| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- -->
|
|---|
| 3 | <!-- [History] -->
|
|---|
| 4 | <!-- Changed by: Katsuya Amako, 30-Jul-1998 -->
|
|---|
| 5 | <!-- Proof read by: Joe Chuma, 29-Jun-1999 -->
|
|---|
| 6 | <!-- Converted to DocBook: Katsuya Amako, Aug-2006 -->
|
|---|
| 7 | <!-- -->
|
|---|
| 8 | <!-- ******************************************************** -->
|
|---|
| 9 |
|
|---|
| 10 |
|
|---|
| 11 | <!-- ******************* Section (Level#1) ****************** -->
|
|---|
| 12 | <sect1 id="sect.PhysProc">
|
|---|
| 13 | <title>
|
|---|
| 14 | Physics Processes
|
|---|
| 15 | </title>
|
|---|
| 16 |
|
|---|
| 17 | <para>
|
|---|
| 18 | Physics processes describe how particles interact with a
|
|---|
| 19 | material. Seven major categories of processes are provided by
|
|---|
| 20 | Geant4:
|
|---|
| 21 |
|
|---|
| 22 | <orderedlist spacing="compact">
|
|---|
| 23 | <listitem><para>
|
|---|
| 24 | <link linkend="sect.PhysProc.EleMag">
|
|---|
| 25 | electromagnetic
|
|---|
| 26 | </link>
|
|---|
| 27 | ,
|
|---|
| 28 | </para></listitem>
|
|---|
| 29 | <listitem><para>
|
|---|
| 30 | <link linkend="sect.PhysProc.Had">
|
|---|
| 31 | hadronic
|
|---|
| 32 | </link>
|
|---|
| 33 | ,
|
|---|
| 34 | </para></listitem>
|
|---|
| 35 | <listitem><para>
|
|---|
| 36 | <link linkend="sect.PhysProc.Decay">
|
|---|
| 37 | decay
|
|---|
| 38 | </link>
|
|---|
| 39 | ,
|
|---|
| 40 | </para></listitem>
|
|---|
| 41 | <listitem><para>
|
|---|
| 42 | <link linkend="sect.PhysProc.PhotoHad">
|
|---|
| 43 | photolepton-hadron
|
|---|
| 44 | </link>
|
|---|
| 45 | ,
|
|---|
| 46 | </para></listitem>
|
|---|
| 47 | <listitem><para>
|
|---|
| 48 | <link linkend="sect.PhysProc.Photo">
|
|---|
| 49 | optical
|
|---|
| 50 | </link>
|
|---|
| 51 | ,
|
|---|
| 52 | </para></listitem>
|
|---|
| 53 | <listitem><para>
|
|---|
| 54 | <link linkend="sect.PhysProc.Param">
|
|---|
| 55 | parameterization
|
|---|
| 56 | </link>
|
|---|
| 57 | and
|
|---|
| 58 | </para></listitem>
|
|---|
| 59 | <listitem><para>
|
|---|
| 60 | <link linkend="sect.PhysProc.Trans">
|
|---|
| 61 | transportation
|
|---|
| 62 | </link>
|
|---|
| 63 | .
|
|---|
| 64 | </para></listitem>
|
|---|
| 65 | </orderedlist>
|
|---|
| 66 | </para>
|
|---|
| 67 |
|
|---|
| 68 | <para>
|
|---|
| 69 | The generalization and abstraction of physics processes is a key
|
|---|
| 70 | issue in the design of Geant4. All physics processes are treated in
|
|---|
| 71 | the same manner from the tracking point of view. The Geant4
|
|---|
| 72 | approach enables anyone to create a process and assign it to a
|
|---|
| 73 | particle type. This openness should allow the creation of processes
|
|---|
| 74 | for novel, domain-specific or customised purposes by individuals or
|
|---|
| 75 | groups of users.
|
|---|
| 76 | </para>
|
|---|
| 77 |
|
|---|
| 78 | <para>
|
|---|
| 79 | Each process has two groups of methods which play an important
|
|---|
| 80 | role in tracking, <literal>GetPhysicalInteractionLength</literal> (GPIL) and
|
|---|
| 81 | <literal>DoIt</literal>. The GPIL method gives the step length from the
|
|---|
| 82 | current space-time point to the next space-time point. It does this
|
|---|
| 83 | by calculating the probability of interaction based on the
|
|---|
| 84 | process's cross section information. At the end of this step the
|
|---|
| 85 | <literal>DoIt</literal> method should be invoked. The <literal>DoIt</literal> method
|
|---|
| 86 | implements the details of the interaction, changing the particle's
|
|---|
| 87 | energy, momentum, direction and position, and producing secondary
|
|---|
| 88 | tracks if required. These changes are recorded as
|
|---|
| 89 | <emphasis>G4VParticleChange</emphasis> objects(see
|
|---|
| 90 | <link linkend="brhead.PhysProc.PrtChng">
|
|---|
| 91 | Particle Change</link>).
|
|---|
| 92 | </para>
|
|---|
| 93 |
|
|---|
| 94 | <!-- ******* Bridgehead ******* -->
|
|---|
| 95 | <bridgehead renderas='sect4'>
|
|---|
| 96 | G4VProcess
|
|---|
| 97 | </bridgehead>
|
|---|
| 98 |
|
|---|
| 99 | <para>
|
|---|
| 100 | <emphasis>G4VProcess</emphasis> is the base class for all physics processes.
|
|---|
| 101 | Each physics process must implement virtual methods of
|
|---|
| 102 | <emphasis>G4VProcess</emphasis> which describe the interaction (DoIt) and
|
|---|
| 103 | determine when an interaction should occur (GPIL). In order to
|
|---|
| 104 | accommodate various types of interactions <emphasis>G4VProcess</emphasis>
|
|---|
| 105 | provides three <literal>DoIt</literal> methods:
|
|---|
| 106 |
|
|---|
| 107 | <itemizedlist spacing="compact">
|
|---|
| 108 | <listitem><para>
|
|---|
| 109 | <literal>G4VParticleChange* AlongStepDoIt( const G4Track& track,
|
|---|
| 110 | const G4Step& stepData )</literal>
|
|---|
| 111 | <para>
|
|---|
| 112 | This method is invoked while <emphasis>G4SteppingManager</emphasis> is
|
|---|
| 113 | transporting a particle through one step. The corresponding
|
|---|
| 114 | <literal>AlongStepDoIt</literal> for each defined process is applied for
|
|---|
| 115 | every step regardless of which process produces the minimum step
|
|---|
| 116 | length. Each resulting change to the track information is recorded
|
|---|
| 117 | and accumulated in <emphasis>G4Step</emphasis>. After all processes have been
|
|---|
| 118 | invoked, changes due to <literal>AlongStepDoIt</literal> are applied to
|
|---|
| 119 | <emphasis>G4Track</emphasis>, including the particle relocation and the safety
|
|---|
| 120 | update. Note that after the invocation of <literal>AlongStepDoIt</literal>,
|
|---|
| 121 | the endpoint of the <emphasis>G4Track</emphasis> object is in a new volume if the
|
|---|
| 122 | step was limited by a geometric boundary. In order to obtain
|
|---|
| 123 | information about the old volume, <emphasis>G4Step</emphasis> must be accessed,
|
|---|
| 124 | since it contains information about both endpoints of a step.
|
|---|
| 125 | </para>
|
|---|
| 126 | </para></listitem>
|
|---|
| 127 | <listitem><para>
|
|---|
| 128 | <literal>G4VParticleChange* PostStepDoIt( const G4Track& track,
|
|---|
| 129 | const G4Step& stepData )</literal>
|
|---|
| 130 | <para>
|
|---|
| 131 | This method is invoked at the end point of a step, only if its
|
|---|
| 132 | process has produced the minimum step length, or if the process is
|
|---|
| 133 | forced to occur. <emphasis>G4Track</emphasis> will be updated after each
|
|---|
| 134 | invocation of <literal>PostStepDoIt</literal>, in contrast to the
|
|---|
| 135 | <literal>AlongStepDoIt</literal> method.
|
|---|
| 136 | </para>
|
|---|
| 137 | </para></listitem>
|
|---|
| 138 | <listitem><para>
|
|---|
| 139 | <literal>G4VParticleChange* AtRestDoIt( const G4Track& track,
|
|---|
| 140 | const G4Step& stepData )</literal>
|
|---|
| 141 | <para>
|
|---|
| 142 | This method is invoked only for stopped particles, and only if
|
|---|
| 143 | its process produced the minimum step length or the process is
|
|---|
| 144 | forced to occur.
|
|---|
| 145 | </para>
|
|---|
| 146 | </para></listitem>
|
|---|
| 147 | </itemizedlist>
|
|---|
| 148 | </para>
|
|---|
| 149 |
|
|---|
| 150 | <para>
|
|---|
| 151 | For each of the above <literal>DoIt</literal> methods <emphasis>G4VProcess</emphasis>
|
|---|
| 152 | provides a corresponding pure virtual GPIL method:
|
|---|
| 153 |
|
|---|
| 154 | <itemizedlist spacing="compact">
|
|---|
| 155 | <listitem><para>
|
|---|
| 156 | <literal>G4double PostStepGetPhysicalInteractionLength( const
|
|---|
| 157 | G4Track& track, G4double previousStepSize, G4ForceCondition*
|
|---|
| 158 | condition )</literal>
|
|---|
| 159 | <para>
|
|---|
| 160 | This method generates the step length allowed by its process. It
|
|---|
| 161 | also provides a flag to force the interaction to occur regardless
|
|---|
| 162 | of its step length.
|
|---|
| 163 | </para>
|
|---|
| 164 | </para></listitem>
|
|---|
| 165 | <listitem><para>
|
|---|
| 166 | <literal>G4double AlongStepGetPhysicalInteractionLength( const
|
|---|
| 167 | G4Track& track, G4double previousStepSize, G4double
|
|---|
| 168 | currentMinimumStep, G4double& proposedSafety, G4GPILSelection*
|
|---|
| 169 | selection )</literal>
|
|---|
| 170 | <para>
|
|---|
| 171 | This method generates the step length allowed by its process.
|
|---|
| 172 | </para>
|
|---|
| 173 | </para></listitem>
|
|---|
| 174 | <listitem><para>
|
|---|
| 175 | <literal>G4double AtRestGetPhysicalInteractionLength( const
|
|---|
| 176 | G4Track& track, G4ForceCondition* condition )</literal>
|
|---|
| 177 | <para>
|
|---|
| 178 | This method generates the step length in time allowed by its
|
|---|
| 179 | process. It also provides a flag to force the interaction to occur
|
|---|
| 180 | regardless of its step length.
|
|---|
| 181 | </para>
|
|---|
| 182 | </para></listitem>
|
|---|
| 183 | </itemizedlist>
|
|---|
| 184 | </para>
|
|---|
| 185 |
|
|---|
| 186 | <para>
|
|---|
| 187 | Other pure virtual methods in <emphasis>G4VProcess</emphasis> follow:
|
|---|
| 188 |
|
|---|
| 189 | <itemizedlist spacing="compact">
|
|---|
| 190 | <listitem><para>
|
|---|
| 191 | <literal>virtual G4bool IsApplicable(const
|
|---|
| 192 | G4ParticleDefinition&)</literal>
|
|---|
| 193 | <para>
|
|---|
| 194 | returns true if this process object is applicable to the
|
|---|
| 195 | particle type.
|
|---|
| 196 | </para>
|
|---|
| 197 | </para></listitem>
|
|---|
| 198 | <listitem><para>
|
|---|
| 199 | <literal>virtual void PreparePhysicsTable(const
|
|---|
| 200 | G4ParticleDefinition&)</literal> and
|
|---|
| 201 | </para></listitem>
|
|---|
| 202 | <listitem><para>
|
|---|
| 203 | <literal>virtual void BuildPhysicsTable(const
|
|---|
| 204 | G4ParticleDefinition&)</literal>
|
|---|
| 205 | <para>
|
|---|
| 206 | is messaged by the process manager, whenever cross section
|
|---|
| 207 | tables should be prepared and rebuilt due to changing cut-off
|
|---|
| 208 | values. It is not mandatory if the process is not affected by
|
|---|
| 209 | cut-off values.
|
|---|
| 210 | </para>
|
|---|
| 211 | </para></listitem>
|
|---|
| 212 | <listitem><para>
|
|---|
| 213 | <literal>virtual void StartTracking()</literal> and
|
|---|
| 214 | </para></listitem>
|
|---|
| 215 | <listitem><para>
|
|---|
| 216 | <literal>virtual void EndTracking()</literal>
|
|---|
| 217 | <para>
|
|---|
| 218 | are messaged by the tracking manager at the beginning and end of
|
|---|
| 219 | tracking the current track.
|
|---|
| 220 | </para>
|
|---|
| 221 | </para></listitem>
|
|---|
| 222 | </itemizedlist>
|
|---|
| 223 | </para>
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 | <!-- ******* Bridgehead ******* -->
|
|---|
| 227 | <bridgehead renderas='sect4'>
|
|---|
| 228 | Other base classes for processes
|
|---|
| 229 | </bridgehead>
|
|---|
| 230 |
|
|---|
| 231 | <para>
|
|---|
| 232 | Specialized processes may be derived from seven additional
|
|---|
| 233 | virtual base classes which are themselves derived from
|
|---|
| 234 | <emphasis>G4VProcess</emphasis>. Three of these classes are used for simple
|
|---|
| 235 | processes:
|
|---|
| 236 |
|
|---|
| 237 | <variablelist>
|
|---|
| 238 | <varlistentry>
|
|---|
| 239 | <term><emphasis>G4VRestProcess</emphasis></term>
|
|---|
| 240 | <listitem>
|
|---|
| 241 | <para>
|
|---|
| 242 | Processes using only the <literal>AtRestDoIt</literal> method.
|
|---|
| 243 | </para>
|
|---|
| 244 | <para>
|
|---|
| 245 | example: neutron capture
|
|---|
| 246 | </para>
|
|---|
| 247 | </listitem>
|
|---|
| 248 | </varlistentry>
|
|---|
| 249 | <varlistentry>
|
|---|
| 250 | <term><emphasis>G4VDiscreteProcess</emphasis></term>
|
|---|
| 251 | <listitem>
|
|---|
| 252 | <para>
|
|---|
| 253 | Processes using only the <literal>PostStepDoIt</literal> method.
|
|---|
| 254 | </para>
|
|---|
| 255 | <para>
|
|---|
| 256 | example: compton scattering, hadron inelastic interaction
|
|---|
| 257 | </para>
|
|---|
| 258 | </listitem>
|
|---|
| 259 | </varlistentry>
|
|---|
| 260 | </variablelist>
|
|---|
| 261 | </para>
|
|---|
| 262 |
|
|---|
| 263 | <para>
|
|---|
| 264 | The other four classes are provided for rather complex
|
|---|
| 265 | processes:
|
|---|
| 266 |
|
|---|
| 267 | <variablelist>
|
|---|
| 268 | <varlistentry>
|
|---|
| 269 | <term><emphasis>G4VContinuousDiscreteProcess</emphasis></term>
|
|---|
| 270 | <listitem>
|
|---|
| 271 | <para>
|
|---|
| 272 | Processes using both <literal>AlongStepDoIt</literal> and
|
|---|
| 273 | <literal>PostStepDoIt</literal> methods.
|
|---|
| 274 | </para>
|
|---|
| 275 | <para>
|
|---|
| 276 | example: transportation, ionisation(energy loss and delta ray)
|
|---|
| 277 | </para>
|
|---|
| 278 | </listitem>
|
|---|
| 279 | </varlistentry>
|
|---|
| 280 | <varlistentry>
|
|---|
| 281 | <term><emphasis>G4VRestDiscreteProcess</emphasis></term>
|
|---|
| 282 | <listitem>
|
|---|
| 283 | <para>
|
|---|
| 284 | Processes using both <literal>AtRestDoIt</literal> and
|
|---|
| 285 | <literal>PostStepDoIt</literal> methods.
