| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- -->
|
|---|
| 3 | <!-- [History] -->
|
|---|
| 4 | <!-- Changed by: Katsuya Amako, 30-Nov-1998 -->
|
|---|
| 5 | <!-- Converted with LaTeX2HTML 96.1-g (July 19, 1996) by -->
|
|---|
| 6 | <!-- Nikos Drakos (nikos@cbl.leeds.ac.uk), -->
|
|---|
| 7 | <!-- CBLU, University of Leeds -->
|
|---|
| 8 | <!-- Changed by: John APOSTOLAKIS, 7-Dec-1998 -->
|
|---|
| 9 | <!-- Proof read by: Joe Chuma, 29-Jun-1999 -->
|
|---|
| 10 | <!-- Changed by: Dennis Wright, 12-Dec-2002 -->
|
|---|
| 11 | <!-- Corrections for field changes: John Apostolakis, -->
|
|---|
| 12 | <!-- 17-Jun-2005 -->
|
|---|
| 13 | <!-- Corrections, changes by: John APOSTOLAKIS, 7-Jul-2005 -->
|
|---|
| 14 | <!-- Converted to DocBook: Katsuya Amako, Aug-2006 -->
|
|---|
| 15 | <!-- -->
|
|---|
| 16 | <!-- ******************************************************** -->
|
|---|
| 17 |
|
|---|
| 18 |
|
|---|
| 19 | <!-- ******************* Section (Level#1) ****************** -->
|
|---|
| 20 | <sect1 id="sect.EMField">
|
|---|
| 21 | <title>
|
|---|
| 22 | Electromagnetic Field
|
|---|
| 23 | </title>
|
|---|
| 24 |
|
|---|
| 25 |
|
|---|
| 26 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 27 | <sect2 id="sect.EMField.Overview">
|
|---|
| 28 | <title>
|
|---|
| 29 | An Overview of Propagation in a Field
|
|---|
| 30 | </title>
|
|---|
| 31 |
|
|---|
| 32 | <para>
|
|---|
| 33 | Geant4 is capable of describing and propagating in a variety of
|
|---|
| 34 | fields. Magnetic fields, electric fields and electromagnetic,
|
|---|
| 35 | uniform or non-uniform, can specified for a Geant4 setup. The
|
|---|
| 36 | propagation of tracks inside them can be performed to a
|
|---|
| 37 | user-defined accuracy.
|
|---|
| 38 | </para>
|
|---|
| 39 |
|
|---|
| 40 | <para>
|
|---|
| 41 | In order to propagate a track inside a field, the equation of
|
|---|
| 42 | motion of the particle in the field is integrated. In general, this
|
|---|
| 43 | is done using a Runge-Kutta method for the integration of ordinary
|
|---|
| 44 | differential equations. However, for specific cases where an
|
|---|
| 45 | analytical solution is known, it is possible to utilize this
|
|---|
| 46 | instead. Several Runge-Kutta methods are available, suitable for
|
|---|
| 47 | different conditions. In specific cases (such as a uniform field
|
|---|
| 48 | where the analytical solution is known) different solvers can also
|
|---|
| 49 | be used. In addition, when an approximate analytical solution is
|
|---|
| 50 | known, it is possible to utilize it in an iterative manner in order
|
|---|
| 51 | to converge to the solution to the precision required. This latter
|
|---|
| 52 | method is currently implemented and can be used particularly well
|
|---|
| 53 | for magnetic fields that are almost uniform.
|
|---|
| 54 | </para>
|
|---|
| 55 |
|
|---|
| 56 | <para>
|
|---|
| 57 | Once a method is chosen that calculates the track's propagation
|
|---|
| 58 | in a specific field, the curved path is broken up into linear chord
|
|---|
| 59 | segments. These chord segments are determined so that they closely
|
|---|
| 60 | approximate the curved path. The chords are then used to
|
|---|
| 61 | interrogate the Navigator as to whether the track has crossed a
|
|---|
| 62 | volume boundary. Several parameters are available to adjust the
|
|---|
| 63 | accuracy of the integration and the subsequent interrogation of the
|
|---|
| 64 | model geometry.
|
|---|
| 65 | </para>
|
|---|
| 66 |
|
|---|
| 67 | <para>
|
|---|
| 68 | How closely the set of chords approximates a curved trajectory
|
|---|
| 69 | is governed by a parameter called the <emphasis>miss distance</emphasis> (also
|
|---|
| 70 | called the <emphasis>chord distance</emphasis> ). This is an upper bound for the
|
|---|
| 71 | value of the sagitta - the distance between the 'real' curved
|
|---|
| 72 | trajectory and the approximate linear trajectory of the chord. By
|
|---|
| 73 | setting this parameter, the user can control the precision of the
|
|---|
| 74 | volume interrogation. Every attempt has been made to ensure that
|
|---|
| 75 | all volume interrogations will be made to an accuracy within this
|
|---|
| 76 | <emphasis>miss distance</emphasis>.
|
|---|
| 77 |
|
|---|
| 78 | <figure id="fig.EMField_1">
|
|---|
| 79 | <title>
|
|---|
| 80 | The curved trajectory will be approximated by chords,
|
|---|
| 81 | so that the maximum estimated distance between curve and chord is
|
|---|
| 82 | less than the the <emphasis>miss distance</emphasis>.
