh"
|
|---|
| 2657 |
|
|---|
| 2658 | G4bool MyGammaModel::IsApplicable(const G4ParticleDefinition& partDef)
|
|---|
| 2659 | {
|
|---|
| 2660 | return &partDef == G4Gamma::GammaDefinition();
|
|---|
| 2661 | }
|
|---|
| 2662 | </pre></div><p>
|
|---|
| 2663 | </p></dd><dt><span class="term">
|
|---|
| 2664 | <span class="bold"><strong><code class="literal">G4bool ModelTrigger(
|
|---|
| 2665 | <span class="emphasis"><em>const G4FastTrack&</em></span>):</code></strong></span>
|
|---|
| 2666 | </span></dt><dd><p>
|
|---|
| 2667 | You must return "true" when the dynamic conditions to trigger your
|
|---|
| 2668 | parameterisation are fulfilled.
|
|---|
| 2669 | The G4FastTrack provides access to the current G4Track, gives
|
|---|
| 2670 | simple access to envelope related features (G4LogicalVolume,
|
|---|
| 2671 | G4VSolid, and G4AffineTransform references between the global and
|
|---|
| 2672 | the envelope local coordinates systems) and simple access to the
|
|---|
| 2673 | position and momentum expressed in the envelope coordinate system.
|
|---|
| 2674 | Using these quantities and the G4VSolid methods, you can for
|
|---|
| 2675 | example easily check how far you are from the envelope boundary.
|
|---|
| 2676 | </p></dd><dt><span class="term">
|
|---|
| 2677 | <span class="bold"><strong><code class="literal">void DoIt(
|
|---|
| 2678 | <span class="emphasis"><em>const G4FastTrack&, G4FastStep&</em></span>):</code></strong></span>
|
|---|
| 2679 | </span></dt><dd><p>
|
|---|
| 2680 | The details of your parameterisation will be implemented in this method.
|
|---|
| 2681 | The G4FastTrack reference provides the input information, and the final
|
|---|
| 2682 | state of the particles after parameterisation must be returned
|
|---|
| 2683 | through the G4FastStep reference. Tracking for the final state
|
|---|
| 2684 | particles is requested after your parameterisation has been invoked.
|
|---|
| 2685 | </p></dd></dl></div><p>
|
|---|
| 2686 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.FastSimMan"></a>5.2.6.4.
|
|---|
| 2687 | The <code class="literal">G4FastSimulationManager</code> Class:
|
|---|
| 2688 | </h4></div></div></div><p>
|
|---|
| 2689 | G4FastSimulationManager functionnalities regarding the use of ghost
|
|---|
| 2690 | volumes are explained in <a href="ch05s02.html#sect.PhysProc.Param.Ghost" title="5.2.6.7.
|
|---|
| 2691 | Parameterisation Using Ghost Geometries
|
|---|
| 2692 | ">Section 5.2.6.7</a>.
|
|---|
| 2693 | </p><h5><a name="id462839"></a>
|
|---|
| 2694 | Constructor:
|
|---|
| 2695 | </h5><p>
|
|---|
| 2696 | </p><div class="variablelist"><dl><dt><span class="term">
|
|---|
| 2697 | <code class="literal"><span class="bold"><strong>G4FastSimulationManager(
|
|---|
| 2698 | <span class="emphasis"><em>G4Region *anEnvelope, G4bool IsUnique=false</em></span>):
|
|---|
| 2699 | </strong></span></code>
|
|---|
| 2700 | </span></dt><dd><p>
|
|---|
| 2701 | This is the only constructor. You specify the G4Region by providing
|
|---|
| 2702 | its pointer. The G4FastSimulationManager object will bind itself
|
|---|
| 2703 | to this G4Region. If you know that this G4Region has a single root
|
|---|
| 2704 | G4LogicalVolume, placed only once, you can set the IsUnique boolean
|
|---|
| 2705 | to "true" to allow some optimization.