|
|---|
| 286 | </para>
|
|---|
| 287 | <para>
|
|---|
| 288 | example: positron annihilation, decay (both in flight and at rest)
|
|---|
| 289 | </para>
|
|---|
| 290 | </listitem>
|
|---|
| 291 | </varlistentry>
|
|---|
| 292 | <varlistentry>
|
|---|
| 293 | <term><emphasis>G4VRestContinuousProcess</emphasis></term>
|
|---|
| 294 | <listitem>
|
|---|
| 295 | <para>
|
|---|
| 296 | Processes using both <literal>AtRestDoIt</literal> and
|
|---|
| 297 | <literal>AlongStepDoIt</literal> methods.
|
|---|
| 298 | </para>
|
|---|
| 299 | </listitem>
|
|---|
| 300 | </varlistentry>
|
|---|
| 301 | <varlistentry>
|
|---|
| 302 | <term><emphasis>G4VRestContinuousDiscreteProcess</emphasis></term>
|
|---|
| 303 | <listitem>
|
|---|
| 304 | <para>
|
|---|
| 305 | Processes using <literal>AtRestDoIt</literal>,
|
|---|
| 306 | <literal>AlongStepDoIt and</literal> PostStepDoIt methods.
|
|---|
| 307 | </para>
|
|---|
| 308 | </listitem>
|
|---|
| 309 | </varlistentry>
|
|---|
| 310 | </variablelist>
|
|---|
| 311 | </para>
|
|---|
| 312 |
|
|---|
| 313 | <!-- ******* Bridgehead ******* -->
|
|---|
| 314 | <bridgehead renderas='sect4' id="brhead.PhysProc.PrtChng">
|
|---|
| 315 | Particle change
|
|---|
| 316 | </bridgehead>
|
|---|
| 317 |
|
|---|
| 318 | <para>
|
|---|
| 319 | <emphasis>G4VParticleChange</emphasis> and its descendants are used to store
|
|---|
| 320 | the final state information of the track, including secondary
|
|---|
| 321 | tracks, which has been generated by the <literal>DoIt</literal> methods. The
|
|---|
| 322 | instance of <emphasis>G4VParticleChange</emphasis> is the only object whose
|
|---|
| 323 | information is updated by the physics processes, hence it is
|
|---|
| 324 | responsible for updating the step. The stepping manager collects
|
|---|
| 325 | secondary tracks and only sends requests via particle change to
|
|---|
| 326 | update <emphasis>G4Step</emphasis>.
|
|---|
| 327 | </para>
|
|---|
| 328 |
|
|---|
| 329 | <para>
|
|---|
| 330 | <emphasis>G4VParticleChange</emphasis> is introduced as an abstract class. It
|
|---|
| 331 | has a minimal set of methods for updating <emphasis>G4Step</emphasis> and
|
|---|
| 332 | handling secondaries. A physics process can therefore define its
|
|---|
| 333 | own particle change derived from <emphasis>G4VParticleChange</emphasis>. Three
|
|---|
| 334 | pure virtual methods are provided,
|
|---|
| 335 |
|
|---|
| 336 | <itemizedlist spacing="compact">
|
|---|
| 337 | <listitem><para>
|
|---|
| 338 | <literal>virtual G4Step* UpdateStepForAtRest( G4Step* step)</literal>,
|
|---|
| 339 | </para></listitem>
|
|---|
| 340 | <listitem><para>
|
|---|
| 341 | <literal>virtual G4Step* UpdateStepForAlongStep( G4Step* step )</literal>
|
|---|
| 342 | and
|
|---|
| 343 | </para></listitem>
|
|---|
| 344 | <listitem><para>
|
|---|
| 345 | <literal>virtual G4Step* UpdateStepForPostStep( G4Step* step)</literal>,
|
|---|
| 346 | </para></listitem>
|
|---|
| 347 | </itemizedlist>
|
|---|
| 348 |
|
|---|
| 349 | which correspond to the three <literal>DoIt</literal> methods of
|
|---|
| 350 | <emphasis>G4VProcess</emphasis>. Each derived class should implement these
|
|---|
| 351 | methods.
|
|---|
| 352 | </para>
|
|---|
| 353 |
|
|---|
| 354 |
|
|---|
| 355 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 356 | <sect2 id="sect.PhysProc.EleMag">
|
|---|
| 357 | <title>
|
|---|
| 358 | Electromagnetic Interactions
|
|---|
| 359 | </title>
|
|---|
| 360 |
|
|---|
| 361 | <para>
|
|---|
| 362 | This section summarizes the electromagnetic (EM) physics processes which
|
|---|
| 363 | are provided with Geant4. Extended information are avalable at EM web
|
|---|
| 364 | <ulink url="http://geant4.web.cern.ch/geant4/collaboration/EMindex.shtml">
|
|---|
| 365 | <emphasis role="bold">pages</emphasis></ulink>.
|
|---|
| 366 | For details on the implementation of these
|
|---|
| 367 | processes please refer to the
|
|---|
| 368 | <ulink url="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html">
|
|---|
| 369 | <emphasis role="bold">Physics Reference Manual</emphasis></ulink>.
|
|---|
| 370 | </para>
|
|---|
| 371 |
|
|---|
| 372 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 373 | <sect3 id="sect.PhysProc.EleMag.Stand">
|
|---|
| 374 | <title>
|
|---|
| 375 | "Standard" Electromagnetic Processes
|
|---|
| 376 | </title>
|
|---|
| 377 |
|
|---|
| 378 | <para>
|
|---|
| 379 | The following is a summary of the standard electromagnetic
|
|---|
| 380 | processes available in Geant4.
|
|---|
| 381 |
|
|---|
| 382 | <itemizedlist spacing="compact">
|
|---|
| 383 | <listitem><para>
|
|---|
| 384 | Photon processes
|
|---|
| 385 | <itemizedlist spacing="compact">
|
|---|
| 386 | <listitem><para>
|
|---|
| 387 | Compton scattering (class name <emphasis>G4ComptonScattering</emphasis>)
|
|---|
| 388 | </para></listitem>
|
|---|
| 389 | <listitem><para>
|
|---|
| 390 | Gamma conversion (also called pair production, class name
|
|---|
| 391 | <emphasis>G4GammaConversion</emphasis>)
|
|---|
| 392 | </para></listitem>
|
|---|
| 393 | <listitem><para>
|
|---|
| 394 | Photo-electric effect (class name <emphasis>G4PhotoElectricEffect</emphasis>)
|
|---|
| 395 | </para></listitem>
|
|---|
| 396 | <listitem><para>
|
|---|
| 397 | Muon pair production (class name <emphasis>G4GammaConversionToMuons</emphasis>)
|
|---|
| 398 | </para></listitem>
|
|---|
| 399 | </itemizedlist>
|
|---|
| 400 | </para></listitem>
|
|---|
| 401 | <listitem><para>
|
|---|
| 402 | Electron/positron processes
|
|---|
| 403 | <itemizedlist spacing="compact">
|
|---|
| 404 | <listitem><para>
|
|---|
| 405 | Ionisation and delta ray production (class name
|
|---|
| 406 | <emphasis>G4eIonisation</emphasis>)
|
|---|
| 407 | </para></listitem>
|
|---|
| 408 | <listitem><para>
|
|---|
| 409 | Bremsstrahlung (class name <emphasis>G4eBremsstrahlung</emphasis>)
|
|---|
| 410 | </para></listitem>
|
|---|
| 411 | <listitem><para>
|
|---|
| 412 | Multiple scattering (class name <emphasis>G4eMultipleScattering</emphasis>)
|
|---|
| 413 | </para></listitem>
|
|---|
| 414 | <listitem><para>
|
|---|
| 415 | Positron annihilation into two gammas (class name
|
|---|
| 416 | <emphasis>G4eplusAnnihilation</emphasis>)
|
|---|
| 417 | </para></listitem>
|
|---|
| 418 | <listitem><para>
|
|---|
| 419 | Positron annihilation into two muons (class name
|
|---|
| 420 | <emphasis>G4AnnihiToMuPair</emphasis>)
|
|---|
| 421 | </para></listitem>
|
|---|
| 422 | <listitem><para>
|
|---|
| 423 | Positron annihilation into hadrons (class name
|
|---|
| 424 | <emphasis>G4eeToHadrons</emphasis>)
|
|---|
| 425 | </para></listitem>
|
|---|
| 426 | </itemizedlist>
|
|---|
| 427 | </para></listitem>
|
|---|
| 428 | <listitem><para>
|
|---|
| 429 | Muon processes
|
|---|
| 430 | <itemizedlist spacing="compact">
|
|---|
| 431 | <listitem><para>
|
|---|
| 432 | Bremsstrahlung (class name <emphasis>G4MuBremsstrahlung</emphasis>)
|
|---|
| 433 | </para></listitem>
|
|---|
| 434 | <listitem><para>
|
|---|
| 435 | Ionisation and delta ray production (class name
|
|---|
| 436 | <emphasis>G4MuIonisation</emphasis>)
|
|---|
| 437 | </para></listitem>
|
|---|
| 438 | <listitem><para>
|
|---|
| 439 | Multiple scattering (class name <emphasis>G4MuMultipleScattering</emphasis>)
|
|---|
| 440 | </para></listitem>
|
|---|
| 441 | <listitem><para>
|
|---|
| 442 | e+e- pair production (class name
|
|---|
| 443 | <emphasis>G4MuPairProduction</emphasis>)
|
|---|
| 444 | </para></listitem>
|
|---|
| 445 | </itemizedlist>
|
|---|
| 446 | </para></listitem>
|
|---|
| 447 | <listitem><para>
|
|---|
| 448 | Hadron/ion processes
|
|---|
| 449 | <itemizedlist spacing="compact">
|
|---|
| 450 | <listitem><para>
|
|---|
| 451 | Bremsstrahlung (class name <emphasis>G4hBremsstrahlung</emphasis>)
|
|---|
| 452 | </para></listitem>
|
|---|
| 453 | <listitem><para>
|
|---|
| 454 | Ionisation (class name <emphasis>G4hIonisation</emphasis>)
|
|---|
| 455 | </para></listitem>
|
|---|
| 456 | <listitem><para>
|
|---|
| 457 | e+e- pair production (class name <emphasis>G4hPairProduction</emphasis>)
|
|---|
| 458 | </para></listitem>
|
|---|
| 459 | <listitem><para>
|
|---|
| 460 | Ionisation for ions (class name <emphasis>G4ionIonisation</emphasis>)
|
|---|
| 461 | </para></listitem>
|
|---|
| 462 | <listitem><para>
|
|---|
| 463 | Multiple scattering (class name <emphasis>G4hMultipleScattering</emphasis>)
|
|---|
| 464 | </para></listitem>
|
|---|
| 465 | <listitem><para>
|
|---|
| 466 | Ionisation for heavy exotic particles (class name
|
|---|
| 467 | <emphasis>G4hhIonisation</emphasis>)
|
|---|
| 468 | </para></listitem>
|
|---|
| 469 | <listitem><para>
|
|---|
| 470 | Ionisation for classical magnetic monopole (class name
|
|---|
| 471 | <emphasis>G4mplIonisation</emphasis>)
|
|---|
| 472 | </para></listitem>
|
|---|
| 473 | </itemizedlist>
|
|---|
| 474 | </para></listitem>
|
|---|
| 475 | <listitem><para>
|
|---|
| 476 | Coulomb scattering processes
|
|---|
| 477 | <itemizedlist spacing="compact">
|
|---|
| 478 | <listitem><para>
|
|---|
| 479 | A general process in the sense that the same process/class
|
|---|
| 480 | is used to simulate the multiple scattering of the all charged
|
|---|
| 481 | particles (class name <emphasis>G4MultipleScattering</emphasis>)
|
|---|
| 482 | </para></listitem>
|
|---|
| 483 | <listitem><para>
|
|---|
| 484 | Alternative process for simulation of single Coulomb scattering
|
|---|
| 485 | of all charged particles (class name <emphasis>G4CoulombScattering</emphasis>)
|
|---|
| 486 | </para></listitem>
|
|---|
| 487 | <listitem><para>
|
|---|
| 488 | Alternative process for simulation of single Coulomb scattering
|
|---|
| 489 | of ions (class name <emphasis>G4ScreenedNuclearRecoil</emphasis>)
|
|---|
| 490 | </para></listitem>
|
|---|
| 491 | </itemizedlist>
|
|---|
| 492 | </para></listitem>
|
|---|
| 493 | <listitem><para>
|
|---|
| 494 | Processes for simulation of polarized electron and gamma beams
|
|---|
| 495 | <itemizedlist spacing="compact">
|
|---|
| 496 | <listitem><para>
|
|---|
| 497 | Compton scattering of circularly polarized gamma beam on
|
|---|
| 498 | polarized target (class name <emphasis>G4PolarizedCompton</emphasis>)
|
|---|
| 499 | </para></listitem>
|
|---|
| 500 | <listitem><para>
|
|---|
| 501 | Pair production induced by circularly polarized gamma beam
|
|---|
| 502 | (class name <emphasis>G4PolarizedGammaConversion</emphasis>)
|
|---|
| 503 | </para></listitem>
|
|---|
| 504 | <listitem><para>
|
|---|
| 505 | Photo-electric effect induced by circularly polarized gamma beam
|
|---|
| 506 | (class name <emphasis>G4PolarizedPhotoElectricEffect</emphasis>)
|
|---|
| 507 | </para></listitem>
|
|---|
| 508 | <listitem><para>
|
|---|
| 509 | Bremsstrahlung of polarized electrons and positrons
|
|---|
| 510 | (class name <emphasis>G4ePolarizedBremsstrahlung</emphasis>)
|
|---|
| 511 | </para></listitem>
|
|---|
| 512 | <listitem><para>
|
|---|
| 513 | Ionisation of polarized electron and positron beam
|
|---|
| 514 | (class name <emphasis>G4ePolarizedIonisation</emphasis>)
|
|---|
| 515 | </para></listitem>
|
|---|
| 516 | <listitem><para>
|
|---|
| 517 | Annihilation of polarized positrons
|
|---|
| 518 | (class name <emphasis>G4eplusPolarizedAnnihilation</emphasis>)
|
|---|
| 519 | </para></listitem>
|
|---|
| 520 | </itemizedlist>
|
|---|
| 521 | </para></listitem>
|
|---|
| 522 | <listitem><para>
|
|---|
| 523 | Processes for simulation of X-rays and optical protons production by charged particles
|
|---|
| 524 | <itemizedlist spacing="compact">
|
|---|
| 525 | <listitem><para>
|
|---|
| 526 | Synchrotron radiation (class name <emphasis>G4SynchrotronRadiation</emphasis>)
|
|---|
| 527 | </para></listitem>
|
|---|
| 528 | <listitem><para>
|
|---|
| 529 | Transition radiation
|
|---|
| 530 | (class name <emphasis>G4TransitionRadiation</emphasis>)
|
|---|
| 531 | </para></listitem>
|
|---|
| 532 | <listitem><para>
|
|---|
| 533 | Cerenkov radiation
|
|---|
| 534 | (class name <emphasis>G4Cerenkov</emphasis>)
|
|---|
| 535 | </para></listitem>
|
|---|
| 536 | <listitem><para>
|
|---|
| 537 | Scintillations
|
|---|
| 538 | (class name <emphasis>G4Scintillation</emphasis>)
|
|---|
| 539 | </para></listitem>
|
|---|
| 540 | </itemizedlist>
|
|---|
| 541 | </para></listitem>
|
|---|
| 542 | <listitem><para>
|
|---|
| 543 | The processes described above use physics model classes, which
|
|---|
| 544 | may be combined according to particle energy. It is possible to
|
|---|
| 545 | change the energy range over which different models are valid, and
|
|---|
| 546 | to apply other models specific to particle type, energy range, and
|
|---|
| 547 | G4Region. The following alternative models are available:
|
|---|
| 548 | <itemizedlist spacing="compact">
|
|---|
| 549 | <listitem><para>
|
|---|
| 550 | Ionisation in thin absorbers (class name <emphasis>G4PAIModel</emphasis>)
|
|---|
| 551 | </para></listitem>
|
|---|
| 552 | </itemizedlist>
|
|---|
| 553 | </para></listitem>
|
|---|
| 554 | </itemizedlist>
|
|---|
| 555 | </para>
|
|---|
| 556 |
|
|---|
| 557 | <para>
|
|---|
| 558 | It is recommended to use physics constructor classes provided
|
|---|
| 559 | with rederence physics lists ($G4INSTALL/source/physics_lists/builders):
|
|---|
| 560 | <itemizedlist spacing="compact">
|
|---|
| 561 | <listitem><para>
|
|---|
| 562 | default EM physics (class name <emphasis>G4EmStandardPhysics</emphasis>)
|
|---|
| 563 | </para></listitem>
|
|---|
| 564 | <listitem><para>
|
|---|
| 565 | optional EM physics providing similar performance as g4 7.1p01
|
|---|
| 566 | (class name <emphasis>G4EmStandardPhysics_option1</emphasis>)
|
|---|
| 567 | </para></listitem>
|
|---|
| 568 | <listitem><para>
|
|---|
| 569 | Experimental EM physics with enabled "ApplyCuts" option
|
|---|
| 570 | (class name <emphasis>G4EmStandardPhysics_option2</emphasis>)
|
|---|
| 571 | </para></listitem>
|
|---|
| 572 | <listitem><para>
|
|---|
| 573 | EM physics for simulation with high accuracy
|
|---|
| 574 | (class name <emphasis>G4EmStandardPhysics_option3</emphasis>)
|
|---|
| 575 | </para></listitem>
|
|---|
| 576 | </itemizedlist>
|
|---|
| 577 | Examples of the registration of these physics constructor and
|
|---|
| 578 | construction of alternative combinations of options are shown
|
|---|
| 579 | in novice and extended examples ($G4INSTALL/examples/extended/electromagnetic).
