| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- -->
|
|---|
| 3 | <!-- [History] -->
|
|---|
| 4 | <!-- Changed by: Katsuya Amako, 6-Aug-1998 -->
|
|---|
| 5 | <!-- Changed by: Dennis Wright, 28-Nov-2001 -->
|
|---|
| 6 | <!-- Proof read by: Joe Chuma, 14-Jun-1999 -->
|
|---|
| 7 | <!-- Converted to DocBook: Katsuya Amako, Aug-2006 -->
|
|---|
| 8 | <!-- -->
|
|---|
| 9 | <!-- ******************************************************** -->
|
|---|
| 10 |
|
|---|
| 11 |
|
|---|
| 12 | <!-- ******************* Section (Level#1) ****************** -->
|
|---|
| 13 | <sect1 id="sect.HowToDefDetectorGeom">
|
|---|
| 14 | <title>
|
|---|
| 15 | How to Define a Detector Geometry
|
|---|
| 16 | </title>
|
|---|
| 17 |
|
|---|
| 18 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 19 | <sect2 id="sect.HowToDefDetectorGeom.BasicConcepts">
|
|---|
| 20 | <title>
|
|---|
| 21 | Basic Concepts
|
|---|
| 22 | </title>
|
|---|
| 23 |
|
|---|
| 24 | <para>
|
|---|
| 25 | A detector geometry in Geant4 is made of a number of volumes. The
|
|---|
| 26 | largest volume is called the <emphasis role="bold">World</emphasis>
|
|---|
| 27 | volume. It must contain, with some margin, all other volumes
|
|---|
| 28 | in the detector geometry. The other volumes are created and placed
|
|---|
| 29 | inside previous volumes, included in the World volume.
|
|---|
| 30 | The most simple (and efficient) shape to describe the World is a box.
|
|---|
| 31 | </para>
|
|---|
| 32 |
|
|---|
| 33 | <para>
|
|---|
| 34 | Each volume is created by describing its shape and its physical
|
|---|
| 35 | characteristics, and then placing it inside a containing
|
|---|
| 36 | volume.
|
|---|
| 37 | </para>
|
|---|
| 38 |
|
|---|
| 39 | <para>
|
|---|
| 40 | When a volume is placed within another volume, we call the
|
|---|
| 41 | former volume the daughter volume and the latter the mother volume.
|
|---|
| 42 | The coordinate system used to specify where the daughter volume is
|
|---|
| 43 | placed, is the coordinate system of the mother volume.
|
|---|
| 44 | </para>
|
|---|
| 45 |
|
|---|
| 46 | <para>
|
|---|
| 47 | To describe a volume's shape, we use the concept of a solid. A
|
|---|
| 48 | solid is a geometrical object that has a shape and specific values
|
|---|
| 49 | for each of that shape's dimensions. A cube with a side of 10
|
|---|
| 50 | centimeters and a cylinder of radius 30 cm and length 75 cm are
|
|---|
| 51 | examples of solids.
|
|---|
| 52 | </para>
|
|---|
| 53 |
|
|---|
| 54 | <para>
|
|---|
| 55 | To describe a volume's full properties, we use a logical volume.
|
|---|
| 56 | It includes the geometrical properties of the solid, and adds
|
|---|
| 57 | physical characteristics: the material of the volume; whether it
|
|---|
| 58 | contains any sensitive detector elements; the magnetic field;
|
|---|
| 59 | etc.
|
|---|
| 60 | </para>
|
|---|
| 61 |
|
|---|
| 62 | <para>
|
|---|
| 63 | We have yet to describe how to position the volume. To do this
|
|---|
| 64 | you create a physical volume, which places a copy of the logical
|
|---|
| 65 | volume inside a larger, containing, volume.
|
|---|
| 66 | </para>
|
|---|
| 67 |
|
|---|
| 68 | </sect2>
|
|---|
| 69 |
|
|---|
| 70 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 71 | <sect2 id="sect.HowToDefDetectorGeom.CreateSimpleVol">
|
|---|
| 72 | <title>
|
|---|
| 73 | Create a Simple Volume
|
|---|
| 74 | </title>
|
|---|
| 75 |
|
|---|
| 76 | <para>
|
|---|
| 77 | What do you need to do to create a volume?
