| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- -->
|
|---|
| 3 | <!-- [History] -->
|
|---|
| 4 | <!-- Changed by: Katsuya Amako, 4-Aug-1998 -->
|
|---|
| 5 | <!-- Proof read by: Joe Chuma, 15-Jun-1999 -->
|
|---|
| 6 | <!-- Changed by: Hisaya Kurashige, 28-Oct-2001 -->
|
|---|
| 7 | <!-- Changed by: Dennis Wright, 29-Nov-2001 -->
|
|---|
| 8 | <!-- Converted to DocBook: Katsuya Amako, Aug-2006 -->
|
|---|
| 9 | <!-- Changed by: Hisaya Kurashige, 18-Jan-2007 -->
|
|---|
| 10 | <!-- Changed by: Hisaya Kurashige, 1-Dec-2007 -->
|
|---|
| 11 | <!-- modified 2.4.2 by: Hisaya Kurashige, 23-Nov-2009 -->
|
|---|
| 12 | <!-- -->
|
|---|
| 13 | <!-- ******************************************************** -->
|
|---|
| 14 |
|
|---|
| 15 |
|
|---|
| 16 | <!-- ******************* Section (Level#1) ****************** -->
|
|---|
| 17 | <sect1 id="sect.HowToSpecParti">
|
|---|
| 18 | <title>
|
|---|
| 19 | How to Specify Particles
|
|---|
| 20 | </title>
|
|---|
| 21 |
|
|---|
| 22 | <para>
|
|---|
| 23 | <literal>G4VuserPhysicsList</literal> is one of the mandatory user base
|
|---|
| 24 | classes described in
|
|---|
| 25 | <xref linkend="sect.HowToDefMain" />.
|
|---|
| 26 | Within this class all particles and physics processes to be used in
|
|---|
| 27 | your simulation must be defined. The range cut-off parameter should
|
|---|
| 28 | also be defined in this class.
|
|---|
| 29 | </para>
|
|---|
| 30 |
|
|---|
| 31 | <para>
|
|---|
| 32 | The user must create a class derived from
|
|---|
| 33 | <literal>G4VuserPhysicsList</literal> and implement the following pure
|
|---|
| 34 | virtual methods:
|
|---|
| 35 |
|
|---|
| 36 | <informalexample>
|
|---|
| 37 | <programlisting>
|
|---|
| 38 | ConstructParticle(); // construction of particles
|
|---|
| 39 | ConstructProcess(); // construct processes and register them to particles
|
|---|
| 40 | SetCuts(); // setting a range cut value for all particles
|
|---|
| 41 | </programlisting>
|
|---|
| 42 | </informalexample>
|
|---|
| 43 | </para>
|
|---|
| 44 |
|
|---|
| 45 | <para>
|
|---|
| 46 | This section provides some simple examples of the
|
|---|
| 47 | <literal>ConstructParticle()</literal> and <literal>SetCuts()</literal>
|
|---|
| 48 | methods.
|
|---|
| 49 | For information on <literal>ConstructProcess()</literal> methods, please see
|
|---|
| 50 | <xref linkend="sect.HowToSpecPhysProc" />.
|
|---|
| 51 |
|
|---|
| 52 | </para>
|
|---|
| 53 |
|
|---|
| 54 |
|
|---|
| 55 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 56 | <sect2 id="sect.HowToSpecParti.PartiDef">
|
|---|
| 57 | <title>
|
|---|
| 58 | Particle Definition
|
|---|
| 59 | </title>
|
|---|
| 60 |
|
|---|
| 61 | <para>
|
|---|
| 62 | Geant4 provides various types of particles for use in simulations:
|
|---|
| 63 |
|
|---|
| 64 | <itemizedlist spacing="compact">
|
|---|
| 65 | <listitem><para>
|
|---|
| 66 | ordinary particles, such as electrons, protons, and gammas
|
|---|
| 67 | </para></listitem>
|
|---|
| 68 | <listitem><para>
|
|---|
| 69 | resonant particles with very short lifetimes, such as vector
|
|---|
| 70 | mesons and delta baryons
|
|---|
| 71 | </para></listitem>
|
|---|
| 72 | <listitem><para>
|
|---|
| 73 | nuclei, such as deuteron, alpha, and heavy ions (including hyper-nuclei)
|
|---|
| 74 | </para></listitem>
|
|---|
| 75 | <listitem><para>
|
|---|
| 76 | quarks, di-quarks, and gluon
|
|---|
| 77 | </para></listitem>
|
|---|
| 78 | </itemizedlist>
|
|---|
| 79 | </para>
|
|---|
| 80 |
|
|---|
| 81 | <para>
|
|---|
| 82 | Each particle is represented by its own class, which is derived
|
|---|
| 83 | from <literal>G4ParticleDefinition</literal>.