|
|---|
| 580 | Novice and extended electromagnetic examples illustrating the use
|
|---|
| 581 | of electromagnetic processes are available as part of the Geant4
|
|---|
| 582 | <ulink url="http://geant4.web.cern.ch/geant4/support/download.shtml">
|
|---|
| 583 | release</ulink>.
|
|---|
| 584 | </para>
|
|---|
| 585 |
|
|---|
| 586 | <para>
|
|---|
| 587 | <emphasis role="bold">Options</emphasis> are available for steering the standard
|
|---|
| 588 | electromagnetic processes. These options may be invoked either by
|
|---|
| 589 | UI commands or by the interface class G4EmProcessOptions. This
|
|---|
| 590 | class has the following public methods:
|
|---|
| 591 |
|
|---|
| 592 | <itemizedlist spacing="compact">
|
|---|
| 593 | <listitem><para>
|
|---|
| 594 | SetLossFluctuations(G4bool)
|
|---|
| 595 | </para></listitem>
|
|---|
| 596 | <listitem><para>
|
|---|
| 597 | SetSubCutoff(G4bool, const G4Region* r=0)
|
|---|
| 598 | </para></listitem>
|
|---|
| 599 | <listitem><para>
|
|---|
| 600 | SetIntegral(G4bool)
|
|---|
| 601 | </para></listitem>
|
|---|
| 602 | <listitem><para>
|
|---|
| 603 | SetMinSubRange(G4double)
|
|---|
| 604 | </para></listitem>
|
|---|
| 605 | <listitem><para>
|
|---|
| 606 | SetMinEnergy(G4double)
|
|---|
| 607 | </para></listitem>
|
|---|
| 608 | <listitem><para>
|
|---|
| 609 | SetMaxEnergy(G4double)
|
|---|
| 610 | </para></listitem>
|
|---|
| 611 | <listitem><para>
|
|---|
| 612 | SetMaxEnergyForCSDARange(G4double)
|
|---|
| 613 | </para></listitem>
|
|---|
| 614 | <listitem><para>
|
|---|
| 615 | SetMaxEnergyForMuons(G4double)
|
|---|
| 616 | </para></listitem>
|
|---|
| 617 | <listitem><para>
|
|---|
| 618 | SetDEDXBinning(G4int)
|
|---|
| 619 | </para></listitem>
|
|---|
| 620 | <listitem><para>
|
|---|
| 621 | SetDEDXBinningForCSDARange(G4int)
|
|---|
| 622 | </para></listitem>
|
|---|
| 623 | <listitem><para>
|
|---|
| 624 | SetLambdaBinning(G4int)
|
|---|
| 625 | </para></listitem>
|
|---|
| 626 | <listitem><para>
|
|---|
| 627 | SetStepFunction(G4double, G4double)
|
|---|
| 628 | </para></listitem>
|
|---|
| 629 | <listitem><para>
|
|---|
| 630 | SetRandomStep(G4bool)
|
|---|
| 631 | </para></listitem>
|
|---|
| 632 | <listitem><para>
|
|---|
| 633 | SetApplyCuts(G4bool)
|
|---|
| 634 | </para></listitem>
|
|---|
| 635 | <listitem><para>
|
|---|
| 636 | SetSpline(G4bool)
|
|---|
| 637 | </para></listitem>
|
|---|
| 638 | <listitem><para>
|
|---|
| 639 | SetBuildCSDARange(G4bool)
|
|---|
| 640 | </para></listitem>
|
|---|
| 641 | <listitem><para>
|
|---|
| 642 | SetVerbose(G4int, const G4String name= "all")
|
|---|
| 643 | </para></listitem>
|
|---|
| 644 | <listitem><para>
|
|---|
| 645 | SetLambdaFactor(G4double)
|
|---|
| 646 | </para></listitem>
|
|---|
| 647 | <listitem><para>
|
|---|
| 648 | SetLinearLossLimit(G4double)
|
|---|
| 649 | </para></listitem>
|
|---|
| 650 | <listitem><para>
|
|---|
| 651 | ActivateDeexcitation(G4bool val, const G4Region* r = 0)
|
|---|
| 652 | </para></listitem>
|
|---|
| 653 | <listitem><para>
|
|---|
| 654 | SetMscStepLimitation(G4MscStepLimitType val)
|
|---|
| 655 | </para></listitem>
|
|---|
| 656 | <listitem><para>
|
|---|
| 657 | SetMscLateralDisplacement(G4bool val)
|
|---|
| 658 | </para></listitem>
|
|---|
| 659 | <listitem><para>
|
|---|
| 660 | SetSkin(G4double)
|
|---|
| 661 | </para></listitem>
|
|---|
| 662 | <listitem><para>
|
|---|
| 663 | SetMscRangeFactor(G4double)
|
|---|
| 664 | </para></listitem>
|
|---|
| 665 | <listitem><para>
|
|---|
| 666 | SetMscGeomFactor(G4double)
|
|---|
| 667 | </para></listitem>
|
|---|
| 668 | <listitem><para>
|
|---|
| 669 | SetLPMFlag(G4bool)
|
|---|
| 670 | </para></listitem>
|
|---|
| 671 | <listitem><para>
|
|---|
| 672 | SetBremsstrahlungTh(G4double)
|
|---|
| 673 | </para></listitem>
|
|---|
| 674 | </itemizedlist>
|
|---|
| 675 | </para>
|
|---|
| 676 |
|
|---|
| 677 | <para>
|
|---|
| 678 | The corresponding UI command can be accessed in the UI subdirectory
|
|---|
| 679 | "/process/eLoss". The following types of step limitation by multiple scattering
|
|---|
| 680 | are available:
|
|---|
| 681 |
|
|---|
| 682 | <itemizedlist spacing="compact">
|
|---|
| 683 | <listitem><para>
|
|---|
| 684 | fSimple - step limitation used in g4 7.1 version (used in QGSP_EMV Physics List)
|
|---|
| 685 | </para></listitem>
|
|---|
| 686 | <listitem><para>
|
|---|
| 687 | fUseSafety - default
|
|---|
| 688 | </para></listitem>
|
|---|
| 689 | <listitem><para>
|
|---|
| 690 | fUseDistanceToBoundary - advance method of step limitation used in EM examples,
|
|---|
| 691 | required parameter <emphasis>skin > 0</emphasis>, should be used for
|
|---|
| 692 | setup without magnetic field
|
|---|
| 693 | </para></listitem>
|
|---|
| 694 | </itemizedlist>
|
|---|
| 695 | </para>
|
|---|
| 696 |
|
|---|
| 697 | <para>
|
|---|
| 698 | <emphasis role="bold">G4EmCalculator</emphasis> is a class which provides
|
|---|
| 699 | access to cross sections and stopping powers. This class can be used
|
|---|
| 700 | anywhere in the user code provided the physics list has already been
|
|---|
| 701 | initialised (G4State_Idle). G4EmCalculator has "Get" methods which
|
|---|
| 702 | can be applied to materials for which physics tables are already
|
|---|
| 703 | built, and "Compute" methods which can be applied to any material
|
|---|
| 704 | defined in the application or existing in the Geant4 internal
|
|---|
| 705 | database. The public methods of this class are:
|
|---|
| 706 |
|
|---|
| 707 | <itemizedlist spacing="compact">
|
|---|
| 708 | <listitem><para>
|
|---|
| 709 | GetDEDX(kinEnergy,particle,material,G4Region region=0)
|
|---|
| 710 | </para></listitem>
|
|---|
| 711 | <listitem><para>
|
|---|
| 712 | GetRangeFromRestrictedDEDX(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 713 | </para></listitem>
|
|---|
| 714 | <listitem><para>
|
|---|
| 715 | GetCSDARange(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 716 | </para></listitem>
|
|---|
| 717 | <listitem><para>
|
|---|
| 718 | GetRange(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 719 | </para></listitem>
|
|---|
| 720 | <listitem><para>
|
|---|
| 721 | GetKinEnergy(range,particle,material,G4Region* region=0)
|
|---|
| 722 | </para></listitem>
|
|---|
| 723 | <listitem><para>
|
|---|
| 724 | GetCrosSectionPerVolume(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 725 | </para></listitem>
|
|---|
| 726 | <listitem><para>
|
|---|
| 727 | GetMeanFreePath(kinEnergy,particle,material,G4Region* region=0)
|
|---|
| 728 | </para></listitem>
|
|---|
| 729 | <listitem><para>
|
|---|
| 730 | PrintDEDXTable(particle)
|
|---|
| 731 | </para></listitem>
|
|---|
| 732 | <listitem><para>
|
|---|
| 733 | PrintRangeTable(particle)
|
|---|
| 734 | </para></listitem>
|
|---|
| 735 | <listitem><para>
|
|---|
| 736 | PrintInverseRangeTable(particle)
|
|---|
| 737 | </para></listitem>
|
|---|
| 738 | <listitem><para>
|
|---|
| 739 | ComputeDEDX(kinEnergy,particle,process,material,cut=DBL_MAX)
|
|---|
| 740 | </para></listitem>
|
|---|
| 741 | <listitem><para>
|
|---|
| 742 | ComputeElectronicDEDX(kinEnergy,particle,material,cut=DBL_MAX)
|
|---|
| 743 | </para></listitem>
|
|---|
| 744 | <listitem><para>
|
|---|
| 745 | ComputeNuclearDEDX(kinEnergy,particle,material,cut=DBL_MAX)
|
|---|
| 746 | </para></listitem>
|
|---|
| 747 | <listitem><para>
|
|---|
| 748 | ComputeTotalDEDX(kinEnergy,particle,material,cut=DBL_MAX)
|
|---|
| 749 | </para></listitem>
|
|---|
| 750 | <listitem><para>
|
|---|
| 751 | ComputeCrosSectionPerVolume(kinEnergy,particle,process,material,cut=0)
|
|---|
| 752 | </para></listitem>
|
|---|
| 753 | <listitem><para>
|
|---|
| 754 | ComputeCrosSectionPerAtom(kinEnergy,particle,process,Z,A,cut=0)
|
|---|
| 755 | </para></listitem>
|
|---|
| 756 | <listitem><para>
|
|---|
| 757 | ComputeMeanFreePath(kinEnergy,particle,process,material,cut=0)
|
|---|
| 758 | </para></listitem>
|
|---|
| 759 | <listitem><para>
|
|---|
| 760 | ComputeEnergyCutFromRangeCut(range,particle,material)
|
|---|
| 761 | </para></listitem>
|
|---|
| 762 | <listitem><para>
|
|---|
| 763 | FindParticle(const G4String&)
|
|---|
| 764 | </para></listitem>
|
|---|
| 765 | <listitem><para>
|
|---|
| 766 | FindMaterial(const G4String&)
|
|---|
| 767 | </para></listitem>
|
|---|
| 768 | <listitem><para>
|
|---|
| 769 | FindRegion(const G4String&)
|
|---|
| 770 | </para></listitem>
|
|---|
| 771 | <listitem><para>
|
|---|
| 772 | FindCouple(const G4Material*, const G4Region* region=0)
|
|---|
| 773 | </para></listitem>
|
|---|
| 774 | <listitem><para>
|
|---|
| 775 | SetVerbose(G4int)
|
|---|
| 776 | </para></listitem>
|
|---|
| 777 | </itemizedlist>
|
|---|
| 778 | </para>
|
|---|
| 779 |
|
|---|
| 780 | <para>
|
|---|
| 781 | For these interfaces, particles, materials, or processes may be
|
|---|
| 782 | pointers or strings with names.
|
|---|
| 783 | </para>
|
|---|
| 784 |
|
|---|
| 785 | </sect3>
|
|---|
| 786 |
|
|---|
| 787 |
|
|---|
| 788 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 789 | <sect3 id="sect.PhysProc.EleMag.LowE">
|
|---|
| 790 | <title>
|
|---|
| 791 | Low Energy Electromagnetic Processes
|
|---|
| 792 | </title>
|
|---|
| 793 |
|
|---|
| 794 | <para>
|
|---|
| 795 | The following is a summary of the Low Energy Electromagnetic
|
|---|
| 796 | processes available in Geant4. Further information is available in
|
|---|
| 797 | the web
|
|---|
| 798 | <ulink url="http://geant4.web.cern.ch/geant4/collaboration/working_groups/LEelectromagnetic/index.shtml">pages
|
|---|
| 799 | </ulink>
|
|---|
| 800 | of the Geant4 Low Energy Electromagnetic Physics Working Group.