|
|---|
| 78 | <itemizedlist spacing="compact">
|
|---|
| 79 | <listitem><para>
|
|---|
| 80 | Create a solid.
|
|---|
| 81 | </para></listitem>
|
|---|
| 82 | <listitem><para>
|
|---|
| 83 | Create a logical volume, using this solid, and adding other
|
|---|
| 84 | attributes.
|
|---|
| 85 | </para></listitem>
|
|---|
| 86 | </itemizedlist>
|
|---|
| 87 | </para>
|
|---|
| 88 |
|
|---|
| 89 | </sect2>
|
|---|
| 90 |
|
|---|
| 91 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 92 | <sect2 id="sect.HowToDefDetectorGeom.ChooseSolid">
|
|---|
| 93 | <title>Choose a Solid
|
|---|
| 94 | </title>
|
|---|
| 95 |
|
|---|
| 96 | <para>
|
|---|
| 97 | To create a simple box, you only need to define its name and its
|
|---|
| 98 | extent along each of the Cartesian axes. You can find an example
|
|---|
| 99 | how to do this in Novice Example N01.
|
|---|
| 100 | </para>
|
|---|
| 101 |
|
|---|
| 102 | <para>
|
|---|
| 103 | In the detector description in the source file
|
|---|
| 104 | <literal>ExN01DetectorConstruction.cc</literal>, you will find the following
|
|---|
| 105 | box definition:
|
|---|
| 106 |
|
|---|
| 107 | <example id="programlist_HowToDefDetectorGeom_1">
|
|---|
| 108 | <title>
|
|---|
| 109 | Creating a box.
|
|---|
| 110 | </title>
|
|---|
| 111 | <programlisting>
|
|---|
| 112 | G4double expHall_x = 3.0*m;
|
|---|
| 113 | G4double expHall_y = 1.0*m;
|
|---|
| 114 | G4double expHall_z = 1.0*m;
|
|---|
| 115 |
|
|---|
| 116 | G4Box* experimentalHall_box
|
|---|
| 117 | = new G4Box("expHall_box",expHall_x,expHall_y,expHall_z);
|
|---|
| 118 | </programlisting>
|
|---|
| 119 | </example>
|
|---|
| 120 |
|
|---|
| 121 | This creates a box named "expHall_box" with extent from -3.0
|
|---|
| 122 | meters to +3.0 meters along the X axis, from -1.0 to 1.0 meters in
|
|---|
| 123 | Y, and from -1.0 to 1.0 meters in Z.
|
|---|
| 124 | </para>
|
|---|
| 125 |
|
|---|
| 126 | <para>
|
|---|
| 127 | It is also very simple to create a cylinder. To do this, you can
|
|---|
| 128 | use the <emphasis>G4Tubs</emphasis> class.
|
|---|
| 129 |
|
|---|
| 130 | <example id="programlist_HowToDefDetectorGeom_2">
|
|---|
| 131 | <title>
|
|---|
| 132 | Creating a cylinder.
|
|---|
| 133 | </title>
|
|---|
| 134 | <programlisting>
|
|---|
| 135 | G4double innerRadiusOfTheTube = 0.*cm;
|
|---|
| 136 | G4double outerRadiusOfTheTube = 60.*cm;
|
|---|
| 137 | G4double hightOfTheTube = 25.*cm;
|
|---|
| 138 | G4double startAngleOfTheTube = 0.*deg;
|
|---|
| 139 | G4double spanningAngleOfTheTube = 360.*deg;
|
|---|
| 140 |
|
|---|
| 141 | G4Tubs* tracker_tube
|
|---|
| 142 | = new G4Tubs("tracker_tube",
|
|---|
| 143 | innerRadiusOfTheTube,
|
|---|
| 144 | outerRadiusOfTheTube,
|
|---|
| 145 | hightOfTheTube,
|
|---|
| 146 | startAngleOfTheTube,
|
|---|
| 147 | spanningAngleOfTheTube);
|
|---|
| 148 | </programlisting>
|
|---|
| 149 | </example>
|
|---|
| 150 |
|
|---|
| 151 | This creates a full cylinder, named "tracker_tube", of radius 60
|
|---|
| 152 | centimeters and length 50 cm.