|
|---|
| 84 | (Exception: G4Ions represents all heavy nuclei. Please see
|
|---|
| 85 | <xref linkend="sect.Parti" />.)
|
|---|
| 86 | Particles are organized into six major categories:
|
|---|
| 87 |
|
|---|
| 88 | <itemizedlist spacing="compact">
|
|---|
| 89 | <listitem><para>
|
|---|
| 90 | lepton,
|
|---|
| 91 | </para></listitem>
|
|---|
| 92 | <listitem><para>
|
|---|
| 93 | meson,
|
|---|
| 94 | </para></listitem>
|
|---|
| 95 | <listitem><para>
|
|---|
| 96 | baryon,
|
|---|
| 97 | </para></listitem>
|
|---|
| 98 | <listitem><para>
|
|---|
| 99 | boson,
|
|---|
| 100 | </para></listitem>
|
|---|
| 101 | <listitem><para>
|
|---|
| 102 | shortlived and
|
|---|
| 103 | </para></listitem>
|
|---|
| 104 | <listitem><para>
|
|---|
| 105 | ion,
|
|---|
| 106 | </para></listitem>
|
|---|
| 107 | </itemizedlist>
|
|---|
| 108 |
|
|---|
| 109 | each of which is defined in a corresponding sub-directory under
|
|---|
| 110 | <literal>geant4/source/particles</literal>. There is also a corresponding
|
|---|
| 111 | granular library for each particle category.
|
|---|
| 112 | </para>
|
|---|
| 113 |
|
|---|
| 114 |
|
|---|
| 115 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 116 | <sect3 id="sect.HowToSpecParti.PartiDef.G4ParticleDefinition">
|
|---|
| 117 | <title>
|
|---|
| 118 | The <literal>G4ParticleDefinition</literal> Class
|
|---|
| 119 | </title>
|
|---|
| 120 |
|
|---|
| 121 | <para>
|
|---|
| 122 | <literal>G4ParticleDefinition</literal> has properties which characterize
|
|---|
| 123 | individual particles, such as, name, mass, charge, spin, and so on.
|
|---|
| 124 | Most of these properties are "read-only" and can not be changed directly.
|
|---|
| 125 | <literal>G4ParticlePropertyTable</literal> is used to retrieve (load)
|
|---|
| 126 | particle property of <literal>G4ParticleDefinition</literal>
|
|---|
| 127 | into (from) <literal>G4ParticlePropertyData</literal>.
|
|---|
| 128 | </para>
|
|---|
| 129 |
|
|---|
| 130 | </sect3>
|
|---|
| 131 |
|
|---|
| 132 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 133 | <sect3 id="sect.HowToSpecParti.PartiDef.HowToAccessParti">
|
|---|
| 134 | <title>
|
|---|
| 135 | How to Access a Particle
|
|---|
| 136 | </title>
|
|---|
| 137 |
|
|---|
| 138 | <para>
|
|---|
| 139 | Each particle class type represents an individual particle type,
|
|---|
| 140 | and each class has a single object. This object can be accessed by
|
|---|
| 141 | using the static method of each class.
|
|---|
| 142 | There are some exceptions to this rule; please see
|
|---|
| 143 | <xref linkend="sect.Parti" /> for details.
|
|---|
| 144 | </para>
|
|---|
| 145 |
|
|---|
| 146 | <para>
|
|---|
| 147 | For example, the class <literal>G4Electron</literal> represents the
|
|---|
| 148 | electron and the member <literal>G4Electron::theInstance</literal>
|
|---|
| 149 | points its only object.
|
|---|
| 150 | The pointer to this object is available
|
|---|
| 151 | through the static methods
|
|---|
| 152 | <literal>G4Electron::ElectronDefinition()</literal>.
|
|---|
| 153 | <literal>G4Electron::Definition()</literal>.