|
|---|
| 2706 | </p><p>
|
|---|
| 2707 | Note that if you choose to use the G4VFastSimulationModel(const
|
|---|
| 2708 | G4String&, G4Region*, G4bool) constructor for your model, the
|
|---|
| 2709 | G4FastSimulationManager will be constructed using the given
|
|---|
| 2710 | G4Region* and G4bool values of the model constructor.
|
|---|
| 2711 | </p></dd></dl></div><p>
|
|---|
| 2712 | </p><h5><a name="id462890"></a>
|
|---|
| 2713 | G4VFastSimulationModel object management:
|
|---|
| 2714 | </h5><p>
|
|---|
| 2715 | The following two methods provide the usual management
|
|---|
| 2716 | functions.
|
|---|
| 2717 |
|
|---|
| 2718 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 2719 | <code class="literal"><span class="bold"><strong>void AddFastSimulationModel(
|
|---|
| 2720 | G4VFastSimulationModel*)</strong></span></code>
|
|---|
| 2721 | </p></li><li><p>
|
|---|
| 2722 | <code class="literal"><span class="bold"><strong>RemoveFastSimulationModel(
|
|---|
| 2723 | G4VFastSimulationModel*)</strong></span></code>
|
|---|
| 2724 | </p></li></ul></div><p>
|
|---|
| 2725 | </p><h5><a name="id462935"></a>
|
|---|
| 2726 | Interface with the G4FastSimulationManagerProcess:
|
|---|
| 2727 | </h5><p>
|
|---|
| 2728 | This is described in the User's Guide for Toolkit Developers
|
|---|
| 2729 | (
|
|---|
| 2730 |
|
|---|
| 2731 | section 3.9.6
|
|---|
| 2732 |
|
|---|
| 2733 | )
|
|---|
| 2734 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.FastSimManProc"></a>5.2.6.5.
|
|---|
| 2735 | The <code class="literal">G4FastSimulationManagerProcess</code> Class
|
|---|
| 2736 | </h4></div></div></div><p>
|
|---|
| 2737 | This G4VProcess serves as an interface between the tracking and the
|
|---|
| 2738 | parameterisation. At tracking time, it collaborates with the
|
|---|
| 2739 | G4FastSimulationManager of the current volume, if any, to allow the
|
|---|
| 2740 | models to trigger. If no manager exists or if no model issues a
|
|---|
| 2741 | trigger, the tracking goes on normally.
|
|---|
| 2742 | </p><p>
|
|---|
| 2743 | <span class="emphasis"><em>In the present implementation, you must set this process in
|
|---|
| 2744 | the G4ProcessManager of the particles you parameterise to enable
|
|---|
| 2745 | your parameterisation.</em></span>
|
|---|
| 2746 | </p><p>
|
|---|
| 2747 | The processes ordering is:
|
|---|
| 2748 |
|
|---|
| 2749 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2750 | [n-3] ...
|
|---|
| 2751 | [n-2] Multiple Scattering
|
|---|
| 2752 | [n-1] G4FastSimulationManagerProcess
|
|---|
| 2753 | [ n ] G4Transportation
|
|---|
| 2754 | </pre></div><p>
|
|---|
| 2755 | </p><p>
|
|---|
| 2756 | This ordering is important if you use ghost geometries, since the
|
|---|
| 2757 | G4FastSimulationManagerProcess will provide navigation in the ghost
|
|---|
| 2758 | world to limit the step on ghost boundaries.
|
|---|
| 2759 | </p><p>
|
|---|
| 2760 | The G4FastSimulationManager must be added to the process list of a
|
|---|
| 2761 | particle as a continuous and discrete process if you use ghost
|
|---|
| 2762 | geometries for this particle. You can add it as a discrete process
|
|---|
| 2763 | if you don't use ghosts.