|
|---|
| 153 | </para>
|
|---|
| 154 |
|
|---|
| 155 | </sect2>
|
|---|
| 156 |
|
|---|
| 157 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 158 | <sect2 id="sect.HowToDefDetectorGeom.CreateLogicalVol">
|
|---|
| 159 | <title>
|
|---|
| 160 | Create a Logical Volume
|
|---|
| 161 | </title>
|
|---|
| 162 |
|
|---|
| 163 | <para>
|
|---|
| 164 | To create a logical volume, you must start with a solid and a
|
|---|
| 165 | material. So, using the box created above, you can create a simple
|
|---|
| 166 | logical volume filled with argon gas (see materials) by entering:
|
|---|
| 167 |
|
|---|
| 168 | <informalexample>
|
|---|
| 169 | <programlisting>
|
|---|
| 170 | G4LogicalVolume* experimentalHall_log
|
|---|
| 171 | = new G4LogicalVolume(experimentalHall_box,Ar,"expHall_log");
|
|---|
| 172 | </programlisting>
|
|---|
| 173 | </informalexample>
|
|---|
| 174 |
|
|---|
| 175 | This logical volume is named "expHall_log".
|
|---|
| 176 | </para>
|
|---|
| 177 |
|
|---|
| 178 | <para>
|
|---|
| 179 | Similarly we create a logical volume with the cylindrical solid
|
|---|
| 180 | filled with aluminium
|
|---|
| 181 |
|
|---|
| 182 | <informalexample>
|
|---|
| 183 | <programlisting>
|
|---|
| 184 | G4LogicalVolume* tracker_log
|
|---|
| 185 | = new G4LogicalVolume(tracker_tube,Al,"tracker_log");
|
|---|
| 186 | </programlisting>
|
|---|
| 187 | </informalexample>
|
|---|
| 188 |
|
|---|
| 189 |
|
|---|
| 190 | and named "tracker_log"
|
|---|
| 191 | </para>
|
|---|
| 192 |
|
|---|
| 193 | </sect2>
|
|---|
| 194 |
|
|---|
| 195 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 196 | <sect2 id="sect.HowToDefDetectorGeom.PlaceVolume">
|
|---|
| 197 | <title>
|
|---|
| 198 | Place a Volume
|
|---|
| 199 | </title>
|
|---|
| 200 |
|
|---|
| 201 | <para>
|
|---|
| 202 | How do you place a volume? You start with a logical volume, and
|
|---|
| 203 | then you decide the already existing volume inside of which to
|
|---|
| 204 | place it. Then you decide where to place its center within that
|
|---|
| 205 | volume, and how to rotate it. Once you have made these decisions,
|
|---|
| 206 | you can create a physical volume, which is the placed instance of
|
|---|
| 207 | the volume, and embodies all of these atributes.
|
|---|
| 208 | </para>
|
|---|
| 209 |
|
|---|
| 210 | </sect2>
|
|---|
| 211 |
|
|---|
| 212 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 213 | <sect2 id="sect.HowToDefDetectorGeom.CreatePhysicalVol">
|
|---|
| 214 | <title>Create a Physical Volume</title>
|
|---|
| 215 |
|
|---|
| 216 | <para>
|
|---|
| 217 | You create a physical volume starting with your logical volume.
|
|---|
| 218 | A physical volume is simply a placed instance of the logical
|
|---|
| 219 | volume. This instance must be placed inside a mother logical
|
|---|
| 220 | volume. For simplicity it is unrotated:
|
|---|
| 221 | </para>
|
|---|
| 222 |
|
|---|
| 223 | <example id="programlist_HowToDefDetectorGeom_3">
|
|---|
| 224 | <title>
|
|---|
| 225 | A simple physical volume.