|
|---|
| 83 | </title>
|
|---|
| 84 | <mediaobject>
|
|---|
| 85 | <imageobject role="fo">
|
|---|
| 86 | <imagedata fileref="./AllResources/Detector/electroMagneticField.src/MissDistance.jpg"
|
|---|
| 87 | format="JPG" contentwidth="12.0cm" align="center" />
|
|---|
| 88 | </imageobject>
|
|---|
| 89 | <imageobject role="html">
|
|---|
| 90 | <imagedata fileref="./AllResources/Detector/electroMagneticField.src/MissDistance.jpg"
|
|---|
| 91 | format="JPG" align="center" />
|
|---|
| 92 | </imageobject>
|
|---|
| 93 | <textobject>
|
|---|
| 94 | <phrase>Miss Distance</phrase>
|
|---|
| 95 | </textobject>
|
|---|
| 96 | </mediaobject>
|
|---|
| 97 | </figure>
|
|---|
| 98 | </para>
|
|---|
| 99 |
|
|---|
| 100 | <para>
|
|---|
| 101 | In addition to the <emphasis>miss distance</emphasis> there are two more
|
|---|
| 102 | parameters which the user can set in order to adjust the accuracy
|
|---|
| 103 | (and performance) of tracking in a field. In particular these
|
|---|
| 104 | parameters govern the accuracy of the intersection with a volume
|
|---|
| 105 | boundary and the accuracy of the integration of other steps. As
|
|---|
| 106 | such they play an important role for tracking.
|
|---|
| 107 | </para>
|
|---|
| 108 |
|
|---|
| 109 | <para>
|
|---|
| 110 | The <emphasis>delta intersection</emphasis> parameter is the accuracy to which
|
|---|
| 111 | an intersection with a volume boundary is calculated. If a
|
|---|
| 112 | candidate boundary intersection is estimated to have a precision
|
|---|
| 113 | better than this, it is accepted. This parameter is especially
|
|---|
| 114 | important because it is used to limit a bias that our algorithm
|
|---|
| 115 | (for boundary crossing in a field) exhibits. This algorithm
|
|---|
| 116 | calculates the intersection with a volume boundary using a chord
|
|---|
| 117 | between two points on the curved particle trajectory. As such, the
|
|---|
| 118 | intersection point is always on the 'inside' of the curve. By
|
|---|
| 119 | setting a value for this parameter that is much smaller than some
|
|---|
| 120 | acceptable error, the user can limit the effect of this bias on,
|
|---|
| 121 | for example, the future estimation of the reconstructed particle
|
|---|
| 122 | momentum.
|
|---|
| 123 |
|
|---|
| 124 | <figure id="fig.EMField_2">
|
|---|
| 125 | <title>
|
|---|
| 126 | The distance between the calculated chord intersection
|
|---|
| 127 | point C and a computed curve point D is used to determine whether C
|
|---|
| 128 | is an accurate representation of the intersection of the curved
|
|---|
| 129 | path ADB with a volume boundary. Here CD is likely too large, and a
|
|---|
| 130 | new intersection on the chord AD will be calculated.
|
|---|
| 131 | </title>
|
|---|
| 132 | <mediaobject>
|
|---|
| 133 | <imageobject role="fo">
|
|---|
| 134 | <imagedata fileref="./AllResources/Detector/electroMagneticField.src/IntersectionError.jpg"
|
|---|
| 135 | format="JPG" contentdepth="5.0cm" align="center" />
|
|---|
| 136 | </imageobject>
|
|---|
| 137 | <imageobject role="html">
|
|---|
| 138 | <imagedata fileref="./AllResources/Detector/electroMagneticField.src/IntersectionError.jpg"
|
|---|
| 139 | format="JPG" align="center" />
|
|---|
| 140 | </imageobject>
|
|---|
| 141 | <textobject>
|
|---|
| 142 | <phrase>Figure: The distance between the calculated chord intersection
|
|---|
| 143 | point and a computed curve point.</phrase>
|
|---|
| 144 | </textobject>
|
|---|
| 145 | </mediaobject>
|
|---|
| 146 | </figure>
|
|---|
| 147 | </para>
|
|---|
| 148 |
|
|---|
| 149 | <para>
|
|---|
| 150 | The <emphasis>delta one step</emphasis> parameter is the accuracy for the
|
|---|
| 151 | endpoint of 'ordinary' integration steps, those which do not
|
|---|
| 152 | intersect a volume boundary. This parameter is a limit on the
|
|---|
| 153 | estimated error of the endpoint of each physics step. It can be
|
|---|
| 154 | seen as akin to a statistical uncertainty and is not expected to
|
|---|
| 155 | contribute any systematic behavior to physical quantities. In
|
|---|
| 156 | contrast, the bias addressed by <emphasis>delta intersection</emphasis> is
|
|---|
| 157 | clearly correlated with potential systematic errors in the momentum
|
|---|
| 158 | of reconstructed tracks. Thus very strict limits on the
|
|---|
| 159 | intersection parameter should be used in tracking detectors or
|
|---|
| 160 | wherever the intersections are used to reconstruct a track's
|
|---|
| 161 | momentum.
|
|---|
| 162 | </para>
|
|---|
| 163 |
|
|---|
| 164 | <para>
|
|---|
| 165 | <emphasis>Delta intersection</emphasis> and <emphasis>delta one step</emphasis> are
|
|---|
| 166 | parameters of the Field Manager; the user can set them according to
|
|---|
| 167 | the demands of his application. Because it is possible to use more
|
|---|
| 168 | than one field manager, different values can be set for different
|
|---|
| 169 | detector regions.
|
|---|
| 170 | </para>
|
|---|
| 171 |
|
|---|
| 172 | <para>
|
|---|
| 173 | Note that reasonable values for the two parameters are strongly
|
|---|
| 174 | coupled: it does not make sense to request an accuracy of 1 nm for
|
|---|
| 175 | <emphasis>delta intersection</emphasis> and accept 100 &#956m for the
|
|---|
| 176 | <emphasis>delta one step</emphasis> error value. Nevertheless <emphasis>delta
|
|---|
| 177 | intersection</emphasis> is the more important of the two. It is
|
|---|
| 178 | recommended that these parameters should not differ significantly -
|
|---|
| 179 | certainly not by more than an order of magnitude.