|
|---|
| 2764 | </p><p>
|
|---|
| 2765 | The following code registers the G4FastSimulationManagerProcess
|
|---|
| 2766 | with all the particles as a discrete and continuous process:
|
|---|
| 2767 |
|
|---|
| 2768 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2769 | void MyPhysicsList::addParameterisation()
|
|---|
| 2770 | {
|
|---|
| 2771 | G4FastSimulationManagerProcess*
|
|---|
| 2772 | theFastSimulationManagerProcess = new G4FastSimulationManagerProcess();
|
|---|
| 2773 | theParticleIterator->reset();
|
|---|
| 2774 | while( (*theParticleIterator)() )
|
|---|
| 2775 | {
|
|---|
| 2776 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2777 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2778 | pmanager->AddProcess(theFastSimulationManagerProcess, -1, 0, 0);
|
|---|
| 2779 | }
|
|---|
| 2780 | }
|
|---|
| 2781 | </pre></div><p>
|
|---|
| 2782 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.FastSimManSing"></a>5.2.6.6.
|
|---|
| 2783 | The <code class="literal">G4GlobalFastSimulationManager</code> Singleton Class
|
|---|
| 2784 | </h4></div></div></div><p>
|
|---|
| 2785 | This class is a singleton which can be accessed as follows:
|
|---|
| 2786 |
|
|---|
| 2787 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2788 | #include "G4GlobalFastSimulationManager.hh"
|
|---|
| 2789 | ...
|
|---|
| 2790 | ...
|
|---|
| 2791 | G4GlobalFastSimulationManager* globalFSM;
|
|---|
| 2792 | globalFSM = G4GlobalFastSimulationManager::getGlobalFastSimulationManager();
|
|---|
| 2793 | ...
|
|---|
| 2794 | ...
|
|---|
| 2795 | </pre></div><p>
|
|---|
| 2796 | </p><p>
|
|---|
| 2797 | Presently, you will mainly need to use the
|
|---|
| 2798 | GlobalFastSimulationManager if you use ghost geometries.
|
|---|
| 2799 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.Ghost"></a>5.2.6.7.
|
|---|
| 2800 | Parameterisation Using Ghost Geometries
|
|---|
| 2801 | </h4></div></div></div><p>
|
|---|
| 2802 | In some cases, volumes of the tracking geometry do not allow
|
|---|
| 2803 | envelopes to be defined. This may be the case with a geometry
|
|---|
| 2804 | coming from a CAD system. Since such a geometry is flat, a parallel
|
|---|
| 2805 | geometry must be used to define the envelopes.
|
|---|
| 2806 | </p><p>
|
|---|
| 2807 | Another interesting case involves defining an envelope which groups
|
|---|
| 2808 | the electromagnetic and hadronic calorimeters of a detector into
|
|---|
| 2809 | one volume. This may be useful when parameterizing the interaction
|
|---|
| 2810 | of charged pions. You will very likely not want electrons to see
|
|---|
| 2811 | this envelope, which means that ghost geometries have to be
|
|---|
| 2812 | organized by particle flavours.
|
|---|
| 2813 | </p><p>
|
|---|
| 2814 | Using ghost geometries implies some more overhead in the
|
|---|
| 2815 | parameterisation mechanism for the particles sensitive to ghosts,
|
|---|
| 2816 | since navigation is provided in the ghost geometry by the
|
|---|
| 2817 | G4FastSimulationManagerProcess. Usually, however, only a few
|
|---|
| 2818 | volumes will be placed in this ghost world, so that the geometry
|
|---|
| 2819 | computations will remain rather cheap.
|
|---|
| 2820 | </p><p>
|
|---|
| 2821 | In the existing implementation (temporary implementation with
|
|---|
| 2822 | G4Region but before parallel geometry implementation), you may only
|
|---|
| 2823 | consider ghost G4Regions with just one root G4LogicalVolume. The
|
|---|
| 2824 | G4GlobalFastSimulationManager provides the construction of the
|
|---|
| 2825 | ghost geometry by making first an empty "clone" of the world for
|
|---|
| 2826 | tracking provided by the construct() method of your
|
|---|
| 2827 | G4VUserDetectorConstruction concrete class. You provide the
|
|---|
| 2828 | placement of the G4Region root G4LogicalVolume relative to the
|
|---|
| 2829 | ghost world coordinates in the G4FastSimulationManager objects. A
|
|---|
| 2830 | ghost G4Region is recognized by the fact that its associated
|
|---|
| 2831 | G4FastSimulationManager retains a non-empty list of placements.