|
|---|
| 226 | </title>
|
|---|
| 227 | <programlisting>
|
|---|
| 228 | G4double trackerPos_x = -1.0*meter;
|
|---|
| 229 | G4double trackerPos_y = 0.0*meter;
|
|---|
| 230 | G4double trackerPos_z = 0.0*meter;
|
|---|
| 231 |
|
|---|
| 232 | G4VPhysicalVolume* tracker_phys
|
|---|
| 233 | = new G4PVPlacement(0, // no rotation
|
|---|
| 234 | G4ThreeVector(trackerPos_x,trackerPos_y,trackerPos_z),
|
|---|
| 235 | // translation position
|
|---|
| 236 | tracker_log, // its logical volume
|
|---|
| 237 | "tracker", // its name
|
|---|
| 238 | experimentalHall_log, // its mother (logical) volume
|
|---|
| 239 | false, // no boolean operations
|
|---|
| 240 | 0); // its copy number
|
|---|
| 241 | </programlisting>
|
|---|
| 242 | </example>
|
|---|
| 243 |
|
|---|
| 244 | <para>
|
|---|
| 245 | This places the logical volume <literal>tracker_log</literal> at the
|
|---|
| 246 | origin of the mother volume <literal>experimentalHall_log</literal>, shifted
|
|---|
| 247 | by one meter along X and unrotated. The resulting physical volume
|
|---|
| 248 | is named "tracker" and has a copy number of 0.
|
|---|
| 249 | </para>
|
|---|
| 250 |
|
|---|
| 251 | <para>
|
|---|
| 252 | An exception exists to the rule that a physical volume must be
|
|---|
| 253 | placed inside a mother volume. That exception is for the World
|
|---|
| 254 | volume, which is the largest volume created, and which contains all
|
|---|
| 255 | other volumes. This volume obviously cannot be contained in any
|
|---|
| 256 | other. Instead, it must be created as a <emphasis>G4PVPlacement</emphasis>
|
|---|
| 257 | with a null mother pointer. It also must be unrotated, and it must be
|
|---|
| 258 | placed at the origin of the global coordinate system.
|
|---|
| 259 | </para>
|
|---|
| 260 |
|
|---|
| 261 | <para>
|
|---|
| 262 | Generally, it is best to choose a simple solid as the World
|
|---|
| 263 | volume, and in Example N01, we use the experimental hall:
|
|---|
| 264 |
|
|---|
| 265 | <example id="programlist_HowToDefDetectorGeom_4">
|
|---|
| 266 | <title>
|
|---|
| 267 | The World volume from Example N01.
|
|---|
| 268 | </title>
|
|---|
| 269 | <programlisting>
|
|---|
| 270 | G4VPhysicalVolume* experimentalHall_phys
|
|---|
| 271 | = new G4PVPlacement(0, // no rotation
|
|---|
| 272 | G4ThreeVector(0.,0.,0.), // translation position
|
|---|
| 273 | experimentalHall_log, // its logical volume
|
|---|
| 274 | "expHall", // its name
|
|---|
| 275 | 0, // its mother volume
|
|---|
| 276 | false, // no boolean operations
|
|---|
| 277 | 0); // its copy number
|
|---|
| 278 | </programlisting>
|
|---|
| 279 | </example>
|
|---|
| 280 | </para>
|
|---|
| 281 |
|
|---|
| 282 | </sect2>
|
|---|
| 283 |
|
|---|
| 284 |
|
|---|
| 285 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 286 | <sect2 id="sect.HowToDefDetectorGeom.CoordinateRotations">
|
|---|
| 287 | <title>
|
|---|
| 288 | Coordinate Systems and Rotations
|
|---|
| 289 | </title>
|
|---|
| 290 |
|
|---|
| 291 | <para>
|
|---|
| 292 | In Geant4, the rotation matrix associated to a placed physical
|
|---|
| 293 | volume represents the rotation of the reference system of this
|
|---|
| 294 | volume with respect to its mother.
|
|---|
| 295 | </para>
|
|---|
| 296 |
|
|---|
| 297 | <para>
|
|---|
| 298 | A rotation matrix is normally constructed as in CLHEP, by
|
|---|
| 299 | instantiating the identity matrix and then applying a rotation to
|
|---|
| 300 | it. This is also demonstrated in Example N04.
|
|---|
| 301 | </para>
|
|---|
| 302 |
|
|---|
| 303 | </sect2>
|
|---|
| 304 | </sect1> |
|---|