|
|---|
| 154 | </para>
|
|---|
| 155 |
|
|---|
| 156 | <para>
|
|---|
| 157 | More than 100 types of particles are provided by default, to be
|
|---|
| 158 | used in various physics processes. In normal applications, users
|
|---|
| 159 | will not need to define their own particles.
|
|---|
| 160 | </para>
|
|---|
| 161 |
|
|---|
| 162 | <para>
|
|---|
| 163 | The unique object for each particle class is created when its static
|
|---|
| 164 | method to get the pointer is called at the first time.
|
|---|
| 165 | Because particles are dynamic objects and should be instantiated before
|
|---|
| 166 | initialization of physics processes,
|
|---|
| 167 | you must explicitly invoke static methods of all particle classes
|
|---|
| 168 | required by your program at the initialization step.
|
|---|
| 169 | (NOTE: The particle object was static and created automatically before 8.0 release)
|
|---|
| 170 | </para>
|
|---|
| 171 |
|
|---|
| 172 | </sect3>
|
|---|
| 173 |
|
|---|
| 174 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 175 | <sect3 id="sect.HowToSpecParti.PartiDef.DictOfParti">
|
|---|
| 176 | <title>Dictionary of Particles
|
|---|
| 177 | </title>
|
|---|
| 178 |
|
|---|
| 179 | <para>
|
|---|
| 180 | The <literal>G4ParticleTable</literal> class is provided as a dictionary of
|
|---|
| 181 | particles. Various utility methods are provided, such as:
|
|---|
| 182 |
|
|---|
| 183 | <informalexample>
|
|---|
| 184 | <programlisting>
|
|---|
| 185 | FindParticle(G4String name); // find the particle by name
|
|---|
| 186 | FindParticle(G4int PDGencoding) // find the particle by PDG encoding .
|
|---|
| 187 | </programlisting>
|
|---|
| 188 | </informalexample>
|
|---|
| 189 | </para>
|
|---|
| 190 |
|
|---|
| 191 | <para>
|
|---|
| 192 | <literal>G4ParticleTable</literal> is defined as a singleton object,
|
|---|
| 193 | and the static method <literal>G4ParticleTable::GetParticleTable()</literal>
|
|---|
| 194 | provides its pointer.
|
|---|
| 195 | </para>
|
|---|
| 196 |
|
|---|
| 197 | <para>
|
|---|
| 198 | As for heavy ions (including hyper-nuclei), objects are created
|
|---|
| 199 | dynamically by requests from users and processes.
|
|---|
| 200 | The <literal>G4ParticleTable</literal> class provides
|
|---|
| 201 | methods to create ions, such as:
|
|---|
| 202 | <informalexample>
|
|---|
| 203 | <programlisting>
|
|---|
| 204 | G4ParticleDefinition* GetIon( G4int atomicNumber,
|
|---|
| 205 | G4int atomicMass,
|
|---|
| 206 | G4double excitationEnergy);
|
|---|
| 207 | </programlisting>
|
|---|
| 208 | </informalexample>
|
|---|
| 209 | </para>
|
|---|
| 210 |
|
|---|
| 211 | <para>
|
|---|
| 212 | Particles are registered automatically during construction. The
|
|---|
| 213 | user has no control over particle registration.
|
|---|
| 214 | </para>
|
|---|
| 215 |
|
|---|
| 216 |
|
|---|
| 217 | </sect3>
|
|---|
| 218 |
|
|---|
| 219 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 220 | <sect3 id="sect.HowToSpecParti.PartiDef.ConstruParti">
|
|---|
| 221 | <title>
|
|---|
| 222 | Constructing Particles
|
|---|
| 223 | </title>
|
|---|
| 224 |
|
|---|
| 225 | <para>
|
|---|
| 226 | <literal>ConstructParticle()</literal> is a pure virtual method, in which
|
|---|
| 227 | the static member functions for all the particles you require should be called.
|
|---|
| 228 | This ensures that objects of these particles are created.
|
|---|
| 229 | </para>
|
|---|
| 230 |
|
|---|
| 231 | <para>
|
|---|
| 232 | WARNING: You must define "All PARTICLE TYPES" which are used in your
|
|---|
| 233 | application, except for heavy ions.
|
|---|
| 234 | "All PARTICLE TYPES" means not only primary
|
|---|
| 235 | particles, but also all other particles which may appear as secondaries
|
|---|
| 236 | generated by physics processes you use. Beginning with Geant4 version 8.0,
|
|---|
| 237 | you should keep this rule strictly because all particle definitions are
|
|---|
| 238 | revised to "non-static" objects.