|
|---|
| 2832 | </p><p>
|
|---|
| 2833 | The G4GlobalFastSimulationManager will then use both those
|
|---|
| 2834 | placements and the IsApplicable() methods of the models attached to
|
|---|
| 2835 | the G4FastSimulationManager objects to build the flavour-dependant
|
|---|
| 2836 | ghost geometries.
|
|---|
| 2837 | </p><p>
|
|---|
| 2838 | Then at the beginning of the tracking of a particle, the
|
|---|
| 2839 | appropriate ghost world, if any, will be selected.
|
|---|
| 2840 | </p><p>
|
|---|
| 2841 | The steps required to build one ghost G4Region are:
|
|---|
| 2842 |
|
|---|
| 2843 | </p><div class="orderedlist"><ol type="1" compact><li><p>
|
|---|
| 2844 | built the ghost G4Region : myGhostRegion;
|
|---|
| 2845 | </p></li><li><p>
|
|---|
| 2846 | build the root G4LogicalVolume: myGhostLogical, set it to
|
|---|
| 2847 | myGhostRegion;
|
|---|
| 2848 | </p></li><li><p>
|
|---|
| 2849 | build a G4FastSimulationManager object, myGhostFSManager,
|
|---|
| 2850 | giving myGhostRegion as argument of the constructor;
|
|---|
| 2851 | </p></li><li><p>
|
|---|
| 2852 | </p><p>
|
|---|
| 2853 | give to the G4FastSimulationManager the placement of the
|
|---|
| 2854 | myGhostLogical, by invoking for the G4FastSimulationManager method:
|
|---|
| 2855 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2856 | AddGhostPlacement(G4RotationMatrix*, const G4ThreeVector&);
|
|---|
| 2857 | </pre></div><p>
|
|---|
| 2858 | or:
|
|---|
| 2859 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2860 | AddGhostPlacement(G4Transform3D*);
|
|---|
| 2861 | </pre></div><p>
|
|---|
| 2862 |
|
|---|
| 2863 | where the rotation matrix and translation vector of the 3-D
|
|---|
| 2864 | transformation describe the placement relative to the ghost world
|
|---|
| 2865 | coordinates.
|
|---|
| 2866 | </p><p>
|
|---|
| 2867 | </p></li><li><p>
|
|---|
| 2868 | build your G4VFastSimulationModel objects and add them to the
|
|---|
| 2869 | myGhostFSManager.
|
|---|
| 2870 | <span class="emphasis"><em>The IsApplicable() methods of your models will be used by the
|
|---|
| 2871 | G4GlobalFastSimulationManager to build the ghost geometries
|
|---|
| 2872 | corresponding to a given particle type.</em></span>
|
|---|
| 2873 | </p></li><li><p>
|
|---|
| 2874 | </p><p>
|
|---|
| 2875 | Invoke the G4GlobalFastSimulationManager method:
|
|---|
| 2876 |
|
|---|
| 2877 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2878 | G4GlobalFastSimulationManager::getGlobalFastSimulationManager()->
|
|---|
| 2879 |
|
|---|
| 2880 | CloseFastSimulation();
|
|---|
| 2881 | </pre></div><p>
|
|---|
| 2882 | </p><p>
|
|---|
| 2883 | </p></li></ol></div><p>
|
|---|
| 2884 | </p><p>
|
|---|
| 2885 | This last call will cause the G4GlobalFastSimulationManager to
|
|---|
| 2886 | build the flavour-dependent ghost geometries. This call must be
|
|---|
| 2887 | done before the RunManager closes the geometry. (It is foreseen
|
|---|
| 2888 | that the run manager in the future will invoke the
|
|---|
| 2889 | CloseFastSimulation() to synchronize properly with the closing of
|
|---|
| 2890 | the geometry).