|
|---|
| 180 | </para>
|
|---|
| 181 |
|
|---|
| 182 | </sect2>
|
|---|
| 183 |
|
|---|
| 184 |
|
|---|
| 185 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 186 | <sect2 id="sect.EMField.Pract">
|
|---|
| 187 | <title>
|
|---|
| 188 | Practical Aspects
|
|---|
| 189 | </title>
|
|---|
| 190 |
|
|---|
| 191 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 192 | <sect3 id="sect.EMField.Pract.MagField">
|
|---|
| 193 | <title>
|
|---|
| 194 | Creating a Magnetic Field for a Detector
|
|---|
| 195 | </title>
|
|---|
| 196 |
|
|---|
| 197 | <para>
|
|---|
| 198 | The simplest way to define a field for a detector involves the
|
|---|
| 199 | following steps:
|
|---|
| 200 |
|
|---|
| 201 | <orderedlist spacing="compact">
|
|---|
| 202 | <listitem><para>
|
|---|
| 203 | create a field:
|
|---|
| 204 | <informalexample>
|
|---|
| 205 | <programlisting>
|
|---|
| 206 | G4UniformMagField* magField
|
|---|
| 207 | = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue));
|
|---|
| 208 | </programlisting>
|
|---|
| 209 | </informalexample>
|
|---|
| 210 | </para></listitem>
|
|---|
| 211 | <listitem><para>
|
|---|
| 212 | set it as the default field:
|
|---|
| 213 | <informalexample>
|
|---|
| 214 | <programlisting>
|
|---|
| 215 | G4FieldManager* fieldMgr
|
|---|
| 216 | = G4TransportationManager::GetTransportationManager()
|
|---|
| 217 | ->GetFieldManager();
|
|---|
| 218 | fieldMgr->SetDetectorField(magField);
|
|---|
| 219 | </programlisting>
|
|---|
| 220 | </informalexample>
|
|---|
| 221 | </para></listitem>
|
|---|
| 222 | <listitem><para>
|
|---|
| 223 | create the objects which calculate the trajectory:
|
|---|
| 224 | <informalexample>
|
|---|
| 225 | <programlisting>
|
|---|
| 226 | fieldMgr->CreateChordFinder(magField);
|
|---|
| 227 | </programlisting>
|
|---|
| 228 | </informalexample>
|
|---|
| 229 | </para></listitem>
|
|---|
| 230 | </orderedlist>
|
|---|
| 231 | </para>
|
|---|
| 232 |
|
|---|
| 233 | <para>
|
|---|
| 234 | To change the accuracy of volume intersection use the
|
|---|
| 235 | <literal>SetDeltaChord</literal> method:
|
|---|
| 236 |
|
|---|
| 237 | <informalexample>
|
|---|
| 238 | <programlisting>
|
|---|
| 239 | fieldMgr->GetChordFinder()->SetDeltaChord( G4double newValue);
|
|---|
| 240 | </programlisting>
|
|---|
| 241 | </informalexample>
|
|---|
| 242 | </para>
|
|---|
| 243 |
|
|---|
| 244 | </sect3>
|
|---|
| 245 |
|
|---|
| 246 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 247 | <sect3 id="sect.EMField.Pract.PartVol">
|
|---|
| 248 | <title>
|
|---|
| 249 | Creating a Field for a Part of the Volume Hierarchy
|
|---|
| 250 | </title>
|
|---|
| 251 |
|
|---|
| 252 | <para>
|
|---|
| 253 | It is possible to create a field for a part of the detector. In
|
|---|
| 254 | particular it can describe the field (with pointer fEmField, for
|
|---|
| 255 | example) inside a logical volume and all its daughters. This can be
|
|---|
| 256 | done by simply creating a <literal>G4FieldManager</literal> and attaching it
|
|---|
| 257 | to a logical volume (with pointer, logicVolumeWithField, for
|
|---|
| 258 | example) or set of logical volumes.
|
|---|
| 259 |
|
|---|
| 260 | <informalexample>
|
|---|
| 261 | <programlisting>
|
|---|
| 262 | G4bool allLocal = true;
|
|---|
| 263 | logicVolumeWithField->SetFieldManager(localFieldManager, allLocal);
|
|---|
| 264 | </programlisting>
|
|---|
| 265 | </informalexample>
|
|---|
| 266 | </para>
|
|---|
| 267 |
|
|---|
| 268 | <para>
|
|---|
| 269 | Using the second parameter to <literal>SetFieldManager</literal> you choose
|
|---|
| 270 | whether daughter volumes of this logical volume will also be given this new
|
|---|
| 271 | field. If it has the value <literal>true</literal>, the field will be
|
|---|
| 272 | assigned also to its daughters, and all their sub-volumes.
|
|---|
| 273 | Else, if it is <literal>false</literal>, it will be copied only to those
|
|---|
| 274 | daughter volumes which do not have a field manager already.
|
|---|
| 275 | </para>
|
|---|
| 276 |
|
|---|
| 277 | </sect3>
|
|---|
| 278 |
|
|---|
| 279 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 280 | <sect3 id="sect.EMField.Pract.Electric">
|
|---|
| 281 | <title>
|
|---|
| 282 | Creating an Electric or Electromagnetic Field
|
|---|
| 283 | </title>
|
|---|
| 284 |
|
|---|
| 285 | <para>
|
|---|
| 286 | The design and implementation of the <emphasis>Field</emphasis> category
|
|---|
| 287 | allows and enables the use of an electric or combined
|
|---|
| 288 | electromagnetic field. These fields can also vary with time, as can
|
|---|
| 289 | magnetic fields.