|
|---|
| 239 | </para>
|
|---|
| 240 |
|
|---|
| 241 | <para>
|
|---|
| 242 | For example, suppose you need a proton and a geantino, which is
|
|---|
| 243 | a virtual particle used for simulation and which does not interact
|
|---|
| 244 | with materials. The <literal>ConstructParticle()</literal> method is
|
|---|
| 245 | implemented as below:
|
|---|
| 246 |
|
|---|
| 247 | <example id="programlist_HowToSpecParti_1">
|
|---|
| 248 | <title>
|
|---|
| 249 | Construct a proton and a geantino.
|
|---|
| 250 | </title>
|
|---|
| 251 | <programlisting>
|
|---|
| 252 | void ExN01PhysicsList::ConstructParticle()
|
|---|
| 253 | {
|
|---|
| 254 | G4Proton::ProtonDefinition();
|
|---|
| 255 | G4Geantino::GeantinoDefinition();
|
|---|
| 256 | }
|
|---|
| 257 | </programlisting>
|
|---|
| 258 | </example>
|
|---|
| 259 | </para>
|
|---|
| 260 |
|
|---|
| 261 | <para>
|
|---|
| 262 | Due to the large number of pre-defined particles in Geant4, it
|
|---|
| 263 | is cumbersome to list all the particles by this method. If you want
|
|---|
| 264 | all the particles in a Geant4 particle category, there are six
|
|---|
| 265 | utility classes, corresponding to each of the particle categories,
|
|---|
| 266 | which perform this function:
|
|---|
| 267 |
|
|---|
| 268 | <itemizedlist spacing="compact">
|
|---|
| 269 | <listitem><para>
|
|---|
| 270 | <literal>G4BosonConstructor</literal>
|
|---|
| 271 | </para></listitem>
|
|---|
| 272 | <listitem><para>
|
|---|
| 273 | <literal>G4LeptonConstructor</literal>
|
|---|
| 274 | </para></listitem>
|
|---|
| 275 | <listitem><para>
|
|---|
| 276 | <literal>G4MesonConstructor</literal>
|
|---|
| 277 | </para></listitem>
|
|---|
| 278 | <listitem><para>
|
|---|
| 279 | <literal>G4BarionConstructor</literal>
|
|---|
| 280 | </para></listitem>
|
|---|
| 281 | <listitem><para>
|
|---|
| 282 | <literal>G4IonConstructor</literal>
|
|---|
| 283 | </para></listitem>
|
|---|
| 284 | <listitem><para>
|
|---|
| 285 | <literal>G4ShortlivedConstructor</literal>.
|
|---|
| 286 | </para></listitem>
|
|---|
| 287 | </itemizedlist>
|
|---|
| 288 | </para>
|
|---|
| 289 |
|
|---|
| 290 | <para>
|
|---|
| 291 | An example of this is shown in <literal>ExN05PhysicsList</literal>,
|
|---|
| 292 | listed below.
|
|---|
| 293 |
|
|---|
| 294 | <example id="programlist_HowToSpecParti_2">
|
|---|
| 295 | <title>
|
|---|
| 296 | Construct all leptons.
|
|---|
| 297 | </title>
|
|---|
| 298 | <programlisting>
|
|---|
| 299 | void ExN05PhysicsList::ConstructLeptons()
|
|---|
| 300 | {
|
|---|
| 301 | // Construct all leptons
|
|---|
| 302 | G4LeptonConstructor pConstructor;
|
|---|
| 303 | pConstructor.ConstructParticle();
|
|---|
| 304 | }
|
|---|
| 305 | </programlisting>
|
|---|
| 306 | </example>
|
|---|
| 307 | </para>
|
|---|
| 308 |
|
|---|
| 309 | </sect3>
|
|---|
| 310 | </sect2>
|
|---|
| 311 |
|
|---|
| 312 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 313 | <sect2 id="sect.HowToSpecParti.RangeCuts">
|
|---|
| 314 | <title>
|
|---|
| 315 | Range Cuts
|
|---|
| 316 | </title>
|
|---|
| 317 |
|
|---|
| 318 | <para>
|
|---|
| 319 | To avoid infrared divergence, some electromagnetic processes
|
|---|
| 320 | require a threshold below which no secondary will be generated.