|
|---|
| 801 | The physics content of these processes is documented in Geant4
|
|---|
| 802 | <ulink url="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html">
|
|---|
| 803 | Physics Reference Manual
|
|---|
| 804 | </ulink>
|
|---|
| 805 | </para>
|
|---|
| 806 |
|
|---|
| 807 | <para>
|
|---|
| 808 | <itemizedlist spacing="compact">
|
|---|
| 809 | <listitem><para>
|
|---|
| 810 | <emphasis role="bold">Photon processes</emphasis>
|
|---|
| 811 | <itemizedlist spacing="compact">
|
|---|
| 812 | <listitem><para>
|
|---|
| 813 | Compton scattering (class <emphasis>G4LowEnergyCompton</emphasis>)
|
|---|
| 814 | </para></listitem>
|
|---|
| 815 | <listitem><para>
|
|---|
| 816 | Polarized Compton scattering (class
|
|---|
| 817 | <emphasis>G4LowEnergyPolarizedCompton</emphasis>)
|
|---|
| 818 | </para></listitem>
|
|---|
| 819 | <listitem><para>
|
|---|
| 820 | Rayleigh scattering (class <emphasis>G4LowEnergyRayleigh</emphasis>)
|
|---|
| 821 | </para></listitem>
|
|---|
| 822 | <listitem><para>
|
|---|
| 823 | Gamma conversion (also called pair production, class
|
|---|
| 824 | <emphasis>G4LowEnergyGammaConversion</emphasis>)
|
|---|
| 825 | </para></listitem>
|
|---|
| 826 | <listitem><para>
|
|---|
| 827 | Photo-electric effect (class<emphasis>G4LowEnergyPhotoElectric</emphasis>)
|
|---|
| 828 | </para></listitem>
|
|---|
| 829 | </itemizedlist>
|
|---|
| 830 | </para></listitem>
|
|---|
| 831 | <listitem><para>
|
|---|
| 832 | <emphasis role="bold">Electron processes</emphasis>
|
|---|
| 833 | <itemizedlist spacing="compact">
|
|---|
| 834 | <listitem><para>
|
|---|
| 835 | Bremsstrahlung (class <emphasis>G4LowEnergyBremsstrahlung</emphasis>)
|
|---|
| 836 | </para></listitem>
|
|---|
| 837 | <listitem><para>
|
|---|
| 838 | Ionisation and delta ray production (class
|
|---|
| 839 | <emphasis>G4LowEnergyIonisation</emphasis>)
|
|---|
| 840 | </para></listitem>
|
|---|
| 841 | </itemizedlist>
|
|---|
| 842 | </para></listitem>
|
|---|
| 843 | <listitem><para>
|
|---|
| 844 | <emphasis role="bold">Hadron and ion processes</emphasis>
|
|---|
| 845 | <itemizedlist spacing="compact">
|
|---|
| 846 | <listitem><para>
|
|---|
| 847 | Ionisation and delta ray production (class
|
|---|
| 848 | <emphasis>G4hLowEnergyIonisation</emphasis>)
|
|---|
| 849 | </para></listitem>
|
|---|
| 850 | </itemizedlist>
|
|---|
| 851 | </para></listitem>
|
|---|
| 852 | </itemizedlist>
|
|---|
| 853 | </para>
|
|---|
| 854 |
|
|---|
| 855 | <para>
|
|---|
| 856 | Examples of the registration of physics constructor with low-energy
|
|---|
| 857 | electromagnetic processes are shown
|
|---|
| 858 | in Geant4 extended examples ($G4INSTALL/examples/extended/electromagnetic).
|
|---|
| 859 | <emphasis role="bold">Advanced examples</emphasis> illustrating alternative instantiation
|
|---|
| 860 | of these processes. Both are available as part of the Geant4
|
|---|
| 861 | <ulink url="http://geant4.web.cern.ch/geant4/support/download.shtml">
|
|---|
| 862 | release</ulink>.
|
|---|
| 863 | </para>
|
|---|
| 864 |
|
|---|
| 865 | <para>
|
|---|
| 866 | To run the Low Energy code for photon and electron
|
|---|
| 867 | electromagnetic processes, <emphasis role="bold">
|
|---|
| 868 | <ulink url="http://geant4.web.cern.ch/geant4/support/download.shtml">
|
|---|
| 869 | data files
|
|---|
| 870 | </ulink>
|
|---|
| 871 | </emphasis>
|
|---|
| 872 | need to be copied by the user to his/her code
|
|---|
| 873 | repository. These files are distributed together with Geant4.
|
|---|
| 874 | The user should set the environment variable
|
|---|
| 875 | <emphasis role="bold">G4LEDATA</emphasis> to the
|
|---|
| 876 | directory where he/she has copied the files.
|
|---|
| 877 | </para>
|
|---|
| 878 |
|
|---|
| 879 | <para>
|
|---|
| 880 | <emphasis role="bold">Options</emphasis> are available for low energy electromagnetic
|
|---|
| 881 | processes for hadrons and ions in terms of public member functions
|
|---|
| 882 | of the G4hLowEnergyIonisation class:
|
|---|
| 883 |
|
|---|
| 884 | <itemizedlist spacing="compact">
|
|---|
| 885 | <listitem><para>
|
|---|
| 886 | SetHighEnergyForProtonParametrisation(G4double)
|
|---|
| 887 | </para></listitem>
|
|---|
| 888 | <listitem><para>
|
|---|
| 889 | SetLowEnergyForProtonParametrisation(G4double)
|
|---|
| 890 | </para></listitem>
|
|---|
| 891 | <listitem><para>
|
|---|
| 892 | SetHighEnergyForAntiProtonParametrisation(G4double)
|
|---|
| 893 | </para></listitem>
|
|---|
| 894 | <listitem><para>
|
|---|
| 895 | SetLowEnergyForAntiProtonParametrisation(G4double)
|
|---|
| 896 | </para></listitem>
|
|---|
| 897 | <listitem><para>
|
|---|
| 898 | SetElectronicStoppingPowerModel(const G4ParticleDefinition*,const G4String& )
|
|---|
| 899 | </para></listitem>
|
|---|
| 900 | <listitem><para>
|
|---|
| 901 | SetNuclearStoppingPowerModel(const G4String&)
|
|---|
| 902 | </para></listitem>
|
|---|
| 903 | <listitem><para>
|
|---|
| 904 | SetNuclearStoppingOn()
|
|---|
| 905 | </para></listitem>
|
|---|
| 906 | <listitem><para>
|
|---|
| 907 | SetNuclearStoppingOff()
|
|---|
| 908 | </para></listitem>
|
|---|
| 909 | <listitem><para>
|
|---|
| 910 | SetBarkasOn()
|
|---|
| 911 | </para></listitem>
|
|---|
| 912 | <listitem><para>
|
|---|
| 913 | SetBarkasOff()
|
|---|
| 914 | </para></listitem>
|
|---|
| 915 | <listitem><para>
|
|---|
| 916 | SetFluorescence(const G4bool)
|
|---|
| 917 | </para></listitem>
|
|---|
| 918 | <listitem><para>
|
|---|
| 919 | ActivateAugerElectronProduction(G4bool)
|
|---|
| 920 | </para></listitem>
|
|---|
| 921 | <listitem><para>
|
|---|
| 922 | SetCutForSecondaryPhotons(G4double)
|
|---|
| 923 | </para></listitem>
|
|---|
| 924 | <listitem><para>
|
|---|
| 925 | SetCutForSecondaryElectrons(G4double)
|
|---|
| 926 | </para></listitem>
|
|---|
| 927 | </itemizedlist>
|
|---|
| 928 | </para>
|
|---|
| 929 |
|
|---|
| 930 | <para>
|
|---|
| 931 | <emphasis role="bold">Options</emphasis> are available for low energy electromagnetic
|
|---|
| 932 | processes for electrons in the G4LowEnergyIonisation class:
|
|---|
| 933 |
|
|---|
| 934 | <itemizedlist spacing="compact">
|
|---|
| 935 | <listitem><para>
|
|---|
| 936 | ActivateAuger(G4bool)
|
|---|
| 937 | </para></listitem>
|
|---|
| 938 | <listitem><para>
|
|---|
| 939 | SetCutForLowEnSecPhotons(G4double)
|
|---|
| 940 | </para></listitem>
|
|---|
| 941 | <listitem><para>
|
|---|
| 942 | SetCutForLowEnSecElectrons(G4double)
|
|---|
| 943 | </para></listitem>
|
|---|
| 944 | </itemizedlist>
|
|---|
| 945 | </para>
|
|---|
| 946 |
|
|---|
| 947 | <para>
|
|---|
| 948 | <emphasis role="bold">Options</emphasis> are available for low energy electromagnetic
|
|---|
| 949 | processes for electrons/positrons in the G4LowEnergyBremsstrahlung
|
|---|
| 950 | class, that allow the use of alternative bremsstrahlung angular
|
|---|
| 951 | generators:
|
|---|
| 952 |
|
|---|
| 953 | <itemizedlist spacing="compact">
|
|---|
| 954 | <listitem><para>
|
|---|
| 955 | SetAngularGenerator(G4VBremAngularDistribution* distribution);
|
|---|
| 956 | </para></listitem>
|
|---|
| 957 | <listitem><para>
|
|---|
| 958 | SetAngularGenerator(const G4String& name);
|
|---|
| 959 | </para></listitem>
|
|---|
| 960 | </itemizedlist>
|
|---|
| 961 | </para>
|
|---|
| 962 |
|
|---|
| 963 | <para>
|
|---|
| 964 | Currently three angular generators are available: G4ModifiedTsai,
|
|---|
| 965 | 2BNGenerator and 2BSGenerator. G4ModifiedTsai is set by default,
|
|---|
| 966 | but it can be forced using the string "tsai". 2BNGenerator and
|
|---|
| 967 | 2BSGenerator can be set using the strings "2bs" and "2bn".
|
|---|
| 968 | Information regarding conditions of use, performance and energy
|
|---|
| 969 | limits of different models are available in the
|
|---|
| 970 | <ulink url="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html">
|
|---|
| 971 | Physics Reference Manual
|
|---|
| 972 | </ulink>.
|
|---|
| 973 | </para>
|
|---|
| 974 |
|
|---|
| 975 | <para>
|
|---|
| 976 | Other <emphasis role="bold">options</emphasis> G4LowEnergyBremsstrahlung class are:
|
|---|
| 977 |
|
|---|
| 978 | <itemizedlist spacing="compact">
|
|---|
| 979 | <listitem><para>
|
|---|
| 980 | SetCutForLowEnSecPhotons(G4double)
|
|---|
| 981 | </para></listitem>
|
|---|
| 982 | </itemizedlist>
|
|---|
| 983 | </para>
|
|---|
| 984 |
|
|---|
| 985 | <para>
|
|---|
| 986 | <emphasis role="bold">Options</emphasis> can also be set in the G4LowEnergyPhotoElectric
|
|---|
| 987 | class, that allow the use of alternative photoelectron angular
|
|---|
| 988 | generators:
|
|---|
| 989 |
|
|---|
| 990 | <itemizedlist spacing="compact">
|
|---|
| 991 | <listitem><para>
|
|---|
| 992 | SetAngularGenerator(G4VPhotoElectricAngularDistribution* distribution);
|
|---|
| 993 | </para></listitem>
|
|---|
| 994 | <listitem><para>
|
|---|
| 995 | SetAngularGenerator(const G4String& name);
|
|---|
| 996 | </para></listitem>
|
|---|
| 997 | <listitem><para>
|
|---|
| 998 |
|
|---|
| 999 | </para></listitem>
|
|---|
| 1000 | <listitem><para>
|
|---|
| 1001 |
|
|---|
| 1002 | </para></listitem>
|
|---|
| 1003 | <listitem><para>
|
|---|
| 1004 |
|
|---|
| 1005 | </para></listitem>
|
|---|
| 1006 | </itemizedlist>
|
|---|
| 1007 | </para>
|
|---|
| 1008 |
|
|---|
| 1009 | <para>
|
|---|
| 1010 | Currently three angular generators are available:
|
|---|
| 1011 | G4PhotoElectricAngularGeneratorSimple,
|
|---|
| 1012 | G4PhotoElectricAngularGeneratorSauterGavrilla and
|
|---|
| 1013 | G4PhotoElectricAngularGeneratorPolarized.
|
|---|
| 1014 | G4PhotoElectricAngularGeneratorSimple is set by default, but it can
|
|---|
| 1015 | be forced using the string "default".
|
|---|
| 1016 | G4PhotoElectricAngularGeneratorSauterGavrilla and
|
|---|
| 1017 | G4PhotoElectricAngularGeneratorPolarized can be set using the
|
|---|
| 1018 | strings "standard" and "polarized".
|
|---|
| 1019 | </para>
|
|---|
| 1020 |
|
|---|
| 1021 | </sect3>
|
|---|
| 1022 |
|
|---|
| 1023 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 1024 | <sect3 id="sect.PhysProc.EleMag.VeryLowE">
|
|---|
| 1025 | <title>
|
|---|
| 1026 | Very Low energy Electromagnetic Processes (Geant4-DNA extension)
|
|---|
| 1027 | </title>
|
|---|
| 1028 |
|
|---|
| 1029 | <para>
|
|---|
| 1030 | Geant4 low energy electromagnetic Physics processes have been extended down
|
|---|
| 1031 | to energies of a few electronVolts suitable for the simulation of radiation
|
|---|
| 1032 | effects in liquid water for applications at the cellular and sub-cellular
|
|---|
| 1033 | level. These developments take place in the framework of the Geant4-DNA
|
|---|
| 1034 | project and are described in the paper
|
|---|
| 1035 | <citation>
|
|---|
| 1036 | <xref linkend="biblio.chauvie2007" endterm="biblio.chauvie2007.abbrev" />
|
|---|
| 1037 | </citation>.
|
|---|
| 1038 | </para>
|
|---|
| 1039 |
|
|---|
| 1040 | <para>
|
|---|
| 1041 | Their implementation in Geant4 is based on the usage of innovative techniques
|
|---|
| 1042 | first introduced in Monte Carlo simulation (policy-based class design), to
|
|---|
| 1043 | ensure openness to future extension and evolution as well as flexibility of
|
|---|
| 1044 | configuration in user applications. In this new design, a generic Geant4-DNA
|
|---|
| 1045 | physics process is configured by template specialization in order to acquire
|
|---|
| 1046 | physical properties (cross section, final state), using policy classes :
|
|---|
| 1047 | a Cross Section policy class and a Final State policy class.
|
|---|
| 1048 | </para>
|
|---|
| 1049 |
|
|---|
| 1050 | <para>
|
|---|
| 1051 | These processes apply to electrons, protons, hydrogen, alpha particles and
|
|---|
| 1052 | their charge states.
|
|---|
| 1053 | </para>
|
|---|
| 1054 |
|
|---|
| 1055 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1056 | <bridgehead renderas='sect4'>
|
|---|
| 1057 | Electron processes
|
|---|
| 1058 | </bridgehead>
|
|---|
| 1059 | <para>
|
|---|
| 1060 | <itemizedlist spacing="compact">
|
|---|
| 1061 | <listitem><para>
|
|---|
| 1062 | Elastic scattering (two complementary models available depending on energy range, and one alternative model)
|
|---|
| 1063 | <itemizedlist spacing="compact">
|
|---|
| 1064 | <listitem><para>
|
|---|
| 1065 | - 1) either : cross section policy class names : G4CrossSectionElasticScreenedRutherfordLE (below 200 eV)
|
|---|
| 1066 | and G4CrossSectionElasticScreenedRutherfordHE (above 200 eV). Both should be used together.
|
|---|
| 1067 | - 2) or : cross section policy class name : G4CrossSectionElasticChampion.
|
|---|
| 1068 | </para></listitem>
|
|---|
| 1069 | <listitem><para>
|
|---|
| 1070 | - 1) either : final state policy class names : G4FinalStateElasticBrennerZaider (corresponding to G4CrossSectionElasticScreenedRutherfordLE)
|
|---|
| 1071 | and G4CrossSectionElasticScreenedRutherfordLE (corresponding to G4CrossSectionElasticScreenedRutherfordHE).
|
|---|
| 1072 | - 2) or final state policy class name : G4FinalStateElasticChampion (corresponding to G4CrossSectionElasticChampion).