|
|---|
| 290 | </para>
|
|---|
| 291 |
|
|---|
| 292 | <para>
|
|---|
| 293 | Source listing <xref linkend="programlist_EMField_1" /> shows how to
|
|---|
| 294 | define a uniform electric field for the whole of a detector.
|
|---|
| 295 |
|
|---|
| 296 | <example id="programlist_EMField_1">
|
|---|
| 297 | <title>
|
|---|
| 298 | How to define a uniform electric field for the whole of a detector,
|
|---|
| 299 | extracted from example in examples/extended/field/field02 .
|
|---|
| 300 | </title>
|
|---|
| 301 |
|
|---|
| 302 | <programlisting>
|
|---|
| 303 | // in the header file (or first)
|
|---|
| 304 | #include "G4EqMagElectricField.hh"
|
|---|
| 305 | #include "G4UniformElectricField.hh"
|
|---|
| 306 |
|
|---|
| 307 | ...
|
|---|
| 308 | G4ElectricField* fEMfield;
|
|---|
| 309 | G4EqMagElectricField* fEquation;
|
|---|
| 310 | G4MagIntegratorStepper* fStepper;
|
|---|
| 311 | G4FieldManager* fFieldMgr;
|
|---|
| 312 | G4double fMinStep ;
|
|---|
| 313 | G4ChordFinder* fChordFinder ;
|
|---|
| 314 |
|
|---|
| 315 | // in the source file
|
|---|
| 316 |
|
|---|
| 317 | {
|
|---|
| 318 | fEMfield = new G4UniformElectricField(
|
|---|
| 319 | G4ThreeVector(0.0,100000.0*kilovolt/cm,0.0));
|
|---|
| 320 |
|
|---|
| 321 | // Create an equation of motion for this field
|
|---|
| 322 | fEquation = new G4EqMagElectricField(fEMfield);
|
|---|
| 323 |
|
|---|
| 324 | G4int nvar = 8;
|
|---|
| 325 | fStepper = new G4ClassicalRK4( fEquation, nvar );
|
|---|
| 326 |
|
|---|
| 327 | // Get the global field manager
|
|---|
| 328 | fFieldManager= G4TransportationManager::GetTransportationManager()->
|
|---|
| 329 | GetFieldManager();
|
|---|
| 330 | // Set this field to the global field manager
|
|---|
| 331 | fFieldManager->SetDetectorField(fEMfield );
|
|---|
| 332 |
|
|---|
| 333 | fMinStep = 0.010*mm ; // minimal step of 10 microns
|
|---|
| 334 |
|
|---|
| 335 | fIntgrDriver = new G4MagInt_Driver(fMinStep,
|
|---|
| 336 | fStepper,
|
|---|
| 337 | fStepper->GetNumberOfVariables() );
|
|---|
| 338 |
|
|---|
| 339 | fChordFinder = new G4ChordFinder(fIntgrDriver);
|
|---|
| 340 | fFieldManager->SetChordFinder( fChordFinder );
|
|---|
| 341 |
|
|---|
| 342 | }
|
|---|
| 343 | </programlisting>
|
|---|
| 344 | </example>
|
|---|
| 345 | </para>
|
|---|
| 346 |
|
|---|
| 347 | <para>
|
|---|
| 348 | An example with an electric field is
|
|---|
| 349 | examples/extended/field/field02, where the class
|
|---|
| 350 | F02ElectricFieldSetup demonstrates how to set these and other
|
|---|
| 351 | parameters, and how to choose different Integration Steppers.
|
|---|
| 352 | </para>
|
|---|
| 353 |
|
|---|
| 354 | <para>
|
|---|
| 355 | The user can also create their own type of field, inheriting from
|
|---|
| 356 | <literal>G4VField</literal>, and an associated Equation of Motion class
|
|---|
| 357 | (inheriting from <literal>G4EqRhs</literal>) to simulate other types of
|
|---|
| 358 | fields.
|
|---|
| 359 | </para>
|
|---|
| 360 |
|
|---|
| 361 | </sect3>
|
|---|
| 362 |
|
|---|
| 363 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 364 | <sect3 id="sect.EMField.Pract.Stepper">
|
|---|
| 365 | <title>
|
|---|
| 366 | Choosing a Stepper
|
|---|
| 367 | </title>
|
|---|
| 368 |
|
|---|
| 369 | <para>
|
|---|
| 370 | Runge-Kutta integration is used to compute the motion of a
|
|---|
| 371 | charged track in a general field. There are many general steppers
|
|---|
| 372 | from which to choose, of low and high order, and specialized
|
|---|
| 373 | steppers for pure magnetic fields. By default, Geant4 uses the
|
|---|
| 374 | classical fourth-order Runge-Kutta stepper, which is general
|
|---|
| 375 | purpose and robust. If the field is known to have specific
|
|---|
| 376 | properties, lower or higher order steppers can be used to obtain
|
|---|
| 377 | the same quality results using fewer computing cycles.
|
|---|
| 378 | </para>
|
|---|
| 379 |
|
|---|
| 380 | <para>
|
|---|
| 381 | In particular, if the field is calculated from a field map, a
|
|---|
| 382 | lower order stepper is recommended. The less smooth the field is,
|
|---|
| 383 | the lower the order of the stepper that should be used. The choice
|
|---|
| 384 | of lower order steppers includes the third order stepper
|
|---|
| 385 | <literal>G4SimpleHeum</literal>, the second order <literal>G4ImplicitEuler</literal>
|
|---|
| 386 | and <literal>G4SimpleRunge</literal>, and the first order
|
|---|
| 387 | <literal>G4ExplicitEuler</literal>. A first order stepper would be useful
|
|---|
| 388 | only for very rough fields. For somewhat smooth fields
|
|---|
| 389 | (intermediate), the choice between second and third order steppers
|
|---|
| 390 | should be made by trial and error. Trying a few different types of
|
|---|
| 391 | steppers for a particular field or application is suggested if
|
|---|
| 392 | maximum performance is a goal.