|
|---|
| 321 | Because of this requirement, gammas, electrons and positrons
|
|---|
| 322 | require production thresholds which the user should define. This
|
|---|
| 323 | threshold should be defined as a distance, or range cut-off, which
|
|---|
| 324 | is internally converted to an energy for individual materials. The
|
|---|
| 325 | range threshold should be defined in the initialization phase using
|
|---|
| 326 | the <literal>SetCuts()</literal> method of <literal>G4VUserPhysicsList</literal>.
|
|---|
| 327 | <xref linkend="sect.CutReg" /> discusses threshold and tracking
|
|---|
| 328 | cuts in detail.
|
|---|
| 329 | </para>
|
|---|
| 330 |
|
|---|
| 331 |
|
|---|
| 332 |
|
|---|
| 333 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 334 | <sect3 id="sect.HowToSpecParti.RangeCuts.SetCuts">
|
|---|
| 335 | <title>
|
|---|
| 336 | Setting the cuts
|
|---|
| 337 | </title>
|
|---|
| 338 |
|
|---|
| 339 | <para>
|
|---|
| 340 | Production threshold values should be defined in <literal>SetCuts()</literal>
|
|---|
| 341 | which is a pure virtual method of the <literal>G4VUserPhysicsList</literal>
|
|---|
| 342 | class. Construction of particles, materials, and processes should
|
|---|
| 343 | precede the invocation of <literal>SetCuts()</literal>. <literal>G4RunManager</literal>
|
|---|
| 344 | takes care of this sequence in usual applications.
|
|---|
| 345 | </para>
|
|---|
| 346 | <para>
|
|---|
| 347 | This range cut value is converted threshold energies
|
|---|
| 348 | for each material and for each particle type (i.e. electron,
|
|---|
| 349 | positron and gamma)
|
|---|
| 350 | so that the particle with threshold energy stops (or is absorbed)
|
|---|
| 351 | after traveling the range cut distance.
|
|---|
| 352 | In addition, from the 9.3 release ,this range cut value is applied
|
|---|
| 353 | to the proton as production thresholds of nuclei for hadron
|
|---|
| 354 | elastic processes. In this case, the range cut value does not means
|
|---|
| 355 | the distance of traveling. Threshold energies are calculated
|
|---|
| 356 | by a simple formula from the cut in range.
|
|---|
| 357 | </para>
|
|---|
| 358 |
|
|---|
| 359 | <para>
|
|---|
| 360 | Note that the upper limit of the threshold energy is defined as 10
|
|---|
| 361 | GeV. If you want to set higher threshold energy, you can change
|
|---|
| 362 | the limit by using "/cuts/setMaxCutEnergy" command before setting
|
|---|
| 363 | the range cut.
|
|---|
| 364 | </para>
|
|---|
| 365 |
|
|---|
| 366 | <para>
|
|---|
| 367 | The idea of a "unique cut value in range" is one of the
|
|---|
| 368 | important features of Geant4 and is used to handle cut values in a
|
|---|
| 369 | coherent manner. For most applications, users need to determine
|
|---|
| 370 | only one cut value in range, and apply this value to gammas,
|
|---|
| 371 | electrons and positrons alike. (and proton too)
|
|---|
| 372 | </para>
|
|---|
| 373 |
|
|---|
| 374 | <para>
|
|---|
| 375 | In such case, the <literal>SetCutsWithDefault()</literal> method may be
|
|---|
| 376 | used. It is provided by the <literal>G4VuserPhysicsList</literal> base class,
|
|---|
| 377 | which has a <literal>defaultCutValue</literal> member as the default range
|
|---|
| 378 | cut-off value. <literal>SetCutsWithDefault()</literal> uses this value.
|
|---|
| 379 | </para>
|
|---|
| 380 |
|
|---|
| 381 | <para>
|
|---|
| 382 | It is possible to set different range cut values for gammas,
|
|---|
| 383 | electrons and positrons, and also to set different range cut values
|
|---|
| 384 | for each geometrical region. In such cases however, one must be
|
|---|
| 385 | careful with physics outputs because Geant4 processes (especially
|
|---|
| 386 | energy loss) are designed to conform to the "unique cut value in
|
|---|
| 387 | range" scheme.
|
|---|
| 388 |
|
|---|
| 389 | <example id="programlist_HowToSpecParti_3">
|
|---|
| 390 | <title>
|
|---|
| 391 | Set cut values by using the default cut value.