|
|---|
| 2891 | </p><p>
|
|---|
| 2892 | Visualization facilities are provided for ghosts geometries. After
|
|---|
| 2893 | the CloseFastSimulation() invocation, it is possible to ask for the
|
|---|
| 2894 | drawing of ghosts in an interactive session. The basic commands
|
|---|
| 2895 | are:
|
|---|
| 2896 |
|
|---|
| 2897 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 2898 | </p><p>
|
|---|
| 2899 | /vis/draw/Ghosts particle_name
|
|---|
| 2900 | </p><p>
|
|---|
| 2901 | </p><p>
|
|---|
| 2902 | which makes the drawing of the ghost geometry associated with the
|
|---|
| 2903 | particle specified by name in the command line.
|
|---|
| 2904 | </p><p>
|
|---|
| 2905 | </p></li><li><p>
|
|---|
| 2906 | /vis/draw/Ghosts
|
|---|
| 2907 | </p><p>
|
|---|
| 2908 | which draws all the ghost geometries.
|
|---|
| 2909 | </p><p>
|
|---|
| 2910 | </p></li></ul></div><p>
|
|---|
| 2911 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.GFlash"></a>5.2.6.8.
|
|---|
| 2912 | Gflash Parameterization
|
|---|
| 2913 | </h4></div></div></div><p>
|
|---|
| 2914 | This section describes how to use the Gflash library. Gflash is a
|
|---|
| 2915 | concrete parameterization which is based on the equations and
|
|---|
| 2916 | parameters of the original Gflash package from H1(hep-ex/0001020,
|
|---|
| 2917 | Grindhammer & Peters, see physics manual) and uses the "fast
|
|---|
| 2918 | simulation" facilities of GEANT4 described above. Briefly, whenever
|
|---|
| 2919 | a e-/e+ particle enters the calorimeter, it is parameterized if it
|
|---|
| 2920 | has a minimum energy and the shower is expected to be contained in
|
|---|
| 2921 | the calorimeter (or " parameterization envelope"). If this is
|
|---|
| 2922 | fulfilled the particle is killed, as well as all secondaries, and
|
|---|
| 2923 | the energy is deposited according to the Gflash equations. An
|
|---|
| 2924 | example, provided in
|
|---|
| 2925 | <span class="bold"><strong>examples/extended/parametrisation/gflash/</strong></span>,
|
|---|
| 2926 | shows how to interface Gflash to your application. The simulation time is
|
|---|
| 2927 | measured, so the user can immediately see the speed increase
|
|---|
| 2928 | resulting from the use of Gflash.
|
|---|
| 2929 | </p></div><div class="sect3" lang="en"><div class="titlepage"><div><div><h4 class="title"><a name="sect.PhysProc.Param.UsingGFlash"></a>5.2.6.9.