|
|---|
| 393 | </para>
|
|---|
| 394 |
|
|---|
| 395 | <para>
|
|---|
| 396 | The choice of stepper depends on the type of field: magnetic or
|
|---|
| 397 | general. A general field can be an electric or electromagnetic
|
|---|
| 398 | field, it can be a magnetic field or a user-defined field (which
|
|---|
| 399 | requires a user-defined equation of motion.) For a general field
|
|---|
| 400 | several steppers are available as alternatives to the default
|
|---|
| 401 | (<literal>G4ClassicalRK4</literal>):
|
|---|
| 402 |
|
|---|
| 403 | <informalexample>
|
|---|
| 404 | <programlisting>
|
|---|
| 405 | G4int nvar = 8; // To integrate time & energy
|
|---|
| 406 | // in addition to position, momentum
|
|---|
| 407 | G4EqMagElectricField* fEquation= new G4EqMagElectricField(fEMfield);
|
|---|
| 408 |
|
|---|
| 409 | fStepper = new G4SimpleHeum( fEquation, nvar );
|
|---|
| 410 | // 3rd order, a good alternative to ClassicalRK
|
|---|
| 411 | fStepper = new G4SimpleRunge( fEquation, nvar );
|
|---|
| 412 | // 2nd order, for less smooth fields
|
|---|
| 413 | fStepper = new G4CashKarpRKF45( fEquation );
|
|---|
| 414 | // 4/5th order for very smooth fields
|
|---|
| 415 | </programlisting>
|
|---|
| 416 | </informalexample>
|
|---|
| 417 | </para>
|
|---|
| 418 |
|
|---|
| 419 | <para>
|
|---|
| 420 | Specialized steppers for pure magnetic fields are also
|
|---|
| 421 | available. They take into account the fact that a local trajectory
|
|---|
| 422 | in a slowly varying field will not vary significantly from a helix.
|
|---|
| 423 | Combining this in with a variation the Runge-Kutta method can
|
|---|
| 424 | provide higher accuracy at lower computational cost when large
|
|---|
| 425 | steps are possible.
|
|---|
| 426 |
|
|---|
| 427 | <informalexample>
|
|---|
| 428 | <programlisting>
|
|---|
| 429 | G4Mag_UsualEqRhs*
|
|---|
| 430 | fEquation = new G4Mag_UsualEqRhs(fMagneticField);
|
|---|
| 431 | fStepper = new G4HelixImplicitEuler( fEquation );
|
|---|
| 432 | // Note that for magnetic field that do not vary with time,
|
|---|
| 433 | // the default number of variables suffices.
|
|---|
| 434 |
|
|---|
| 435 | // or ..
|
|---|
| 436 | fStepper = new G4HelixExplicitEuler( fEquation );
|
|---|
| 437 | fStepper = new G4HelixSimpleRunge( fEquation );
|
|---|
| 438 | </programlisting>
|
|---|
| 439 | </informalexample>
|
|---|
| 440 | </para>
|
|---|
| 441 |
|
|---|
| 442 | <para>
|
|---|
| 443 | You can choose an alternative stepper either when the field
|
|---|
| 444 | manager is constructed or later. At the construction of the
|
|---|
| 445 | ChordFinder it is an optional argument:
|
|---|
| 446 |
|
|---|
| 447 | <informalexample>
|
|---|
| 448 | <programlisting>
|
|---|
| 449 | G4ChordFinder( G4MagneticField* itsMagField,
|
|---|
| 450 | G4double stepMinimum = 1.0e-2 * mm,
|
|---|
| 451 | G4MagIntegratorStepper* pItsStepper = 0 );
|
|---|
| 452 | </programlisting>
|
|---|
| 453 | </informalexample>
|
|---|
| 454 | </para>
|
|---|
| 455 |
|
|---|
| 456 | <para>
|
|---|
| 457 | To change the stepper at a later time use
|
|---|
| 458 |
|
|---|
| 459 | <informalexample>
|
|---|
| 460 | <programlisting>
|
|---|
| 461 | pChordFinder->GetIntegrationDriver()
|
|---|
| 462 | ->RenewStepperAndAdjust( newStepper );
|
|---|
| 463 | </programlisting>
|
|---|
| 464 | </informalexample>
|
|---|
| 465 | </para>
|
|---|
| 466 |
|
|---|
| 467 | </sect3>
|
|---|
| 468 |
|
|---|
| 469 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 470 | <sect3 id="sect.EMField.Pract.Adjust">
|
|---|
| 471 | <title>
|
|---|
| 472 | How to Adjust the Accuracy of Propagation
|
|---|
| 473 | </title>
|
|---|
| 474 |
|
|---|
| 475 | <para>
|
|---|
| 476 | In order to obtain a particular accuracy in tracking particles
|
|---|
| 477 | through an electromagnetic field, it is necessary to adjust the
|
|---|
| 478 | parameters of the field propagation module. In the following
|
|---|
| 479 | section, some of these additional parameters are discussed.
|
|---|
| 480 | </para>
|
|---|
| 481 |
|
|---|
| 482 | <para>
|
|---|
| 483 | When integration is used to calculate the trajectory, it is
|
|---|
| 484 | necessary to determine an acceptable level of numerical imprecision
|
|---|
| 485 | in order to get performant simulation with acceptable errors. The
|
|---|
| 486 | parameters in Geant4 tell the field module what level of
|
|---|
| 487 | integration inaccuracy is acceptable.
