Advanced Examples Advanced Examples Geant4 advanced examples illustrate realistic applications of Geant4 in typical experimental environments. Most of them also show the usage of analysis tools (such as histograms, ntuples and plotting), various visualization features and advanced user interface facilities, together with the simulation core. Note: Maintenance and updates of the code is under the responsibility of the authors. These applications are therefore not subject to regular system testing and no guarantee can be provided. The advanced examples include: amsEcal , illustrating simulation in the AMS electro-magnetic calorimeter. brachytherapy , illustrating a typical medical physics application simulating energy deposit in a Phantom filled with soft tissue. composite_calorimeter , test-beam simulation of the CMS Hadron calorimeter at LHC. gammaray_telescope , illustrating an application to typical gamma ray telescopes with a flexible configuration. hadrontherapy : it is an advanced tool for people interested in Monte Carlo studies related to proton/ion therapy. Hadrontherapy permits the simulation of a typical hadron therapy beam line (with all its elements) and the calculation of fundamentals quantities of interests: 3D dose distributions, fluences, stopping powers, production cross sections for the produced secondary particle, etc.; In the near future new tools will be added: Hadrontherapy will permit the calculation of LET and RBE for both proton and ion beams and it will include the possibility to simulate a typical active scanning proton therapy transport beam line. Please contact the authors for more details on the upcoming features. human_phantom , implementing an Anthropomorphic Phantom body built importing the description from a GDML representation. medical_linac , illustrating a typical medical physics application simulating energy deposit in a Phantom filled with water for a typical linac used for intensity modulated radiation therapy. The experimental set-up is very similar to one used in clinical practice. microbeam , simulates the cellular irradiation beam line installed on the AIFIRA electrostatic accelerator facility located at CENBG, Bordeaux-Gradignan, France. microdosimetry , simulates the track of a 10 keV Helium+ (positive charge is +e) particle in liquid water using very low energy electromagnetic Geant4 DNA processes. nanobeam , simulates the beam optics of the "nanobeam line" installed on the AIFIRA electrostatic accelerator facility located at CENBG, Bordeaux-Gradignan, France. purging_magnet , illustrating an application that simulates electrons traveling through a 3D magnetic field; used in a medical environment for simulating a strong purging magnet in a treatment head. radioprotection , illustrating an application to evaluate the dose in astronauts, in vehicle concepts and Moon surface habitat configurations, in a defined interplanetary space radiation environment. xray_telescope , illustrating an application for the study of the radiation background in a typical X-ray telescope. xray_fluorescence , illustrating the emission of X-ray fluorescence and PIXE. underground_physics , illustrating an underground detector for dark matter searches. lAr_calorimeter , simulating the Forward Liquid Argon Calorimeter (FCAL) of the ATLAS Detector at LHC. Rich , simulating the TestBeam Setup of the Rich detector at the LHCb experiment, testing the performance of the aerogel radiator For documentation about the analysis tools used in these examples, see Appendix of this manual.