| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- -->
|
|---|
| 3 | <!-- [History] -->
|
|---|
| 4 | <!-- Converted to DocBook: Katsuya Amako, Aug-2006 -->
|
|---|
| 5 | <!-- Changed by: Gabriele Cosmo, 18-Apr-2005 -->
|
|---|
| 6 | <!-- -->
|
|---|
| 7 | <!-- ******************************************************** -->
|
|---|
| 8 |
|
|---|
| 9 |
|
|---|
| 10 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 11 | <sect2 id="sect.Geom.LogVol">
|
|---|
| 12 | <title>
|
|---|
| 13 | Logical Volumes
|
|---|
| 14 | </title>
|
|---|
| 15 |
|
|---|
| 16 | <para>
|
|---|
| 17 | The Logical Volume manages the information associated with
|
|---|
| 18 | detector elements represented by a given Solid and Material,
|
|---|
| 19 | independently from its physical position in the detector.
|
|---|
| 20 | </para>
|
|---|
| 21 |
|
|---|
| 22 | <para>
|
|---|
| 23 | A Logical Volume knows which physical volumes are contained
|
|---|
| 24 | within it. It is uniquely defined to be their mother volume. A
|
|---|
| 25 | Logical Volume thus represents a hierarchy of unpositioned volumes
|
|---|
| 26 | whose positions relative to one another are well defined. By
|
|---|
| 27 | creating Physical Volumes, which are placed instances of a Logical
|
|---|
| 28 | Volume, this hierarchy or tree can be repeated.
|
|---|
| 29 | </para>
|
|---|
| 30 |
|
|---|
| 31 | <para>
|
|---|
| 32 | A Logical Volume also manages the information relative to the
|
|---|
| 33 | Visualization attributes (<xref linkend="sect.VisAtt" />) and
|
|---|
| 34 | user-defined parameters related to tracking, electro-magnetic field
|
|---|
| 35 | or cuts (through the <literal>G4UserLimits</literal> interface).
|
|---|
| 36 | </para>
|
|---|
| 37 |
|
|---|
| 38 | <para>
|
|---|
| 39 | By default, tracking optimization of the geometry (voxelization)
|
|---|
| 40 | is applied to the volume hierarchy identified by a logical volume.
|
|---|
| 41 | It is possible to change the default behavior by choosing not to
|
|---|
| 42 | apply geometry optimization for a given logical volume. This
|
|---|
| 43 | feature does not apply to the case where the associated physical
|
|---|
| 44 | volume is a parameterised volume; in this case, optimization is
|
|---|
| 45 | always applied.
|
|---|
| 46 |
|
|---|
| 47 | <informalexample>
|
|---|
| 48 | <programlisting>
|
|---|
| 49 | G4LogicalVolume( G4VSolid* pSolid,
|
|---|
| 50 | G4Material* pMaterial,
|
|---|
| 51 | const G4String& Name,
|
|---|
| 52 | G4FieldManager* pFieldMgr=0,
|
|---|
| 53 | G4VSensitiveDetector* pSDetector=0,
|
|---|
| 54 | G4UserLimits* pULimits=0,
|
|---|
| 55 | G4bool Optimise=true )
|
|---|
| 56 | </programlisting>
|
|---|
| 57 | </informalexample>
|
|---|
| 58 | </para>
|
|---|
| 59 |
|
|---|
| 60 | <para>
|
|---|
| 61 | Through the logical volume it is also possible to <emphasis>tune</emphasis> the
|
|---|
| 62 | granularity of the optimisation algorithm to be applied to the sub-tree of
|
|---|
| 63 | volumes represented. This is possible using the methods:
|
|---|
| 64 |
|
|---|
| 65 | <informalexample>
|
|---|
| 66 | <programlisting>
|
|---|
| 67 | G4double GetSmartless() const
|
|---|
| 68 | void SetSmartless(G4double s)
|
|---|
| 69 | </programlisting>
|
|---|
| 70 | </informalexample>
|
|---|
| 71 |
|
|---|
| 72 | The default <emphasis>smartless</emphasis> value is <emphasis>2</emphasis>
|
|---|
| 73 | and controls the average number of slices per contained volume which are used
|
|---|
| 74 | in the optimisation. The smaller the value, the less fine grained optimisation
|
|---|
| 75 | grid is generated; this will translate in a possible reduction of memory
|
|---|
| 76 | consumed for the optimisation of that portion of geometry at the price of
|
|---|
| 77 | a slight CPU time increase at tracking time. Manual tuning of the
|
|---|
| 78 | optimisation is in general not required, since the optimal granularity level
|
|---|
| 79 | is computed automatically and adapted to the specific geometry setup; however,
|
|---|
| 80 | in some cases (like geometry portions with 'dense' concentration of volumes
|
|---|
| 81 | distributed in a non-uniform way), it may be necessary to adopt manual tuning
|
|---|
| 82 | for helping the optimisation process in dealing with the most critical areas.