|
|---|
| 488 | </para>
|
|---|
| 489 |
|
|---|
| 490 | <para>
|
|---|
| 491 | In all quantities which are integrated (position, momentum,
|
|---|
| 492 | energy) there will be errors. Here, however, we focus on the error
|
|---|
| 493 | in two key quantities: the position and the momentum. (The error in
|
|---|
| 494 | the energy will come from the momentum integration).
|
|---|
| 495 | </para>
|
|---|
| 496 |
|
|---|
| 497 | <para>
|
|---|
| 498 | Three parameters exist which are relevant to the integration
|
|---|
| 499 | accuracy. DeltaOneStep is a distance and is roughly the position
|
|---|
| 500 | error which is acceptable in an integration step. Since many
|
|---|
| 501 | integration steps may be required for a single physics step,
|
|---|
| 502 | DeltaOneStep should be a fraction of the average physics step size.
|
|---|
| 503 | The next two parameters impose a further limit on the relative
|
|---|
| 504 | error of the position/momentum inaccuracy. EpsilonMin and
|
|---|
| 505 | EpsilonMax impose a minimum and maximum on this relative error -
|
|---|
| 506 | and take precedence over DeltaOneStep. (Note: if you set
|
|---|
| 507 | EpsilonMin=EpsilonMax=your-value, then all steps will be made to
|
|---|
| 508 | this relative precision.
|
|---|
| 509 |
|
|---|
| 510 | <example id="programlist_EMField_2">
|
|---|
| 511 | <title>
|
|---|
| 512 | How to set accuracy parameters for the 'global' field of the setup.
|
|---|
| 513 | </title>
|
|---|
| 514 |
|
|---|
| 515 | <programlisting>
|
|---|
| 516 | G4FieldManager *globalFieldManager;
|
|---|
| 517 |
|
|---|
| 518 | G4TransportationManager *transportMgr=
|
|---|
| 519 | G4TransportationManager::GetTransportationManager();
|
|---|
| 520 |
|
|---|
| 521 | globalFieldManager = transportMgr->GetFieldManager();
|
|---|
| 522 | // Relative accuracy values:
|
|---|
| 523 | G4double minEps= 1.0e-5; // Minimum & value for smallest steps
|
|---|
| 524 | G4double maxEps= 1.0e-4; // Maximum & value for largest steps
|
|---|
| 525 |
|
|---|
| 526 | globalFieldManager->SetMinimumEpsilonStep( minEps );
|
|---|
| 527 | globalFieldManager->SetMaximumEpsilonStep( maxEps );
|
|---|
| 528 | globalFieldManager->SetDeltaOneStep( 0.5e-3 * mm ); // 0.5 micrometer
|
|---|
| 529 |
|
|---|
| 530 | G4cout << "EpsilonStep: set min= " << minEps << " max= " << maxEps << G4endl;
|
|---|
| 531 | </programlisting>
|
|---|
| 532 | </example>
|
|---|
| 533 | </para>
|
|---|
| 534 |
|
|---|
| 535 | <para>
|
|---|
| 536 | We note that the relevant parameters above limit the inaccuracy
|
|---|
| 537 | in each step. The final inaccuracy due to the full trajectory will
|
|---|
| 538 | accumulate!
|
|---|
| 539 | </para>
|
|---|
| 540 |
|
|---|
| 541 | <para>
|
|---|
| 542 | The exact point at which a track crosses a boundary is also
|
|---|
| 543 | calculated with finite accuracy. To limit this inaccuracy, a
|
|---|
| 544 | parameter called DeltaIntersection is used. This is a maximum for
|
|---|
| 545 | the inaccuracy of a single boundary crossing. Thus the accuracy of
|
|---|
| 546 | the position of the track after a number of boundary crossings is
|
|---|
| 547 | directly proportional to the number of boundaries.
|
|---|
| 548 | </para>
|
|---|
| 549 |
|
|---|
| 550 | </sect3>
|
|---|
| 551 |
|
|---|
| 552 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 553 | <sect3 id="sect.EMField.Pract.DiffAcc">
|
|---|
| 554 | <title>
|
|---|
| 555 | Choosing different accuracies for the same volume
|
|---|
| 556 | </title>
|
|---|
| 557 |
|
|---|
| 558 | <para>
|
|---|
| 559 | It is possible to create a FieldManager which has different
|
|---|
| 560 | properties for particles of different momenta (or depending on
|
|---|
| 561 | other parameters of a track). This is useful, for example, in
|
|---|
| 562 | obtaining high accuracy for 'important' tracks (e.g. muons) and
|
|---|
| 563 | accept less accuracy in tracking others (e.g. electrons). To use
|
|---|
| 564 | this, you must create your own field manager which uses the
|
|---|
| 565 | method
|
|---|
| 566 |
|
|---|
| 567 | <informalexample>
|
|---|
| 568 | <programlisting>
|
|---|
| 569 | void ConfigureForTrack( const G4Track * );
|
|---|
| 570 | </programlisting>
|
|---|
| 571 | </informalexample>
|
|---|
| 572 |
|
|---|
| 573 | to configure itself using the parameters of the current track.
|
|---|
| 574 | An example of this will be available in
|
|---|
| 575 | examples/extended/field05.
|
|---|
| 576 | </para>
|
|---|
| 577 |
|
|---|
| 578 | </sect3>
|
|---|
| 579 |
|
|---|
| 580 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 581 | <sect3 id="sect.EMField.Pract.ParaScal">
|
|---|
| 582 | <title>
|
|---|
| 583 | Parameters that must scale with problem size
|
|---|
| 584 | </title>
|
|---|
| 585 |
|
|---|
| 586 | <para>
|
|---|
| 587 | The default settings of this module are for problems with the
|
|---|
| 588 | physical size of a typical high energy physics setup, that is,
|
|---|
| 589 | distances smaller than about one kilometer. A few parameters are
|
|---|
| 590 | necessary to carry this information to the magnetic field module,
|
|---|
| 591 | and must typically be rescaled for problems of vastly different
|
|---|
| 592 | sizes in order to get reasonable performance and robustness. Two of
|
|---|
| 593 | these parameters are the maximum acceptable step and the minimum
|
|---|
| 594 | step size.