|
|---|
| 1073 | </para></listitem>
|
|---|
| 1074 | </itemizedlist>
|
|---|
| 1075 | </para></listitem>
|
|---|
| 1076 | <listitem><para>
|
|---|
| 1077 | Excitation (one model)
|
|---|
| 1078 | <itemizedlist spacing="compact">
|
|---|
| 1079 | <listitem><para>
|
|---|
| 1080 | Cross section policy class name : G4CrossSectionExcitationEmfietzoglou
|
|---|
| 1081 | </para></listitem>
|
|---|
| 1082 | <listitem><para>
|
|---|
| 1083 | Final state policy class name : G4FinalStateExcitationEmfietzoglou
|
|---|
| 1084 | </para></listitem>
|
|---|
| 1085 | </itemizedlist>
|
|---|
| 1086 | </para></listitem>
|
|---|
| 1087 | <listitem><para>
|
|---|
| 1088 | Ionisation (one model)
|
|---|
| 1089 | <itemizedlist spacing="compact">
|
|---|
| 1090 | <listitem><para>
|
|---|
| 1091 | Cross section policy class name : G4CrossSectionIonisationBorn
|
|---|
| 1092 | </para></listitem>
|
|---|
| 1093 | <listitem><para>
|
|---|
| 1094 | Final state policy class names : G4FinalStateIonisationBorn
|
|---|
| 1095 | </para></listitem>
|
|---|
| 1096 | </itemizedlist>
|
|---|
| 1097 | </para></listitem>
|
|---|
| 1098 | </itemizedlist>
|
|---|
| 1099 | </para>
|
|---|
| 1100 |
|
|---|
| 1101 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1102 | <bridgehead renderas='sect4'>
|
|---|
| 1103 | Proton processes
|
|---|
| 1104 | </bridgehead>
|
|---|
| 1105 | <para>
|
|---|
| 1106 | <itemizedlist spacing="compact">
|
|---|
| 1107 | <listitem><para>
|
|---|
| 1108 | Excitation (two complementary models available depending on energy range)
|
|---|
| 1109 | <itemizedlist spacing="compact">
|
|---|
| 1110 | <listitem><para>
|
|---|
| 1111 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 1112 | </para></listitem>
|
|---|
| 1113 | <listitem><para>
|
|---|
| 1114 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 1115 | </para></listitem>
|
|---|
| 1116 | <listitem><para>
|
|---|
| 1117 | Cross section policy class name : G4CrossSectionExcitationBorn
|
|---|
| 1118 | </para></listitem>
|
|---|
| 1119 | <listitem><para>
|
|---|
| 1120 | Final state policy class name : G4FinalStateExcitationBorn
|
|---|
| 1121 | </para></listitem>
|
|---|
| 1122 | </itemizedlist>
|
|---|
| 1123 | </para></listitem>
|
|---|
| 1124 | <listitem><para>
|
|---|
| 1125 | Ionisation (two complementary models available depending on energy range)
|
|---|
| 1126 | <itemizedlist spacing="compact">
|
|---|
| 1127 | <listitem><para>
|
|---|
| 1128 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 1129 | </para></listitem>
|
|---|
| 1130 | <listitem><para>
|
|---|
| 1131 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 1132 | </para></listitem>
|
|---|
| 1133 | <listitem><para>
|
|---|
| 1134 | Cross section policy class name : G4CrossSectionIonisationBorn
|
|---|
| 1135 | </para></listitem>
|
|---|
| 1136 | <listitem><para>
|
|---|
| 1137 | Final state policy class name : G4FinalStateIonisationBorn
|
|---|
| 1138 | </para></listitem>
|
|---|
| 1139 | </itemizedlist>
|
|---|
| 1140 | </para></listitem>
|
|---|
| 1141 | <listitem><para>
|
|---|
| 1142 | Charge decrease (one model)
|
|---|
| 1143 | <itemizedlist spacing="compact">
|
|---|
| 1144 | <listitem><para>
|
|---|
| 1145 | Cross section policy class name : G4CrossSectionChargeDecrease
|
|---|
| 1146 | </para></listitem>
|
|---|
| 1147 | <listitem><para>
|
|---|
| 1148 | Final state policy class name : G4FinalStateChargeDecrease
|
|---|
| 1149 | </para></listitem>
|
|---|
| 1150 | </itemizedlist>
|
|---|
| 1151 | </para></listitem>
|
|---|
| 1152 | </itemizedlist>
|
|---|
| 1153 | </para>
|
|---|
| 1154 |
|
|---|
| 1155 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1156 | <bridgehead renderas='sect4'>
|
|---|
| 1157 | Hydrogen processes
|
|---|
| 1158 | </bridgehead>
|
|---|
| 1159 | <para>
|
|---|
| 1160 | <itemizedlist spacing="compact">
|
|---|
| 1161 | <listitem><para>
|
|---|
| 1162 | Ionisation (one model)
|
|---|
| 1163 | <itemizedlist spacing="compact">
|
|---|
| 1164 | <listitem><para>
|
|---|
| 1165 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 1166 | </para></listitem>
|
|---|
| 1167 | <listitem><para>
|
|---|
| 1168 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 1169 | </para></listitem>
|
|---|
| 1170 | </itemizedlist>
|
|---|
| 1171 | </para></listitem>
|
|---|
| 1172 | <listitem><para>
|
|---|
| 1173 | Charge increase (one model)
|
|---|
| 1174 | <itemizedlist spacing="compact">
|
|---|
| 1175 | <listitem><para>
|
|---|
| 1176 | Cross section policy class name : G4CrossSectionChargeIncrease
|
|---|
| 1177 | </para></listitem>
|
|---|
| 1178 | <listitem><para>
|
|---|
| 1179 | Final state policy class name : G4FinalStateChargeIncrease
|
|---|
| 1180 | </para></listitem>
|
|---|
| 1181 | </itemizedlist>
|
|---|
| 1182 | </para></listitem>
|
|---|
| 1183 | </itemizedlist>
|
|---|
| 1184 | </para>
|
|---|
| 1185 |
|
|---|
| 1186 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1187 | <bridgehead renderas='sect4'>
|
|---|
| 1188 | Helium (neutral) processes
|
|---|
| 1189 | </bridgehead>
|
|---|
| 1190 | <para>
|
|---|
| 1191 | <itemizedlist spacing="compact">
|
|---|
| 1192 | <listitem><para>
|
|---|
| 1193 | Excitation (one model)
|
|---|
| 1194 | <itemizedlist spacing="compact">
|
|---|
| 1195 | <listitem><para>
|
|---|
| 1196 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 1197 | </para></listitem>
|
|---|
| 1198 | <listitem><para>
|
|---|
| 1199 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 1200 | </para></listitem>
|
|---|
| 1201 | </itemizedlist>
|
|---|
| 1202 | </para></listitem>
|
|---|
| 1203 | <listitem><para>
|
|---|
| 1204 | Ionisation (one model)
|
|---|
| 1205 | <itemizedlist spacing="compact">
|
|---|
| 1206 | <listitem><para>
|
|---|
| 1207 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 1208 | </para></listitem>
|
|---|
| 1209 | <listitem><para>
|
|---|
| 1210 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 1211 | </para></listitem>
|
|---|
| 1212 | </itemizedlist>
|
|---|
| 1213 | </para></listitem>
|
|---|
| 1214 | <listitem><para>
|
|---|
| 1215 | Charge increase (one model)
|
|---|
| 1216 | <itemizedlist spacing="compact">
|
|---|
| 1217 | <listitem><para>
|
|---|
| 1218 | Cross section policy class name : G4CrossSectionChargeIncrease
|
|---|
| 1219 | </para></listitem>
|
|---|
| 1220 | <listitem><para>
|
|---|
| 1221 | Final state policy class name : G4FinalStateChargeIncrease
|
|---|
| 1222 | </para></listitem>
|
|---|
| 1223 | </itemizedlist>
|
|---|
| 1224 | </para></listitem>
|
|---|
| 1225 | </itemizedlist>
|
|---|
| 1226 | </para>
|
|---|
| 1227 |
|
|---|
| 1228 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1229 | <bridgehead renderas='sect4'>
|
|---|
| 1230 | Helium+ (ionized once) processes
|
|---|
| 1231 | </bridgehead>
|
|---|
| 1232 | <para>
|
|---|
| 1233 | <itemizedlist spacing="compact">
|
|---|
| 1234 | <listitem><para>
|
|---|
| 1235 | Excitation (one model)
|
|---|
| 1236 | <itemizedlist spacing="compact">
|
|---|
| 1237 | <listitem><para>
|
|---|
| 1238 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 1239 | </para></listitem>
|
|---|
| 1240 | <listitem><para>
|
|---|
| 1241 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 1242 | </para></listitem>
|
|---|
| 1243 | </itemizedlist>
|
|---|
| 1244 | </para></listitem>
|
|---|
| 1245 | <listitem><para>
|
|---|
| 1246 | Ionisation (one model)
|
|---|
| 1247 | <itemizedlist spacing="compact">
|
|---|
| 1248 | <listitem><para>
|
|---|
| 1249 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 1250 | </para></listitem>
|
|---|
| 1251 | <listitem><para>
|
|---|
| 1252 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 1253 | </para></listitem>
|
|---|
| 1254 | </itemizedlist>
|
|---|
| 1255 | </para></listitem>
|
|---|
| 1256 | <listitem><para>
|
|---|
| 1257 | Charge increase (one model)
|
|---|
| 1258 | <itemizedlist spacing="compact">
|
|---|
| 1259 | <listitem><para>
|
|---|
| 1260 | Cross section policy class name : G4CrossSectionChargeIncrease
|
|---|
| 1261 | </para></listitem>
|
|---|
| 1262 | <listitem><para>
|
|---|
| 1263 | Final state policy class name : G4FinalStateChargeIncrease
|
|---|
| 1264 | </para></listitem>
|
|---|
| 1265 | </itemizedlist>
|
|---|
| 1266 | </para></listitem>
|
|---|
| 1267 | <listitem><para>
|
|---|
| 1268 | Charge decrease (one model)
|
|---|
| 1269 | <itemizedlist spacing="compact">
|
|---|
| 1270 | <listitem><para>
|
|---|
| 1271 | Cross section policy class name : G4CrossSectionChargeDecrease
|
|---|
| 1272 | </para></listitem>
|
|---|
| 1273 | <listitem><para>
|
|---|
| 1274 | Final state policy class name : G4FinalStateChargeDecrease
|
|---|
| 1275 | </para></listitem>
|
|---|
| 1276 | </itemizedlist>
|
|---|
| 1277 | </para></listitem>
|
|---|
| 1278 | </itemizedlist>
|
|---|
| 1279 | </para>
|
|---|
| 1280 |
|
|---|
| 1281 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1282 | <bridgehead renderas='sect4'>
|
|---|
| 1283 | Helium++ (ionised twice) processes
|
|---|
| 1284 | </bridgehead>
|
|---|
| 1285 | <para>
|
|---|
| 1286 | <itemizedlist spacing="compact">
|
|---|
| 1287 | <listitem><para>
|
|---|
| 1288 | Excitation (one model)
|
|---|
| 1289 | <itemizedlist spacing="compact">
|
|---|
| 1290 | <listitem><para>
|
|---|
| 1291 | Cross section policy class name : G4CrossSectionExcitationMillerGreen
|
|---|
| 1292 | </para></listitem>
|
|---|
| 1293 | <listitem><para>
|
|---|
| 1294 | Final state policy class name : G4FinalStateExcitationMillerGreen
|
|---|
| 1295 | </para></listitem>
|
|---|
| 1296 | </itemizedlist>
|
|---|
| 1297 | </para></listitem>
|
|---|
| 1298 | <listitem><para>
|
|---|
| 1299 | Ionisation (one model)
|
|---|
| 1300 | <itemizedlist spacing="compact">
|
|---|
| 1301 | <listitem><para>
|
|---|
| 1302 | Cross section policy class name : G4CrossSectionIonisationRudd
|
|---|
| 1303 | </para></listitem>
|
|---|
| 1304 | <listitem><para>
|
|---|
| 1305 | Final state policy class name : G4FinalStateIonisationRudd
|
|---|
| 1306 | </para></listitem>
|
|---|
| 1307 | </itemizedlist>
|
|---|
| 1308 | </para></listitem>
|
|---|
| 1309 | <listitem><para>
|
|---|
| 1310 | Charge decrease (one model)
|
|---|
| 1311 | <itemizedlist spacing="compact">
|
|---|
| 1312 | <listitem><para>
|
|---|
| 1313 | Cross section policy class name : G4CrossSectionChargeDecrease
|
|---|
| 1314 | </para></listitem>
|
|---|
| 1315 | <listitem><para>
|
|---|
| 1316 | Final state policy class name : G4FinalStateChargeDecrease
|
|---|
| 1317 | </para></listitem>
|
|---|
| 1318 | </itemizedlist>
|
|---|
| 1319 | </para></listitem>
|
|---|
| 1320 | </itemizedlist>
|
|---|
| 1321 | </para>
|
|---|
| 1322 |
|
|---|
| 1323 | <para>
|
|---|
| 1324 | An example of the registration of these processes in a physics list is given here below :
|
|---|
| 1325 |
|
|---|
| 1326 | <informalexample>
|
|---|
| 1327 | <programlisting>
|
|---|
| 1328 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1329 |
|
|---|
| 1330 | // Geant4 DNA header files
|
|---|
| 1331 |
|
|---|
| 1332 | #include "G4DNAGenericIonsManager.hh"
|
|---|
| 1333 | #include "G4FinalStateProduct.hh"
|
|---|
| 1334 | #include "G4DNAProcess.hh"
|
|---|
| 1335 |
|
|---|
| 1336 | #include "G4CrossSectionExcitationEmfietzoglou.hh"
|
|---|
| 1337 | #include "G4FinalStateExcitationEmfietzoglou.hh"
|
|---|
| 1338 |
|
|---|
| 1339 | #include "G4CrossSectionElasticScreenedRutherfordLE.hh"
|
|---|
| 1340 | #include "G4FinalStateElasticBrennerZaider.hh"
|
|---|
| 1341 |
|
|---|
| 1342 | #include "G4CrossSectionElasticScreenedRutherfordHE.hh"
|
|---|
| 1343 | #include "G4FinalStateElasticScreenedRutherford.hh"
|
|---|
| 1344 |
|
|---|
| 1345 | #include "G4CrossSectionElasticChampion.hh"
|
|---|
| 1346 | #include "G4FinalStateElasticChampion.hh"
|
|---|
| 1347 |
|
|---|
| 1348 | #include "G4CrossSectionExcitationBorn.hh"
|
|---|
| 1349 | #include "G4FinalStateExcitationBorn.hh"
|
|---|
| 1350 |
|
|---|
| 1351 | #include "G4CrossSectionIonisationBorn.hh"
|
|---|
| 1352 | #include "G4FinalStateIonisationBorn.hh"
|
|---|
| 1353 |
|
|---|
| 1354 | #include "G4CrossSectionIonisationRudd.hh"
|
|---|
| 1355 | #include "G4FinalStateIonisationRudd.hh"
|
|---|
| 1356 |
|
|---|
| 1357 | #include "G4CrossSectionExcitationMillerGreen.hh"
|
|---|
| 1358 | #include "G4FinalStateExcitationMillerGreen.hh"
|
|---|
| 1359 |
|
|---|
| 1360 | #include "G4CrossSectionChargeDecrease.hh"
|
|---|
| 1361 | #include "G4FinalStateChargeDecrease.hh"
|
|---|
| 1362 |
|
|---|
| 1363 | #include "G4CrossSectionChargeIncrease.hh"
|
|---|
| 1364 | #include "G4FinalStateChargeIncrease.hh"
|
|---|
| 1365 |
|
|---|
| 1366 | // Processes definition
|
|---|
| 1367 |
|
|---|
| 1368 | typedef G4DNAProcess<G4CrossSectionElasticScreenedRutherfordLE,G4FinalStateElasticBrennerZaider>
|
|---|
| 1369 | ElasticScreenedRutherfordLE;
|
|---|
| 1370 | typedef G4DNAProcess<G4CrossSectionElasticScreenedRutherfordHE,G4FinalStateElasticScreenedRutherford>
|
|---|
| 1371 | ElasticScreenedRutherfordHE;
|
|---|
| 1372 | typedef G4DNAProcess<G4CrossSectionElasticChampion,G4FinalStateElasticChampion>
|
|---|
| 1373 | ElasticChampion;
|
|---|
| 1374 | typedef G4DNAProcess<G4CrossSectionExcitationEmfietzoglou,G4FinalStateExcitationEmfietzoglou>