|
|---|
| 2930 | Using the Gflash Parameterisation
|
|---|
| 2931 | </h4></div></div></div><p>
|
|---|
| 2932 | To use Gflash "out of the box" the following steps are necessary:
|
|---|
| 2933 |
|
|---|
| 2934 | </p><div class="itemizedlist"><ul type="disc" compact><li><p>
|
|---|
| 2935 | The user must add the fast simulation process to his process
|
|---|
| 2936 | manager:
|
|---|
| 2937 |
|
|---|
| 2938 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2939 | void MyPhysicsList::addParameterisation()
|
|---|
| 2940 | {
|
|---|
| 2941 | G4FastSimulationManagerProcess*
|
|---|
| 2942 | theFastSimulationManagerProcess = new G4FastSimulationManagerProcess();
|
|---|
| 2943 | theParticleIterator->reset();
|
|---|
| 2944 | while( (*theParticleIterator)() )
|
|---|
| 2945 | {
|
|---|
| 2946 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2947 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2948 | pmanager->AddProcess(theFastSimulationManagerProcess, -1, 0, 0);
|
|---|
| 2949 | }
|
|---|
| 2950 | }
|
|---|
| 2951 | </pre></div><p>
|
|---|
| 2952 | </p></li><li><p>
|
|---|
| 2953 | </p><p>
|
|---|
| 2954 | The envelope in which the parameterization should be performed
|
|---|
| 2955 | must be specified (below: G4Region m_calo_region) and the
|
|---|
| 2956 | GFlashShowerModel must be assigned to this region. Furthermore, the
|
|---|
| 2957 | classes GFlashParticleBounds (which provides thresholds for the
|
|---|
| 2958 | parameterization like minimal energy etc.), GflashHitMaker(a helper
|
|---|
| 2959 | class to generate hits in the sensitive detector) and
|
|---|
| 2960 | GFlashHomoShowerParamterisation (which does the computations) must
|
|---|
| 2961 | be constructed (by the user at the moment) and assigned to the
|
|---|
| 2962 | GFlashShowerModel. Please note that at the moment only homogeneous
|
|---|
| 2963 | calorimeters are supported.
|
|---|
| 2964 | </p><p>
|
|---|
| 2965 | </p><p>
|
|---|
| 2966 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2967 | m_theFastShowerModel = new GFlashShowerModel("fastShowerModel",m_calo_region);
|
|---|
| 2968 | m_theParametrisation = new GFlashHomoShowerParamterisation(matManager->getMaterial(mat));
|
|---|
| 2969 | m_theParticleBounds = new GFlashParticleBounds();
|
|---|
| 2970 | m_theHMaker = new GFlashHitMaker();
|
|---|
| 2971 | m_theFastShowerModel->SetParametrisation(*m_theParametrisation);
|
|---|
| 2972 | m_theFastShowerModel->SetParticleBounds(*m_theParticleBounds) ;
|
|---|
| 2973 | m_theFastShowerModel->SetHitMaker(*m_theHMaker);
|
|---|
| 2974 | </pre></div><p>
|
|---|
| 2975 | </p><p>
|
|---|
| 2976 | </p><p>
|
|---|
| 2977 | The user must also set the material of the calorimeter, since the
|
|---|
| 2978 | computation depends on the material.
|
|---|
| 2979 | </p><p>
|
|---|
| 2980 | </p></li><li><p>
|
|---|
| 2981 | </p><p>
|
|---|
| 2982 | It is mandatory to use G4VGFlashSensitiveDetector as
|
|---|
| 2983 | (additional) base class for the sensitive detector.
|
|---|
| 2984 | </p><p>
|
|---|
| 2985 | </p><p>
|
|---|
| 2986 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2987 | class ExGflashSensitiveDetector: public G4VSensitiveDetector ,public G4VGFlashSensitiveDetector
|
|---|
| 2988 | </pre></div><p>
|
|---|
| 2989 | </p><p>
|
|---|
| 2990 | </p><p>
|
|---|
| 2991 | Here it is necessary to implement a separate interface, where the
|
|---|
| 2992 | GFlash spots are processed.
|
|---|
| 2993 | </p><p>
|
|---|
| 2994 | </p><p>
|
|---|
| 2995 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 2996 | (ProcessHits(G4GFlashSpot*aSpot ,G4TouchableHistory* ROhist))
|
|---|
| 2997 | </pre></div><p>
|
|---|
| 2998 | </p><p>
|
|---|
| 2999 | </p><p>
|
|---|
| 3000 | A separate interface is used, because the Gflash spots naturally
|
|---|
| 3001 | contain less information than the full simulation.