|
|---|
| 83 | By setting the verbosity to <emphasis>2</emphasis> through the following UI
|
|---|
| 84 | run-time command:
|
|---|
| 85 | <informalexample>
|
|---|
| 86 | <programlisting>
|
|---|
| 87 | /run/verbose 2
|
|---|
| 88 | </programlisting>
|
|---|
| 89 | </informalexample>
|
|---|
| 90 | a statistics of the memory consumed for the allocated optimisation nodes
|
|---|
| 91 | will be displayed volume by volume, allowing to easily identify the critical
|
|---|
| 92 | areas which may eventually require manual intervention.
|
|---|
| 93 | </para>
|
|---|
| 94 |
|
|---|
| 95 | <para>
|
|---|
| 96 | The logical volume provides a way to estimate the <emphasis>mass</emphasis> of
|
|---|
| 97 | a tree of volumes defining a detector or sub-detector. This can be
|
|---|
| 98 | achieved by calling the method:
|
|---|
| 99 |
|
|---|
| 100 | <informalexample>
|
|---|
| 101 | <programlisting>
|
|---|
| 102 | G4double GetMass(G4bool forced=false)
|
|---|
| 103 | </programlisting>
|
|---|
| 104 | </informalexample>
|
|---|
| 105 | </para>
|
|---|
| 106 |
|
|---|
| 107 | <para>
|
|---|
| 108 | The mass of the logical volume tree is computed from the estimated
|
|---|
| 109 | geometrical volume of each solid and material associated with the
|
|---|
| 110 | logical volume and its daughters. Note that this computation may
|
|---|
| 111 | require a considerable amount of time, depending on the complexity
|
|---|
| 112 | of the geometry tree. The returned value is cached by default and
|
|---|
| 113 | can be used for successive calls, unless recomputation is forced by
|
|---|
| 114 | providing <literal>true</literal> for the boolean argument
|
|---|
| 115 | <literal>forced</literal> in input.
|
|---|
| 116 | Computation should be forced if the geometry setup has
|
|---|
| 117 | changed after the previous call.
|
|---|
| 118 | </para>
|
|---|
| 119 |
|
|---|
| 120 | <para>
|
|---|
| 121 | Finally, the Logical Volume manages the information relative to
|
|---|
| 122 | the Envelopes hierarchy required for fast Monte Carlo
|
|---|
| 123 | parameterisations (<xref linkend="sect.PhysProc.Param" />).
|
|---|
| 124 | </para>
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 128 | <sect3 id="sect.Geom.LogVol.SubReg">
|
|---|
| 129 | <title>
|
|---|
| 130 | Sub-detector Regions
|
|---|
| 131 | </title>
|
|---|
| 132 |
|
|---|
| 133 | <para>
|
|---|
| 134 | In complex geometry setups, such as those found in large detectors
|
|---|
| 135 | in particle physics experiments, it is useful to think of specific
|
|---|
| 136 | Logical Volumes as representing parts (sub-detectors) of the entire
|
|---|
| 137 | detector setup which perform specific functions. In such setups,
|
|---|
| 138 | the processing speed of a real simulation can be increased by
|
|---|
| 139 | assigning specific production <emphasis>cuts</emphasis> to each of these detector
|
|---|
| 140 | parts. This allows a more detailed simulation to occur only in
|
|---|
| 141 | those regions where it is required.