|
|---|
| 392 | </title>
|
|---|
| 393 | <programlisting>
|
|---|
| 394 | void ExN04PhysicsList::SetCuts()
|
|---|
| 395 | {
|
|---|
| 396 | // the G4VUserPhysicsList::SetCutsWithDefault() method sets
|
|---|
| 397 | // the default cut value for all particle types
|
|---|
| 398 | SetCutsWithDefault();
|
|---|
| 399 | }
|
|---|
| 400 | </programlisting>
|
|---|
| 401 | </example>
|
|---|
| 402 | </para>
|
|---|
| 403 |
|
|---|
| 404 | <para>
|
|---|
| 405 | The <literal>defaultCutValue</literal> is set to 1.0 mm by default. Of
|
|---|
| 406 | course, you can set the new default cut value in the constructor of
|
|---|
| 407 | your physics list class as shown below.
|
|---|
| 408 |
|
|---|
| 409 | <example id="programlist_HowToSpecParti_4">
|
|---|
| 410 | <title>
|
|---|
| 411 | Set the default cut value.
|
|---|
| 412 | </title>
|
|---|
| 413 | <programlisting>
|
|---|
| 414 | ExN04PhysicsList::ExN04PhysicsList(): G4VUserPhysicsList()
|
|---|
| 415 | {
|
|---|
| 416 | // default cut value (1.0mm)
|
|---|
| 417 | defaultCutValue = 1.0*mm;
|
|---|
| 418 | }
|
|---|
| 419 | </programlisting>
|
|---|
| 420 | </example>
|
|---|
| 421 | </para>
|
|---|
| 422 |
|
|---|
| 423 | <para>
|
|---|
| 424 | The <literal>SetDefaultCutValue()</literal> method in
|
|---|
| 425 | <literal>G4VUserPhysicsList</literal> may also be used,
|
|---|
| 426 | and the "/run/setCut" command may be used
|
|---|
| 427 | to change the default cut value interactively.
|
|---|
| 428 | </para>
|
|---|
| 429 |
|
|---|
| 430 | <para>
|
|---|
| 431 | You can set different cut values in range for different
|
|---|
| 432 | particle types. The "/run/setCutForAGivenParticle" command
|
|---|
| 433 | may be used interactively.
|
|---|
| 434 | </para>
|
|---|
| 435 |
|
|---|
| 436 | <para>
|
|---|
| 437 | WARNING: DO NOT change cut values inside the event loop. Cut
|
|---|
| 438 | values may however be changed between runs.
|
|---|
| 439 | </para>
|
|---|
| 440 |
|
|---|
| 441 | <para>
|
|---|
| 442 | An example implementation of <literal>SetCuts()</literal> is shown
|
|---|
| 443 | below:
|
|---|
| 444 |
|
|---|
| 445 | <example id="programlist_HowToSpecParti_5">
|
|---|
| 446 | <title>
|
|---|
| 447 | Example implementation of the <literal>SetCuts()</literal> method.
|
|---|
| 448 | </title>
|
|---|
| 449 | <programlisting>
|
|---|
| 450 | void ExN03PhysicsList::SetCuts()
|
|---|
| 451 | {
|
|---|
| 452 | // set cut values for gamma at first and for e- second and next for e+,
|
|---|
| 453 | // because some processes for e+/e- need cut values for gamma
|
|---|
| 454 | SetCutValue(cutForGamma, "gamma");
|
|---|
| 455 | SetCutValue(cutForElectron, "e-");
|
|---|
| 456 | SetCutValue(cutForElectron, "e+");
|
|---|
| 457 | SetCutValue(cutForProton, "proton");
|
|---|
| 458 | }
|
|---|
| 459 | </programlisting>
|
|---|
| 460 | </example>
|
|---|
| 461 | </para>
|
|---|
| 462 |
|
|---|
| 463 | <para>
|
|---|
| 464 | Beginning with Geant4 version 5.1, it is now possible to set
|
|---|
| 465 | production thresholds for each geometrical region. This new
|
|---|
| 466 | functionality is described in <xref linkend="sect.CutReg" />.
|
|---|
| 467 | </para>
|
|---|
| 468 |
|
|---|
| 469 |
|
|---|
| 470 | </sect3>
|
|---|
| 471 | </sect2>
|
|---|
| 472 | </sect1>
|
|---|