|
|---|
| 595 | </para>
|
|---|
| 596 |
|
|---|
| 597 |
|
|---|
| 598 | <para>
|
|---|
| 599 | The <emphasis role="bold">maximum acceptable step</emphasis> should be set
|
|---|
| 600 | to a distance larger than the biggest reasonable step. If the apparatus
|
|---|
| 601 | in a setup has a diameter of two meters, a likely maximum acceptable
|
|---|
| 602 | steplength would be 10 meters. A particle could then take large
|
|---|
| 603 | spiral steps, but would not attempt to take, for example, a
|
|---|
| 604 | 1000-meter-long step in the case of a very low-density material.
|
|---|
| 605 | Similarly, for problems of a planetary scale, such as the earth
|
|---|
| 606 | with its radius of roughly 6400 km, a maximum acceptabe steplength
|
|---|
| 607 | of a few times this value would be reasonable.
|
|---|
| 608 | </para>
|
|---|
| 609 |
|
|---|
| 610 | <para>
|
|---|
| 611 | An upper limit for the size of a step is a parameter of
|
|---|
| 612 | <literal>G4PropagatorInField</literal>, and can be set by calling its
|
|---|
| 613 | <literal>SetLargestAcceptableStep</literal> method.
|
|---|
| 614 | </para>
|
|---|
| 615 |
|
|---|
| 616 | <para>
|
|---|
| 617 | The <emphasis role="bold">minimum step size</emphasis> is used during
|
|---|
| 618 | integration to limit the amount of work in difficult cases. It is
|
|---|
| 619 | possible that strong fields or integration problems can force the
|
|---|
| 620 | integrator to try very small steps; this parameter stops them from
|
|---|
| 621 | becoming unnecessarily small.
|
|---|
| 622 | </para>
|
|---|
| 623 |
|
|---|
| 624 | <para>
|
|---|
| 625 | Trial steps smaller than this parameter will be treated with
|
|---|
| 626 | less accuracy, and may even be ignored, depending on the
|
|---|
| 627 | situation.
|
|---|
| 628 | </para>
|
|---|
| 629 |
|
|---|
| 630 | <para>
|
|---|
| 631 | The minimum step size is a parameter of the MagInt_Driver, but
|
|---|
| 632 | can be set in the contstructor of G4ChordFinder, as in the source
|
|---|
| 633 | listing above.
|
|---|
| 634 | </para>
|
|---|
| 635 |
|
|---|
| 636 | </sect3>
|
|---|
| 637 |
|
|---|
| 638 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 639 | <sect3 id="sect.EMField.Pract.Known">
|
|---|
| 640 | <title>
|
|---|
| 641 | Known Issues
|
|---|
| 642 | </title>
|
|---|
| 643 |
|
|---|
| 644 | <para>
|
|---|
| 645 | Currently it is computationally expensive to change the <emphasis>miss
|
|---|
| 646 | distance</emphasis> to very small values, as it causes tracks to be
|
|---|
| 647 | limited to curved sections whose 'bend' is smaller than this value.
|
|---|
| 648 | (The bend is the distance of the mid-point from the chord between
|
|---|
| 649 | endpoints.) For tracks with small curvature (typically low momentum
|
|---|
| 650 | particles in strong fields) this can cause a large number of
|
|---|
| 651 | steps
|
|---|
| 652 |
|
|---|
| 653 | <itemizedlist spacing="compact">
|
|---|
| 654 | <listitem><para>
|
|---|
| 655 | even in areas where there are no volumes to intersect
|
|---|
| 656 | (something that is expected to be addressed in future development,
|
|---|
| 657 | in which the safety will be utilized to partially alleviate this
|
|---|
| 658 | limitation)
|
|---|
| 659 | </para></listitem>
|
|---|
| 660 | <listitem><para>
|
|---|
| 661 | especially in a region near a volume boundary (in which case it
|
|---|
| 662 | is necessary in order to discover whether a track might intersect a
|
|---|
| 663 | volume for only a short distance.)
|
|---|
| 664 | </para></listitem>
|
|---|
| 665 | </itemizedlist>
|
|---|
| 666 | </para>
|
|---|
| 667 |
|
|---|
| 668 | <para>
|
|---|
| 669 | Requiring such precision at the intersection is clearly expensive,
|
|---|
| 670 | and new development would be necessary to minimize the expense.
|
|---|
| 671 | </para>
|
|---|
| 672 |
|
|---|
| 673 | <para>
|
|---|
| 674 | By contrast, changing the intersection parameter is less
|
|---|
| 675 | computationally expensive. It causes further calculation for only a
|
|---|
| 676 | fraction of the steps, in particular those that intersect a volume
|
|---|
| 677 | boundary.
|
|---|
| 678 | </para>
|
|---|
| 679 |
|
|---|
| 680 | </sect3>
|
|---|
| 681 | </sect2>
|
|---|
| 682 |
|
|---|
| 683 |
|
|---|
| 684 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 685 | <sect2 id="sect.EMField.Spin">
|
|---|
| 686 | <title>
|
|---|
| 687 | Spin Tracking
|
|---|
| 688 | </title>
|
|---|
| 689 |
|
|---|
| 690 | <para>
|
|---|
| 691 | The effects of a particle's motion on the precession of its spin
|
|---|
| 692 | angular momentum in slowly varying external fields are simulated.