|
|---|
| 3002 | </p><p>
|
|---|
| 3003 | </p></li></ul></div><p>
|
|---|
| 3004 | </p><p>
|
|---|
| 3005 | Since the parameters in the Gflash package are taken from fits to
|
|---|
| 3006 | full simulations with Geant3, some retuning might be necessary for
|
|---|
| 3007 | good agreement with Geant4 showers. For experiment-specific
|
|---|
| 3008 | geometries some retuning might be necessary anyway. The tuning is
|
|---|
| 3009 | quite complicated since there are many parameters (some correlated)
|
|---|
| 3010 | and cannot be described here (see again hep-ex/0001020). For brave
|
|---|
| 3011 | users the Gflash framework already forsees the possibility of
|
|---|
| 3012 | passing a class with the (users)
|
|---|
| 3013 | parameters,<span class="bold"><strong>GVFlashHomoShowerTuning</strong></span>,
|
|---|
| 3014 | to the GFlashHomoShowerParamterisation constructor.
|
|---|
| 3015 | The default parameters are the original Gflash parameters:
|
|---|
| 3016 |
|
|---|
| 3017 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 3018 | GFlashHomoShowerParameterisation(G4Material * aMat, GVFlashHomoShowerTuning * aPar = 0);
|
|---|
| 3019 | </pre></div><p>
|
|---|
| 3020 | </p><p>
|
|---|
| 3021 | Now there is also a preliminary implemenation of a parameterization
|
|---|
| 3022 | for sampling calorimeters.
|
|---|
| 3023 | </p><p>
|
|---|
| 3024 | The user must specify the active and passive material, as well as
|
|---|
| 3025 | the thickness of the active and passive layer.
|
|---|
| 3026 | </p><p>
|
|---|
| 3027 | The sampling structure of the calorimeter is taken into account by
|
|---|
| 3028 | using an "effective medium" to compute the shower shape.
|
|---|
| 3029 | </p><p>
|
|---|
| 3030 | All material properties needed are calculated automatically. If
|
|---|
| 3031 | tuning is required, the user can pass his own parameter set in
|
|---|
| 3032 | the class
|
|---|
| 3033 | <span class="bold"><strong>GFlashSamplingShowerTuning</strong></span>.
|
|---|
| 3034 | Here the user can also set his calorimeter resolution.
|
|---|
| 3035 | </p><p>
|
|---|
| 3036 | All in all the constructor looks the following:
|
|---|
| 3037 |
|
|---|
| 3038 | </p><div class="informalexample"><pre class="programlisting">
|
|---|
| 3039 | GFlashSamplingShowerParamterisation(G4Material * Mat1, G4Material * Mat2,G4double d1,G4double d2,
|
|---|
| 3040 | GVFlashSamplingShowerTuning * aPar = 0);
|
|---|
| 3041 | </pre></div><p>
|
|---|
| 3042 | </p><p>
|
|---|
| 3043 | An implementation of some tools that should help the user to tune
|
|---|
| 3044 | the parameterization is forseen.
|
|---|
| 3045 | </p></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="sect.PhysProc.Trans"></a>5.2.7.
|
|---|
| 3046 | Transportation Process
|
|---|
| 3047 | </h3></div></div></div><p>
|
|---|
| 3048 | To be delivered by J. Apostolakis (<code class="email"><<a href="mailto:John.Apostolakis@cern.ch">John.Apostolakis@cern.ch</a>></code>).
|
|---|
| 3049 | </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05.html"><img src="AllResources/IconsGIF/prev.gif" alt="Prev"></a> </td><td width="20%" align="center"><a accesskey="u" href="ch05.html"><img src="AllResources/IconsGIF/up.gif" alt="Up"></a></td><td width="40%" align="right"> <a accesskey="n" href="ch05s03.html"><img src="AllResources/IconsGIF/next.gif" alt="Next"></a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 5.
|
|---|
| 3050 | Tracking and Physics
|
|---|
| 3051 | </td><td width="20%" align="center"><a accesskey="h" href="index.html"><img src="AllResources/IconsGIF/home.gif" alt="Home"></a></td><td width="40%" align="right" valign="top"> 5.3.
|
|---|
| 3052 | Particles
|
|---|
| 3053 | </td></tr></table></div></body></html>
|
|---|