|
|---|
| 1375 | ExcitationEmfietzoglou;
|
|---|
| 1376 | typedef G4DNAProcess<G4CrossSectionExcitationBorn,G4FinalStateExcitationBorn>
|
|---|
| 1377 | ExcitationBorn;
|
|---|
| 1378 | typedef G4DNAProcess<G4CrossSectionIonisationBorn,G4FinalStateIonisationBorn>
|
|---|
| 1379 | IonisationBorn;
|
|---|
| 1380 | typedef G4DNAProcess<G4CrossSectionIonisationRudd,G4FinalStateIonisationRudd>
|
|---|
| 1381 | IonisationRudd;
|
|---|
| 1382 | typedef G4DNAProcess<G4CrossSectionExcitationMillerGreen,G4FinalStateExcitationMillerGreen>
|
|---|
| 1383 | ExcitationMillerGreen;
|
|---|
| 1384 | typedef G4DNAProcess<G4CrossSectionChargeDecrease,G4FinalStateChargeDecrease>
|
|---|
| 1385 | ChargeDecrease;
|
|---|
| 1386 | typedef G4DNAProcess<G4CrossSectionChargeIncrease,G4FinalStateChargeIncrease>
|
|---|
| 1387 | ChargeIncrease;
|
|---|
| 1388 |
|
|---|
| 1389 | // Processes registration
|
|---|
| 1390 |
|
|---|
| 1391 | void MicrodosimetryPhysicsList::ConstructEM()
|
|---|
| 1392 | {
|
|---|
| 1393 | theParticleIterator->reset();
|
|---|
| 1394 |
|
|---|
| 1395 | while( (*theParticleIterator)() ){
|
|---|
| 1396 |
|
|---|
| 1397 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 1398 | G4ProcessManager* processManager = particle->GetProcessManager();
|
|---|
| 1399 | G4String particleName = particle->GetParticleName();
|
|---|
| 1400 |
|
|---|
| 1401 | if (particleName == "e-") {
|
|---|
| 1402 | processManager->AddDiscreteProcess(new ExcitationEmfietzoglou("ExcitationEmfietzoglou"));
|
|---|
| 1403 |
|
|---|
| 1404 | // The two following elastic scattering models should be registered together
|
|---|
| 1405 | processManager->AddDiscreteProcess(new ElasticScreenedRutherfordLE("ElasticScreenedRutherfordLE"));
|
|---|
| 1406 | processManager->AddDiscreteProcess(new ElasticScreenedRutherfordHE("ElasticScreenedRutherfordHE"));
|
|---|
| 1407 |
|
|---|
| 1408 | // The following process is commented here because it is ALTERNATIVE to ElasticScreenedRutherfordLE and ElasticScreenedRutherfordHE
|
|---|
| 1409 | // It should NOT be registered simultaneously with ElasticScreenedRutherfordLE and ElasticScreenedRutherfordHE
|
|---|
| 1410 | // processManager->AddDiscreteProcess(new ElasticChampion("ElasticChampion"));
|
|---|
| 1411 |
|
|---|
| 1412 | processManager->AddDiscreteProcess(new IonisationBorn("IonisationBorn"));
|
|---|
| 1413 |
|
|---|
| 1414 | } else if ( particleName == "proton" ) {
|
|---|
| 1415 | processManager->AddDiscreteProcess(new ExcitationMillerGreen("ExcitationMillerGreen"));
|
|---|
| 1416 | processManager->AddDiscreteProcess(new ExcitationBorn("ExcitationBorn"));
|
|---|
| 1417 | processManager->AddDiscreteProcess(new IonisationRudd("IonisationRudd"));
|
|---|
| 1418 | processManager->AddDiscreteProcess(new IonisationBorn("IonisationBorn"));
|
|---|
| 1419 | processManager->AddDiscreteProcess(new ChargeDecrease("ChargeDecrease"));
|
|---|
| 1420 |
|
|---|
| 1421 | } else if ( particleName == "hydrogen" ) {
|
|---|
| 1422 | processManager->AddDiscreteProcess(new IonisationRudd("IonisationRudd"));
|
|---|
| 1423 | processManager->AddDiscreteProcess(new ChargeIncrease("ChargeIncrease"));
|
|---|
| 1424 |
|
|---|
| 1425 | } else if ( particleName == "alpha" ) {
|
|---|
| 1426 | processManager->AddDiscreteProcess(new ExcitationMillerGreen("ExcitationMillerGreen"));
|
|---|
| 1427 | processManager->AddDiscreteProcess(new IonisationRudd("IonisationRudd"));
|
|---|
| 1428 | processManager->AddDiscreteProcess(new ChargeDecrease("ChargeDecrease"));
|
|---|
| 1429 |
|
|---|
| 1430 | } else if ( particleName == "alpha+" ) {
|
|---|
| 1431 | processManager->AddDiscreteProcess(new ExcitationMillerGreen("ExcitationMillerGreen"));
|
|---|
| 1432 | processManager->AddDiscreteProcess(new IonisationRudd("IonisationRudd"));
|
|---|
| 1433 | processManager->AddDiscreteProcess(new ChargeDecrease("ChargeDecrease"));
|
|---|
| 1434 | processManager->AddDiscreteProcess(new ChargeIncrease("ChargeIncrease"));
|
|---|
| 1435 |
|
|---|
| 1436 | } else if ( particleName == "helium" ) {
|
|---|
| 1437 | processManager->AddDiscreteProcess(new ExcitationMillerGreen("ExcitationMillerGreen"));
|
|---|
| 1438 | processManager->AddDiscreteProcess(new IonisationRudd("IonisationRudd"));
|
|---|
| 1439 | processManager->AddDiscreteProcess(new ChargeIncrease("ChargeIncrease"));
|
|---|
| 1440 | }
|
|---|
| 1441 |
|
|---|
| 1442 | }
|
|---|
| 1443 | }
|
|---|
| 1444 |
|
|---|
| 1445 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1446 | </programlisting>
|
|---|
| 1447 | </informalexample>
|
|---|
| 1448 | </para>
|
|---|
| 1449 |
|
|---|
| 1450 | <para>
|
|---|
| 1451 | Note that in the above example, "alpha" particles are helium atoms ionised
|
|---|
| 1452 | twice and "helium" particles are neutral helium atoms. The definition of
|
|---|
| 1453 | particles in the physics list may be for example implemented as follows :
|
|---|
| 1454 |
|
|---|
| 1455 | <informalexample>
|
|---|
| 1456 | <programlisting>
|
|---|
| 1457 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1458 |
|
|---|
| 1459 | #include "G4DNAGenericIonsManager.hh"
|
|---|
| 1460 |
|
|---|
| 1461 | void MicrodosimetryPhysicsList::ConstructBaryons()
|
|---|
| 1462 | {
|
|---|
| 1463 | // construct baryons ---
|
|---|
| 1464 |
|
|---|
| 1465 | // Geant4 DNA particles
|
|---|
| 1466 |
|
|---|
| 1467 | G4DNAGenericIonsManager * genericIonsManager;
|
|---|
| 1468 | genericIonsManager=G4DNAGenericIonsManager::Instance();
|
|---|
| 1469 | genericIonsManager->GetIon("alpha++");
|
|---|
| 1470 | genericIonsManager->GetIon("alpha+");
|
|---|
| 1471 | genericIonsManager->GetIon("helium");
|
|---|
| 1472 | genericIonsManager->GetIon("hydrogen");
|
|---|
| 1473 |
|
|---|
| 1474 | }
|
|---|
| 1475 |
|
|---|
| 1476 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
|
|---|
| 1477 | </programlisting>
|
|---|
| 1478 | </informalexample>
|
|---|
| 1479 | </para>
|
|---|
| 1480 |
|
|---|
| 1481 | <para>
|
|---|
| 1482 | To run the Geant4 DNA extension, data files need to be copied by the user to
|
|---|
| 1483 | his/her code repository. These files are distributed together with the Geant4 release.
|
|---|
| 1484 | </para>
|
|---|
| 1485 |
|
|---|
| 1486 | <para>
|
|---|
| 1487 | The user should set the environment variable G4LEDATA to the directory where
|
|---|
| 1488 | he/she has copied the files.
|
|---|
| 1489 | </para>
|
|---|
| 1490 |
|
|---|
| 1491 | </sect3>
|
|---|
| 1492 | </sect2>
|
|---|
| 1493 |
|
|---|
| 1494 |
|
|---|
| 1495 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 1496 | <sect2 id="sect.PhysProc.Had">
|
|---|
| 1497 | <title>
|
|---|
| 1498 | Hadronic Interactions
|
|---|
| 1499 | </title>
|
|---|
| 1500 |
|
|---|
| 1501 | <para>
|
|---|
| 1502 | This section briefly introduces the hadronic physics processes
|
|---|
| 1503 | installed in Geant4. For details of the implementation of hadronic
|
|---|
| 1504 | interactions available in Geant4, please refer to the
|
|---|
| 1505 | <ulink url="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html">
|
|---|
| 1506 | <emphasis role="bold">Physics Reference Manual</emphasis></ulink>.
|
|---|
| 1507 | </para>
|
|---|
| 1508 |
|
|---|
| 1509 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 1510 | <sect3 id="sect.PhysProc.Had.TreatCross">
|
|---|
| 1511 | <title>
|
|---|
| 1512 | Treatment of Cross Sections
|
|---|
| 1513 | </title>
|
|---|
| 1514 |
|
|---|
| 1515 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1516 | <bridgehead renderas='sect4'>
|
|---|
| 1517 | Cross section data sets
|
|---|
| 1518 | </bridgehead>
|
|---|
| 1519 |
|
|---|
| 1520 | <para>
|
|---|
| 1521 | Each hadronic process object (derived from
|
|---|
| 1522 | <emphasis>G4HadronicProcess</emphasis>) may have one or more cross section data
|
|---|
| 1523 | sets associated with it. The term "data set" is meant, in a broad
|
|---|
| 1524 | sense, to be an object that encapsulates methods and data for
|
|---|
| 1525 | calculating total cross sections for a given process. The methods
|
|---|
| 1526 | and data may take many forms, from a simple equation using a few
|
|---|
| 1527 | hard-wired numbers to a sophisticated parameterisation using large
|
|---|
| 1528 | data tables. Cross section data sets are derived from the abstract
|
|---|
| 1529 | class <emphasis>G4VCrossSectionDataSet</emphasis>, and are required to implement
|
|---|
| 1530 | the following methods:
|
|---|
| 1531 |
|
|---|
| 1532 | <informalexample>
|
|---|
| 1533 | <programlisting>
|
|---|
| 1534 | G4bool IsApplicable( const G4DynamicParticle*, const G4Element* )
|
|---|
| 1535 | </programlisting>
|
|---|
| 1536 | </informalexample>
|
|---|
| 1537 | </para>
|
|---|
| 1538 |
|
|---|
| 1539 | <para>
|
|---|
| 1540 | This method must return <literal>True</literal> if the data set is able to
|
|---|
| 1541 | calculate a total cross section for the given particle and
|
|---|
| 1542 | material, and <literal>False</literal> otherwise.
|
|---|
| 1543 |
|
|---|
| 1544 | <informalexample>
|
|---|
| 1545 | <programlisting>
|
|---|
| 1546 | G4double GetCrossSection( const G4DynamicParticle*, const G4Element* )
|
|---|
| 1547 | </programlisting>
|
|---|
| 1548 | </informalexample>
|
|---|
| 1549 | </para>
|
|---|
| 1550 |
|
|---|
| 1551 | <para>
|
|---|
| 1552 | This method, which will be invoked only if <literal>True</literal> was
|
|---|
| 1553 | returned by <literal>IsApplicable</literal>, must return a cross section, in
|
|---|
| 1554 | Geant4 default units, for the given particle and material.
|
|---|
| 1555 |
|
|---|
| 1556 | <informalexample>
|
|---|
| 1557 | <programlisting>
|
|---|
| 1558 | void BuildPhysicsTable( const G4ParticleDefinition& )
|
|---|
| 1559 | </programlisting>
|
|---|
| 1560 | </informalexample>
|
|---|
| 1561 | </para>
|
|---|
| 1562 |
|
|---|
| 1563 | <para>
|
|---|
| 1564 | This method may be invoked to request the data set to recalculate
|
|---|
| 1565 | its internal database or otherwise reset its state after a change
|
|---|
| 1566 | in the cuts or other parameters of the given particle type.
|
|---|
| 1567 |
|
|---|
| 1568 |
|
|---|
| 1569 | <informalexample>
|
|---|
| 1570 | <programlisting>
|
|---|
| 1571 | void DumpPhysicsTable( const G4ParticleDefinition& ) = 0
|
|---|
| 1572 | </programlisting>
|
|---|
| 1573 | </informalexample>
|
|---|
| 1574 | </para>
|
|---|
| 1575 |
|
|---|
| 1576 | <para>
|
|---|
| 1577 | This method may be invoked to request the data set to print its
|
|---|
| 1578 | internal database and/or other state information, for the given
|
|---|
| 1579 | particle type, to the standard output stream.
|
|---|
| 1580 | </para>
|
|---|
| 1581 |
|
|---|
| 1582 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1583 | <bridgehead renderas='sect4'>
|
|---|
| 1584 | Cross section data store
|
|---|
| 1585 | </bridgehead>
|
|---|
| 1586 |
|
|---|
| 1587 | <para>
|
|---|
| 1588 | Cross section data sets are used by the process for the
|
|---|
| 1589 | calculation of the physical interaction length. A given cross
|
|---|
| 1590 | section data set may only apply to a certain energy range, or may
|
|---|
| 1591 | only be able to calculate cross sections for a particular type of
|
|---|
| 1592 | particle. The class <emphasis>G4CrossSectionDataStore</emphasis> has been
|
|---|
| 1593 | provided to allow the user to specify, if desired, a series of data
|
|---|
| 1594 | sets for a process, and to arrange the priority of data sets so
|
|---|
| 1595 | that the appropriate one is used for a given energy range,
|
|---|
| 1596 | particle, and material. It implements the following public
|
|---|
| 1597 | methods:
|
|---|
| 1598 |
|
|---|
| 1599 | <informalexample>
|
|---|
| 1600 | <programlisting>
|
|---|
| 1601 | G4CrossSectionDataStore()
|
|---|
| 1602 |
|
|---|
| 1603 | ~G4CrossSectionDataStore()
|
|---|
| 1604 | </programlisting>
|
|---|
| 1605 | </informalexample>
|
|---|
| 1606 |
|
|---|
| 1607 | and
|
|---|
| 1608 |
|
|---|
| 1609 | <informalexample>
|
|---|
| 1610 | <programlisting>
|
|---|
| 1611 | G4double GetCrossSection( const G4DynamicParticle*, const G4Element* )
|
|---|
| 1612 | </programlisting>
|
|---|
| 1613 | </informalexample>
|
|---|
| 1614 | </para>
|
|---|
| 1615 |
|
|---|
| 1616 | <para>
|
|---|
| 1617 | For a given particle and material, this method returns a cross
|
|---|
| 1618 | section value provided by one of the collection of cross section
|
|---|
| 1619 | data sets listed in the data store object. If there are no known
|
|---|
| 1620 | data sets, a <literal>G4Exception</literal> is thrown and <literal>DBL_MIN</literal> is
|
|---|
| 1621 | returned. Otherwise, each data set in the list is queried, in
|
|---|
| 1622 | reverse list order, by invoking its <literal>IsApplicable</literal> method
|
|---|
| 1623 | for the given particle and material. The first data set object that
|
|---|
| 1624 | responds positively will then be asked to return a cross section
|
|---|
| 1625 | value via its <literal>GetCrossSection</literal> method. If no data set
|
|---|
| 1626 | responds positively, a <literal>G4Exception</literal> is thrown and
|
|---|
| 1627 | <literal>DBL_MIN</literal> is returned.