|
|---|
| 693 | The relativistic equation of motion for spin is known as the BMT
|
|---|
| 694 | equation. The equation demonstrates a remarkable property; in a
|
|---|
| 695 | purely magnetic field, in vacuum, and neglecting small anomalous
|
|---|
| 696 | magnetic moments, the particle's spin precesses in such a manner
|
|---|
| 697 | that the longitudinal polarization remains a constant, whatever the
|
|---|
| 698 | motion of the particle. But when the particle interacts with
|
|---|
| 699 | electric fields of the medium and multiple scatters, the spin,
|
|---|
| 700 | which is related to the particle's magnetic moment, does not
|
|---|
| 701 | participate, and the need thus arises to propagate it independent
|
|---|
| 702 | of the momentum vector. In the case of a polarized muon beam, for
|
|---|
| 703 | example, it is important to predict the muon's spin direction at
|
|---|
| 704 | decay-time in order to simulate the decay electron (Michel)
|
|---|
| 705 | distribution correctly.
|
|---|
| 706 | </para>
|
|---|
| 707 |
|
|---|
| 708 | <para>
|
|---|
| 709 | In order to track the spin of a particle in a magnetic field,
|
|---|
| 710 | you need to code the following:
|
|---|
| 711 |
|
|---|
| 712 | <orderedlist spacing="compact">
|
|---|
| 713 | <listitem><para>
|
|---|
| 714 | in your DetectorConstruction
|
|---|
| 715 |
|
|---|
| 716 | <informalexample>
|
|---|
| 717 | <programlisting>
|
|---|
| 718 | #include "G4Mag_SpinEqRhs.hh"
|
|---|
| 719 |
|
|---|
| 720 | G4Mag_EqRhs* fEquation = new G4Mag_SpinEqRhs(magField);
|
|---|
| 721 |
|
|---|
| 722 | G4MagIntegratorStepper* pStepper = new G4ClassicalRK4(fEquation,12);
|
|---|
| 723 | <emphasis role="bold">notice the 12 </emphasis>
|
|---|
| 724 | </programlisting>
|
|---|
| 725 | </informalexample>
|
|---|
| 726 | </para></listitem>
|
|---|
| 727 | <listitem><para>
|
|---|
| 728 | in your PrimaryGenerator
|
|---|
| 729 |
|
|---|
| 730 | <informalexample>
|
|---|
| 731 | <programlisting>
|
|---|
| 732 | particleGun->SetParticlePolarization(G4ThreeVector p)
|
|---|
| 733 | </programlisting>
|
|---|
| 734 | </informalexample>
|
|---|
| 735 |
|
|---|
| 736 | for example:
|
|---|
| 737 |
|
|---|
| 738 | <informalexample>
|
|---|
| 739 | <programlisting>
|
|---|
| 740 | particleGun->
|
|---|
| 741 | SetParticlePolarization(-(particleGun->GetParticleMomentumDirection()));
|
|---|
| 742 |
|
|---|
| 743 | // or
|
|---|
| 744 | particleGun->
|
|---|
| 745 | SetParticlePolarization(particleGun->GetParticleMomentumDirection()
|
|---|
| 746 | .cross(G4ThreeVector(0.,1.,0.)));
|
|---|
| 747 | </programlisting>
|
|---|
| 748 | </informalexample>
|
|---|
| 749 |
|
|---|
| 750 | where you set the initial spin direction.
|
|---|
| 751 | </para></listitem>
|
|---|
| 752 | </orderedlist>
|
|---|
| 753 | </para>
|
|---|
| 754 |
|
|---|
| 755 | <para>
|
|---|
| 756 | While the G4Mag_SpinEqRhs class constructor
|
|---|
| 757 |
|
|---|
| 758 | <informalexample>
|
|---|
| 759 | <programlisting>
|
|---|
| 760 | G4Mag_SpinEqRhs::G4Mag_SpinEqRhs( G4MagneticField* MagField )
|
|---|
| 761 | : G4Mag_EqRhs( MagField )
|
|---|
| 762 | {
|
|---|
| 763 | anomaly = 1.165923e-3;
|
|---|
| 764 | }
|
|---|
| 765 | </programlisting>
|
|---|
| 766 | </informalexample>
|
|---|
| 767 |
|
|---|
| 768 | sets the muon anomaly by default, the class also comes with the
|
|---|
| 769 | public method:
|
|---|
| 770 |
|
|---|
| 771 | <informalexample>
|
|---|
| 772 | <programlisting>
|
|---|
| 773 | inline void SetAnomaly(G4double a) { anomaly = a; }
|
|---|
| 774 | </programlisting>
|
|---|
| 775 | </informalexample>
|
|---|
| 776 |
|
|---|
| 777 | with which you can set the magnetic anomaly to any value you
|
|---|
| 778 | require.
|
|---|
| 779 | </para>
|
|---|
| 780 |
|
|---|
| 781 |
|
|---|
| 782 | <para>
|
|---|
| 783 | For the moment, the code is written such that field tracking of
|
|---|
| 784 | the spin is done only for particles with non-zero charge. Please,
|
|---|
| 785 | see the Forum posting:
|
|---|
| 786 |
|
|---|
| 787 | <literal>
|
|---|
| 788 | http://geant4-hn.slac.stanford.edu:5090/HyperNews/public/get/emfields/88/3/1.html
|
|---|
| 789 | </literal>
|
|---|
| 790 |
|
|---|
| 791 | for modifications the user is required to make to facilitate
|
|---|
| 792 | neutron spin tracking.
|
|---|
| 793 | </para>
|
|---|
| 794 |
|
|---|
| 795 | </sect2>
|
|---|
| 796 | </sect1> |
|---|