|
|---|
| 142 | </para>
|
|---|
| 143 |
|
|---|
| 144 | <para>
|
|---|
| 145 | The concept of detector <emphasis>Region</emphasis> is introduced to address
|
|---|
| 146 | this need. Once the final geometry setup of the detector has been
|
|---|
| 147 | defined, a region can be specified by constructing it with:
|
|---|
| 148 |
|
|---|
| 149 | <informalexample>
|
|---|
| 150 | <programlisting>
|
|---|
| 151 | G4Region( const G4String& rName )
|
|---|
| 152 | </programlisting>
|
|---|
| 153 | </informalexample>
|
|---|
| 154 |
|
|---|
| 155 | where:
|
|---|
| 156 |
|
|---|
| 157 | <informaltable>
|
|---|
| 158 | <tgroup cols="2">
|
|---|
| 159 | <tbody>
|
|---|
| 160 | <row>
|
|---|
| 161 | <entry>
|
|---|
| 162 | <literal>rName</literal>
|
|---|
| 163 | </entry>
|
|---|
| 164 | <entry>
|
|---|
| 165 | String identifier for the detector region
|
|---|
| 166 | </entry>
|
|---|
| 167 | </row>
|
|---|
| 168 | </tbody>
|
|---|
| 169 | </tgroup>
|
|---|
| 170 | </informaltable>
|
|---|
| 171 | </para>
|
|---|
| 172 |
|
|---|
| 173 | <para>
|
|---|
| 174 | A <literal>G4Region</literal> must then be assigned to a logical volume,
|
|---|
| 175 | in order to make it a <emphasis>Root Logical Volume</emphasis>:
|
|---|
| 176 |
|
|---|
| 177 | <informalexample>
|
|---|
| 178 | <programlisting>
|
|---|
| 179 | G4Region* emCalorimeter = new G4Region("EM-Calorimeter");
|
|---|
| 180 | emCalorimeter->AddRootLogicalVolume(emCalorimeter);
|
|---|
| 181 | </programlisting>
|
|---|
| 182 | </informalexample>
|
|---|
| 183 | </para>
|
|---|
| 184 |
|
|---|
| 185 | <para>
|
|---|
| 186 | A root logical volume is the first volume at the top of the
|
|---|
| 187 | hierarchy to which a given region is assigned. Once the region is
|
|---|
| 188 | assigned to the root logical volume, the information is
|
|---|
| 189 | automatically propagated to the volume tree, so that each daughter
|
|---|
| 190 | volume shares the same region. Propagation on a tree branch will be
|
|---|
| 191 | interrupted if an already existing root logical volume is
|
|---|
| 192 | encountered.
|
|---|
| 193 | </para>
|
|---|
| 194 |
|
|---|
| 195 | <para>
|
|---|
| 196 | A specific <emphasis>Production Cut</emphasis> can be assigned to the region,
|
|---|
| 197 | by defining and assigning to it a <literal>G4ProductionCut</literal>
|
|---|
| 198 | object
|
|---|
| 199 |
|
|---|
| 200 | <informalexample>
|
|---|
| 201 | <programlisting>
|
|---|
| 202 | emCalorimeter->SetProductionCuts(emCalCuts);
|
|---|
| 203 | </programlisting>
|
|---|
| 204 | </informalexample>
|
|---|
| 205 | </para>
|
|---|
| 206 |
|
|---|
| 207 | <para>
|
|---|
| 208 | <xref linkend="sect.ProThres.Set" /> describes how to define a
|
|---|
| 209 | production cut. The same region can be assigned to more than one
|
|---|
| 210 | root logical volume, and root logical volumes can be removed from
|
|---|
| 211 | an existing region. A logical volume can have only
|
|---|
| 212 | <emphasis>one</emphasis> region assigned to it. Regions will
|
|---|
| 213 | be automatically registered in a store which will take care of
|
|---|
| 214 | destroying them at the end of the job. A default region with a
|
|---|
| 215 | default production cut is automatically created and assigned to the
|
|---|
| 216 | world volume.
|
|---|
| 217 | </para>
|
|---|
| 218 |
|
|---|
| 219 | <para>
|
|---|
| 220 | Regions can also become 'envelopes' for fast-simulation; can be assigned
|
|---|
| 221 | user-limits or generic user-information (<literal>G4VUserRegionInformation</literal>);
|
|---|
| 222 | can be associated to specific stepping-actions (<literal>G4UserSteppingAction</literal>)
|
|---|
| 223 | or have assigned a local magnetic-field (local fields specifically associated to
|
|---|
| 224 | logical volumes take precedence anyhow).
|
|---|
| 225 | </para>
|
|---|
| 226 |
|
|---|
| 227 | </sect3>
|
|---|
| 228 | </sect2>
|
|---|