|
|---|
| 1628 | </para>
|
|---|
| 1629 |
|
|---|
| 1630 | <para>
|
|---|
| 1631 | <informalexample>
|
|---|
| 1632 | <programlisting>
|
|---|
| 1633 | void AddDataSet( G4VCrossSectionDataSet* aDataSet )
|
|---|
| 1634 | </programlisting>
|
|---|
| 1635 | </informalexample>
|
|---|
| 1636 |
|
|---|
| 1637 | This method adds the given cross section data set to the end of the
|
|---|
| 1638 | list of data sets in the data store. For the evaluation of cross
|
|---|
| 1639 | sections, the list has a LIFO (Last In First Out) priority, meaning
|
|---|
| 1640 | that data sets added later to the list will have priority over
|
|---|
| 1641 | those added earlier to the list. Another way of saying this, is
|
|---|
| 1642 | that the data store, when given a <literal>GetCrossSection</literal> request,
|
|---|
| 1643 | does the <literal>IsApplicable</literal> queries in the reverse list order,
|
|---|
| 1644 | starting with the last data set in the list and proceeding to the
|
|---|
| 1645 | first, and the first data set that responds positively is used to
|
|---|
| 1646 | calculate the cross section.
|
|---|
| 1647 | </para>
|
|---|
| 1648 |
|
|---|
| 1649 | <para>
|
|---|
| 1650 | <informalexample>
|
|---|
| 1651 | <programlisting>
|
|---|
| 1652 | void BuildPhysicsTable( const G4ParticleDefinition& aParticleType )
|
|---|
| 1653 | </programlisting>
|
|---|
| 1654 | </informalexample>
|
|---|
| 1655 |
|
|---|
| 1656 | This method may be invoked to indicate to the data store that there
|
|---|
| 1657 | has been a change in the cuts or other parameters of the given
|
|---|
| 1658 | particle type. In response, the data store will invoke the
|
|---|
| 1659 | <literal>BuildPhysicsTable</literal> of each of its data sets.
|
|---|
| 1660 | </para>
|
|---|
| 1661 |
|
|---|
| 1662 | <para>
|
|---|
| 1663 | <informalexample>
|
|---|
| 1664 | <programlisting>
|
|---|
| 1665 | void DumpPhysicsTable( const G4ParticleDefinition& )
|
|---|
| 1666 | </programlisting>
|
|---|
| 1667 | </informalexample>
|
|---|
| 1668 |
|
|---|
| 1669 | This method may be used to request the data store to invoke the
|
|---|
| 1670 | <literal>DumpPhysicsTable</literal> method of each of its data sets.
|
|---|
| 1671 | </para>
|
|---|
| 1672 |
|
|---|
| 1673 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1674 | <bridgehead renderas='sect4'>
|
|---|
| 1675 | Default cross sections
|
|---|
| 1676 | </bridgehead>
|
|---|
| 1677 |
|
|---|
| 1678 | <para>
|
|---|
| 1679 | The defaults for total cross section data and calculations have
|
|---|
| 1680 | been encapsulated in the singleton class
|
|---|
| 1681 | <emphasis>G4HadronCrossSections</emphasis>. Each hadronic process:
|
|---|
| 1682 | <emphasis>G4HadronInelasticProcess</emphasis>,
|
|---|
| 1683 | <emphasis>G4HadronElasticProcess</emphasis>,
|
|---|
| 1684 | <emphasis>G4HadronFissionProcess</emphasis>,
|
|---|
| 1685 | and <emphasis>G4HadronCaptureProcess</emphasis>,
|
|---|
| 1686 | comes already equipped with a cross section data store and a
|
|---|
| 1687 | default cross section data set. The data set objects are really
|
|---|
| 1688 | just shells that invoke the singleton <emphasis>G4HadronCrossSections</emphasis>
|
|---|
| 1689 | to do the real work of calculating cross sections.
|
|---|
| 1690 | </para>
|
|---|
| 1691 |
|
|---|
| 1692 | <para>
|
|---|
| 1693 | The default cross sections can be overridden in whole or in part
|
|---|
| 1694 | by the user. To this end, the base class <emphasis>G4HadronicProcess</emphasis>
|
|---|
| 1695 | has a ``get'' method:
|
|---|
| 1696 |
|
|---|
| 1697 | <informalexample>
|
|---|
| 1698 | <programlisting>
|
|---|
| 1699 | G4CrossSectionDataStore* GetCrossSectionDataStore()
|
|---|
| 1700 | </programlisting>
|
|---|
| 1701 | </informalexample>
|
|---|
| 1702 |
|
|---|
| 1703 | which gives public access to the data store for each process. The
|
|---|
| 1704 | user's cross section data sets can be added to the data store
|
|---|
| 1705 | according to the following framework:
|
|---|
| 1706 |
|
|---|
| 1707 | <informalexample>
|
|---|
| 1708 | <programlisting>
|
|---|
| 1709 | G4Hadron...Process aProcess(...)
|
|---|
| 1710 |
|
|---|
| 1711 | MyCrossSectionDataSet myDataSet(...)
|
|---|
| 1712 |
|
|---|
| 1713 | aProcess.GetCrossSectionDataStore()->AddDataSet( &MyDataSet )
|
|---|
| 1714 | </programlisting>
|
|---|
| 1715 | </informalexample>
|
|---|
| 1716 | </para>
|
|---|
| 1717 |
|
|---|
| 1718 | <para>
|
|---|
| 1719 | The added data set will override the default cross section data
|
|---|
| 1720 | whenever so indicated by its <literal>IsApplicable</literal> method.
|
|---|
| 1721 | </para>
|
|---|
| 1722 |
|
|---|
| 1723 | <para>
|
|---|
| 1724 | In addition to the ``get'' method, <emphasis>G4HadronicProcess</emphasis> also
|
|---|
| 1725 | has the method
|
|---|
| 1726 |
|
|---|
| 1727 | <informalexample>
|
|---|
| 1728 | <programlisting>
|
|---|
| 1729 | void SetCrossSectionDataStore( G4CrossSectionDataStore* )
|
|---|
| 1730 | </programlisting>
|
|---|
| 1731 | </informalexample>
|
|---|
| 1732 |
|
|---|
| 1733 | which allows the user to completely replace the default data
|
|---|
| 1734 | store with a new data store.
|
|---|
| 1735 | </para>
|
|---|
| 1736 |
|
|---|
| 1737 | <para>
|
|---|
| 1738 | It should be noted that a process does not send any information
|
|---|
| 1739 | about itself to its associated data store (and hence data set)
|
|---|
| 1740 | objects. Thus, each data set is assumed to be formulated to
|
|---|
| 1741 | calculate cross sections for one and only one type of process. Of
|
|---|
| 1742 | course, this does not prevent different data sets from sharing
|
|---|
| 1743 | common data and/or calculation methods, as in the case of the
|
|---|
| 1744 | <emphasis>G4HadronCrossSections</emphasis> class mentioned above. Indeed,
|
|---|
| 1745 | <emphasis>G4VCrossSectionDataSet</emphasis> specifies only the abstract interface
|
|---|
| 1746 | between physics processes and their data sets, and leaves the user
|
|---|
| 1747 | free to implement whatever sort of underlying structure is
|
|---|
| 1748 | appropriate.
|
|---|
| 1749 | </para>
|
|---|
| 1750 |
|
|---|
| 1751 | <para>
|
|---|
| 1752 | The current implementation of the data set
|
|---|
| 1753 | <emphasis>G4HadronCrossSections</emphasis> reuses the total cross-sections for
|
|---|
| 1754 | inelastic and elastic scattering, radiative capture and fission as
|
|---|
| 1755 | used with <emphasis role="bold">GHEISHA</emphasis> to provide cross-sections
|
|---|
| 1756 | for calculation
|
|---|
| 1757 | of the respective mean free paths of a given particle in a given
|
|---|
| 1758 | material.
|
|---|
| 1759 | </para>
|
|---|
| 1760 |
|
|---|
| 1761 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1762 | <bridgehead renderas='sect4'>
|
|---|
| 1763 | Cross-sections for low energy neutron transport
|
|---|
| 1764 | </bridgehead>
|
|---|
| 1765 |
|
|---|
| 1766 | <para>
|
|---|
| 1767 | The cross section data for low energy neutron transport are
|
|---|
| 1768 | organized in a set of files that are read in by the corresponding
|
|---|
| 1769 | data set classes at time zero. Hereby the file system is used, in
|
|---|
| 1770 | order to allow highly granular access to the data. The ``root''
|
|---|
| 1771 | directory of the cross-section directory structure is accessed
|
|---|
| 1772 | through an environment variable, <literal>NeutronHPCrossSections</literal>,
|
|---|
| 1773 | which is to be set by the user. The classes accessing the total
|
|---|
| 1774 | cross-sections of the individual processes, i.e., the cross-section
|
|---|
| 1775 | data set classes for low energy neutron transport, are
|
|---|
| 1776 | <emphasis>G4NeutronHPElasticData</emphasis>,
|
|---|
| 1777 | <emphasis>G4NeutronHPCaptureData</emphasis>,
|
|---|
| 1778 | <emphasis>G4NeutronHPFissionData</emphasis>,
|
|---|
| 1779 | and <emphasis>G4NeutronHPInelasticData</emphasis>.
|
|---|
| 1780 | </para>
|
|---|
| 1781 |
|
|---|
| 1782 | <para>
|
|---|
| 1783 | For detailed descriptions of the low energy neutron total
|
|---|
| 1784 | cross-sections, they may be registered by the user as described
|
|---|
| 1785 | above with the data stores of the corresponding processes for
|
|---|
| 1786 | neutron interactions.
|
|---|
| 1787 | </para>
|
|---|
| 1788 |
|
|---|
| 1789 | <para>
|
|---|
| 1790 | It should be noted that using these total cross section classes
|
|---|
| 1791 | does not require that the neutron_hp models also be used. It is up
|
|---|
| 1792 | to the user to decide whethee this is desirable or not for his
|
|---|
| 1793 | particular problem.
|
|---|
| 1794 | </para>
|
|---|
| 1795 |
|
|---|
| 1796 | </sect3>
|
|---|
| 1797 |
|
|---|
| 1798 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 1799 | <sect3 id="sect.PhysProc.Had.AtRest">
|
|---|
| 1800 | <title>
|
|---|
| 1801 | Hadrons at Rest
|
|---|
| 1802 | </title>
|
|---|
| 1803 |
|
|---|
| 1804 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1805 | <bridgehead renderas='sect4'>
|
|---|
| 1806 | List of implemented "Hadron at Rest" processes
|
|---|
| 1807 | </bridgehead>
|
|---|
| 1808 |
|
|---|
| 1809 | <para>
|
|---|
| 1810 | The following process classes have been implemented:
|
|---|
| 1811 |
|
|---|
| 1812 | <itemizedlist spacing="compact">
|
|---|
| 1813 | <listitem><para>
|
|---|
| 1814 | pi- absorption (class name <emphasis>G4PionMinusAbsorptionAtRest</emphasis>
|
|---|
| 1815 | or <emphasis>G4PiMinusAbsorptionAtRest</emphasis>)
|
|---|
| 1816 | </para></listitem>
|
|---|
| 1817 | <listitem><para>
|
|---|
| 1818 | kaon- absorption (class name <emphasis>G4KaonMinusAbsorptionAtRest</emphasis>
|
|---|
| 1819 | or <emphasis>G4KaonMinusAbsorption</emphasis>)
|
|---|
| 1820 | </para></listitem>
|
|---|
| 1821 | <listitem><para>
|
|---|
| 1822 | neutron capture (class name <emphasis>G4NeutronCaptureAtRest</emphasis>)
|
|---|
| 1823 | </para></listitem>
|
|---|
| 1824 | <listitem><para>
|
|---|
| 1825 | anti-proton annihilation (class name
|
|---|
| 1826 | <emphasis>G4AntiProtonAnnihilationAtRest</emphasis>)
|
|---|
| 1827 | </para></listitem>
|
|---|
| 1828 | <listitem><para>
|
|---|
| 1829 | anti-neutron annihilation (class name
|
|---|
| 1830 | <emphasis>G4AntiNeutronAnnihilationAtRest</emphasis>)
|
|---|
| 1831 | </para></listitem>
|
|---|
| 1832 | <listitem><para>
|
|---|
| 1833 | mu- capture (class name <emphasis>G4MuonMinusCaptureAtRest</emphasis>)
|
|---|
| 1834 | </para></listitem>
|
|---|
| 1835 | <listitem><para>
|
|---|
| 1836 | alternative CHIPS model for any negativly charged particle
|
|---|
| 1837 | (class name <emphasis>G4QCaptureAtRest</emphasis>)
|
|---|
| 1838 | </para></listitem>
|
|---|
| 1839 | </itemizedlist>
|
|---|
| 1840 | </para>
|
|---|
| 1841 |
|
|---|
| 1842 | <para>
|
|---|
| 1843 | Obviously the last process does not, strictly speaking, deal with a
|
|---|
| 1844 | ``hadron at rest''. It does, nonetheless, share common features
|
|---|
| 1845 | with the others in the above list because of the implementation
|
|---|
| 1846 | model chosen. The differences between the alternative
|
|---|
| 1847 | implementation for kaon and pion absorption concern the fast part
|
|---|
| 1848 | of the emitted particle spectrum. G4PiMinusAbsorptionAtRest, and
|
|---|
| 1849 | G4KaonMinusAbsorptionAtRest focus especially on a good description
|
|---|
| 1850 | of this part of the spectrum.
|
|---|
| 1851 | </para>
|
|---|
| 1852 |
|
|---|
| 1853 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1854 | <bridgehead renderas='sect4'>
|
|---|
| 1855 | Implementation Interface to Geant4
|
|---|
| 1856 | </bridgehead>
|
|---|
| 1857 |
|
|---|
| 1858 | <para>
|
|---|
| 1859 | All of these classes are derived from the abstract class
|
|---|
| 1860 | <emphasis>G4VRestProcess</emphasis>. In addition to the constructor and
|
|---|
| 1861 | destructor methods, the following public methods of the abstract
|
|---|
| 1862 | class have been implemented for each of the above six
|
|---|
| 1863 | processes:
|
|---|
| 1864 |
|
|---|
| 1865 | <itemizedlist spacing="compact">
|
|---|
| 1866 | <listitem><para>
|
|---|
| 1867 | <para>
|
|---|
| 1868 | <literal>AtRestGetPhysicalInteractionLength( const G4Track&,
|
|---|
| 1869 | G4ForceCondition* )</literal>
|
|---|
| 1870 | </para>
|
|---|
| 1871 | <para>
|
|---|
| 1872 | This method returns the time taken before the interaction actually
|
|---|
| 1873 | occurs. In all processes listed above, except for muon capture, a
|
|---|
| 1874 | value of zero is returned. For the muon capture process the muon
|
|---|
| 1875 | capture lifetime is returned.
|
|---|
| 1876 | </para>
|
|---|
| 1877 | </para></listitem>
|
|---|
| 1878 | <listitem><para>
|
|---|
| 1879 | <para>
|
|---|
| 1880 | <literal>AtRestDoIt( const G4Track&, const G4Step&)</literal>
|
|---|
| 1881 | </para>
|
|---|
| 1882 | <para>
|
|---|
| 1883 | This method generates the secondary particles produced by the
|
|---|
| 1884 | process.
|
|---|
| 1885 | </para>
|
|---|
| 1886 | </para></listitem>
|
|---|
| 1887 | <listitem><para>
|
|---|
| 1888 | <para>
|
|---|
| 1889 | <literal>IsApplicable( const G4ParticleDefinition& )</literal>
|
|---|
| 1890 | </para>
|
|---|
| 1891 | <para>
|
|---|
| 1892 | This method returns the result of a check to see if the process is
|
|---|
| 1893 | possible for a given particle.
|
|---|
| 1894 | </para>
|
|---|
| 1895 | </para></listitem>
|
|---|
| 1896 | </itemizedlist>
|
|---|
| 1897 | </para>
|
|---|
| 1898 |
|
|---|
| 1899 |
|
|---|
| 1900 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1901 | <bridgehead renderas='sect4'>
|
|---|
| 1902 | Example of how to use a hadron at rest process
|
|---|
| 1903 | </bridgehead>
|
|---|
| 1904 |
|
|---|
| 1905 | <para>
|
|---|
| 1906 | Including a ``hadron at rest'' process for a particle, a pi- for
|
|---|
| 1907 | example, into the Geant4 system is straightforward and can be done
|
|---|
| 1908 | in the following way:
|
|---|
| 1909 |
|
|---|
| 1910 | <itemizedlist spacing="compact">
|
|---|
| 1911 | <listitem><para>
|
|---|
| 1912 | create a process:
|
|---|
| 1913 | <informalexample>
|
|---|
| 1914 | <programlisting>
|
|---|
| 1915 | theProcess = new G4PionMinusAbsorptionAtRest();
|
|---|
| 1916 | </programlisting>
|
|---|
| 1917 | </informalexample>
|
|---|
| 1918 | </para></listitem>
|
|---|
| 1919 | <listitem><para>
|
|---|
| 1920 | register the process with the particle's process manager:
|
|---|
| 1921 | <informalexample>
|
|---|
| 1922 | <programlisting>
|
|---|
| 1923 | theParticleDef = G4PionMinus::PionMinus();
|
|---|
| 1924 | G4ProcessManager* pman = theParticleDef->GetProcessManager();
|
|---|
| 1925 | pman->AddRestProcess( theProcess );
|
|---|
| 1926 | </programlisting>
|
|---|
| 1927 | </informalexample>
|
|---|
| 1928 | </para></listitem>
|
|---|
| 1929 | </itemizedlist>
|
|---|
| 1930 | </para>
|
|---|
| 1931 |
|
|---|
| 1932 | </sect3>
|
|---|
| 1933 |
|
|---|
| 1934 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 1935 | <sect3 id="sect.PhysProc.Had.Flight">
|
|---|
| 1936 | <title>
|
|---|
| 1937 | Hadrons in Flight
|
|---|
| 1938 | </title>
|
|---|
| 1939 |
|
|---|
| 1940 | <!-- ******* Bridgehead ******* -->
|
|---|
| 1941 | <bridgehead renderas='sect4'>
|
|---|
| 1942 | What processes do you need?
|
|---|
| 1943 | </bridgehead>
|
|---|
| 1944 |
|
|---|
| 1945 | <para>
|
|---|
| 1946 | For hadrons in motion, there are four physics process classes.
|
|---|
| 1947 | <xref linkend="table.PhysProc_1" /> shows each process and the
|
|---|
| 1948 | particles for which it is relevant.
|
|---|
| 1949 |
|
|---|
| 1950 | <table id="table.PhysProc_1">
|
|---|
| 1951 | <title>
|
|---|
| 1952 | Hadronic processes and relevant particles.
|
|---|
| 1953 | </title>
|
|---|
| 1954 |
|
|---|
| 1955 | <tgroup cols="2">
|
|---|
| 1956 | <tbody>
|
|---|
| 1957 | <row>
|
|---|
| 1958 | <entry>
|
|---|
| 1959 | <emphasis>G4HadronElasticProcess</emphasis>
|
|---|
| 1960 | </entry>
|
|---|
| 1961 | <entry>
|
|---|
| 1962 | pi+, pi-, K<superscript>+</superscript>,
|
|---|
| 1963 | K<superscript>0</superscript><subscript>S</subscript>,
|
|---|
| 1964 | K<superscript>0</superscript><subscript>L</subscript>,
|
|---|
| 1965 | K<superscript>-</superscript>,
|
|---|
| 1966 | p, p-bar, n, n-bar, lambda, lambda-bar,
|
|---|
| 1967 | Sigma<superscript>+</superscript>, Sigma<superscript>-</superscript>,
|
|---|
| 1968 | Sigma<superscript>+</superscript>-bar,
|
|---|
| 1969 | Sigma<superscript>-</superscript>-bar,
|
|---|
| 1970 | Xi<superscript>0</superscript>, Xi<superscript>-</superscript>,
|
|---|
| 1971 | Xi<superscript>0</superscript>-bar, Xi<superscript>-</superscript>-bar
|
|---|
| 1972 | </entry>
|
|---|
| 1973 | </row>
|
|---|
| 1974 | <row>
|
|---|
| 1975 | <entry>
|
|---|
| 1976 | <emphasis>G4HadronInelasticProcess</emphasis>
|
|---|
| 1977 | </entry>
|
|---|
| 1978 | <entry>
|
|---|
| 1979 | pi+, pi-, K<superscript>+</superscript>,
|
|---|
| 1980 | K<superscript>0</superscript><subscript>S</subscript>,
|
|---|
| 1981 | K<superscript>0</superscript><subscript>L</subscript>,
|
|---|
| 1982 | K<superscript>-</superscript>,
|
|---|
| 1983 | p, p-bar, n, n-bar, lambda, lambda-bar,
|
|---|
| 1984 | Sigma<superscript>+</superscript>, Sigma<superscript>-</superscript>,
|
|---|
| 1985 | Sigma<superscript>+</superscript>-bar,
|
|---|
| 1986 | Sigma<superscript>-</superscript>-bar, Xi<superscript>0</superscript>,
|
|---|
| 1987 | Xi<superscript>-</superscript>, Xi<superscript>0</superscript>-bar,
|
|---|
| 1988 | Xi<superscript>-</superscript>-bar
|
|---|
| 1989 | </entry>
|
|---|
| 1990 | </row>
|
|---|
| 1991 | <row>
|
|---|
| 1992 | <entry>
|
|---|
| 1993 | <emphasis>G4HadronFissionProcess</emphasis>
|
|---|
| 1994 | </entry>
|
|---|
| 1995 | <entry>
|
|---|
| 1996 | all
|
|---|
| 1997 | </entry>
|
|---|
| 1998 | </row>
|
|---|
| 1999 | <row>
|
|---|
| 2000 | <entry>
|
|---|
| 2001 | <emphasis>G4CaptureProcess</emphasis>
|
|---|
| 2002 | </entry>
|
|---|
| 2003 | <entry>
|
|---|
| 2004 | n, n-bar
|
|---|
| 2005 | </entry>
|
|---|
| 2006 | </row>
|
|---|
| 2007 | </tbody>
|
|---|
| 2008 | </tgroup>
|
|---|
| 2009 | </table>
|
|---|
| 2010 | </para>
|
|---|
| 2011 |
|
|---|
| 2012 | <!-- ******* Bridgehead ******* -->
|
|---|
| 2013 | <bridgehead renderas='sect4'>
|
|---|
| 2014 | How to register Models
|
|---|
| 2015 | </bridgehead>
|
|---|
| 2016 |
|
|---|
| 2017 | <para>
|
|---|
| 2018 | To register an inelastic process model for a particle, a proton
|
|---|
| 2019 | for example, first get the pointer to the particle's process
|
|---|
| 2020 | manager:
|
|---|
| 2021 |
|
|---|
| 2022 | <informalexample>
|
|---|
| 2023 | <programlisting>
|
|---|
| 2024 | G4ParticleDefinition *theProton = G4Proton::ProtonDefinition();
|
|---|
| 2025 | G4ProcessManager *theProtonProcMan = theProton->GetProcessManager();
|
|---|
| 2026 | </programlisting>
|
|---|
| 2027 | </informalexample>
|
|---|
| 2028 | </para>
|
|---|
| 2029 |
|
|---|
| 2030 | <para>
|
|---|
| 2031 | Create an instance of the particle's inelastic process:
|
|---|
| 2032 |
|
|---|
| 2033 | <informalexample>
|
|---|
| 2034 | <programlisting>
|
|---|
| 2035 | G4ProtonInelasticProcess *theProtonIEProc = new G4ProtonInelasticProcess();
|
|---|
| 2036 | </programlisting>
|
|---|
| 2037 | </informalexample>
|
|---|
| 2038 | </para>
|
|---|
| 2039 |
|
|---|
| 2040 | <para>
|
|---|
| 2041 | Create an instance of the model which determines the secondaries
|
|---|
| 2042 | produced in the interaction, and calculates the momenta of the
|
|---|
| 2043 | particles:
|
|---|
| 2044 |
|
|---|
| 2045 | <informalexample>
|
|---|
| 2046 | <programlisting>
|
|---|
| 2047 | G4LEProtonInelastic *theProtonIE = new G4LEProtonInelastic();
|
|---|
| 2048 | </programlisting>
|
|---|
| 2049 | </informalexample>
|
|---|
| 2050 | </para>
|
|---|
| 2051 |
|
|---|
| 2052 | <para>
|
|---|
| 2053 | Register the model with the particle's inelastic process:
|
|---|
| 2054 |
|
|---|
| 2055 | <informalexample>
|
|---|
| 2056 | <programlisting>
|
|---|
| 2057 | theProtonIEProc->RegisterMe( theProtonIE );
|
|---|
| 2058 | </programlisting>
|
|---|
| 2059 | </informalexample>
|
|---|
| 2060 | </para>
|
|---|
| 2061 |
|
|---|
| 2062 | <para>
|
|---|
| 2063 | Finally, add the particle's inelastic process to the list of
|
|---|
| 2064 | discrete processes:
|
|---|
| 2065 |
|
|---|
| 2066 | <informalexample>
|
|---|
| 2067 | <programlisting>
|
|---|
| 2068 | theProtonProcMan->AddDiscreteProcess( theProtonIEProc );
|
|---|
| 2069 | </programlisting>
|
|---|
| 2070 | </informalexample>
|
|---|
| 2071 | </para>
|
|---|
| 2072 |
|
|---|
| 2073 | <para>
|
|---|
| 2074 | The particle's inelastic process class,
|
|---|
| 2075 | <emphasis>G4ProtonInelasticProcess</emphasis> in the example above, derives from
|
|---|
| 2076 | the <emphasis>G4HadronicInelasticProcess</emphasis> class, and simply defines the
|
|---|
| 2077 | process name and calls the <emphasis>G4HadronicInelasticProcess</emphasis>
|
|---|
| 2078 | constructor. All of the specific particle inelastic processes
|
|---|
| 2079 | derive from the <emphasis>G4HadronicInelasticProcess</emphasis> class, which
|
|---|
| 2080 | calls the <literal>PostStepDoIt</literal> function, which returns the
|
|---|
| 2081 | particle change object from the <emphasis>G4HadronicProcess</emphasis> function
|
|---|
| 2082 | <literal>GeneralPostStepDoIt</literal>. This class also gets the mean free
|
|---|
| 2083 | path, builds the physics table, and gets the microscopic cross
|
|---|
| 2084 | section. The <emphasis>G4HadronicInelasticProcess</emphasis> class derives from
|
|---|
| 2085 | the <emphasis>G4HadronicProcess</emphasis> class, which is the top level hadronic
|
|---|
| 2086 | process class. The <emphasis>G4HadronicProcess</emphasis> class derives from the
|
|---|
| 2087 | <emphasis>G4VDiscreteProcess</emphasis> class. The inelastic, elastic, capture,
|
|---|
| 2088 | and fission processes derive from the <emphasis>G4HadronicProcess</emphasis>
|
|---|
| 2089 | class. This pure virtual class also provides the energy range
|
|---|
| 2090 | manager object and the <literal>RegisterMe</literal> access function.
|
|---|
| 2091 | </para>
|
|---|
| 2092 |
|
|---|
| 2093 | <para>
|
|---|
| 2094 | A sample case for the proton's inelastic interaction model class
|
|---|
| 2095 | is shown in <xref linkend="programlist_PhysProc_3" />, where
|
|---|
| 2096 | <literal>G4LEProtonInelastic.hh</literal> is the name of the include
|
|---|
| 2097 | file:
|
|---|
| 2098 |
|
|---|
| 2099 | <example id="programlist_PhysProc_3">
|
|---|
| 2100 | <title>
|
|---|
| 2101 | An example of a proton inelastic interaction model class.
|
|---|
| 2102 | </title>
|
|---|
| 2103 |
|
|---|
| 2104 | <programlisting>
|
|---|
| 2105 | ----------------------------- include file ------------------------------------------
|
|---|
| 2106 |
|
|---|
| 2107 | #include "G4InelasticInteraction.hh"
|
|---|
| 2108 | class G4LEProtonInelastic : public G4InelasticInteraction
|
|---|
| 2109 | {
|
|---|
| 2110 | public:
|
|---|
| 2111 | G4LEProtonInelastic() : G4InelasticInteraction()
|
|---|
| 2112 | {
|
|---|
| 2113 | SetMinEnergy( 0.0 );
|
|---|
| 2114 | SetMaxEnergy( 25.*GeV );
|
|---|
| 2115 | }
|
|---|
| 2116 | ~G4LEProtonInelastic() { }
|
|---|
| 2117 | G4ParticleChange *ApplyYourself( const G4Track &aTrack,
|
|---|
| 2118 | G4Nucleus &targetNucleus );
|
|---|
| 2119 | private:
|
|---|
| 2120 | void CascadeAndCalculateMomenta( required arguments );
|
|---|
| 2121 | };
|
|---|
| 2122 |
|
|---|
| 2123 | ----------------------------- source file ------------------------------------------
|
|---|
| 2124 |
|
|---|
| 2125 | #include "G4LEProtonInelastic.hh"
|
|---|
| 2126 | G4ParticleChange *
|
|---|
| 2127 | G4LEProton Inelastic::ApplyYourself( const G4Track &aTrack,
|
|---|
| 2128 | G4Nucleus &targetNucleus )
|
|---|
| 2129 | {
|
|---|
| 2130 | theParticleChange.Initialize( aTrack );
|
|---|
| 2131 | const G4DynamicParticle *incidentParticle = aTrack.GetDynamicParticle();
|
|---|
| 2132 | // create the target particle
|
|---|
| 2133 | G4DynamicParticle *targetParticle = targetNucleus.ReturnTargetParticle();
|
|---|
| 2134 | CascadeAndCalculateMomenta( required arguments )
|
|---|
| 2135 | { ... }
|
|---|
| 2136 | return &theParticleChange;
|
|---|
| 2137 | }
|
|---|
| 2138 | </programlisting>
|
|---|
| 2139 | </example>
|
|---|
| 2140 | </para>
|
|---|
| 2141 |
|
|---|
| 2142 | <para>
|
|---|
| 2143 | The <literal>CascadeAndCalculateMomenta</literal> function is the bulk of
|
|---|
| 2144 | the model and is to be provided by the model's creator. It should
|
|---|
| 2145 | determine what secondary particles are produced in the interaction,
|
|---|
| 2146 | calculate the momenta for all the particles, and put this
|
|---|
| 2147 | information into the <emphasis>ParticleChange</emphasis> object which is
|
|---|
| 2148 | returned.
|
|---|
| 2149 | </para>
|
|---|
| 2150 |
|
|---|
| 2151 | <para>
|
|---|
| 2152 | The <emphasis>G4LEProtonInelastic</emphasis> class derives from the
|
|---|
| 2153 | <emphasis>G4InelasticInteraction</emphasis> class, which is an abstract base
|
|---|
| 2154 | class since the pure virtual function <literal>ApplyYourself</literal> is not
|
|---|
| 2155 | defined there. <emphasis>G4InelasticInteraction</emphasis> itself derives from
|
|---|
| 2156 | the <emphasis>G4HadronicInteraction</emphasis> abstract base class. This class is
|
|---|
| 2157 | the base class for all the model classes. It sorts out the energy
|
|---|
| 2158 | range for the models and provides class utilities. The
|
|---|
| 2159 | <emphasis>G4HadronicInteraction</emphasis> class provides the
|
|---|
| 2160 | <literal>Set/GetMinEnergy</literal> and the <literal>Set/GetMaxEnergy</literal>
|
|---|
| 2161 | functions which determine the minimum and maximum energy range for
|
|---|
| 2162 | the model. An energy range can be set for a specific element, a
|
|---|
| 2163 | specific material, or for general applicability:
|
|---|
| 2164 |
|
|---|
| 2165 | <informalexample>
|
|---|
| 2166 | <programlisting>
|
|---|
| 2167 | void SetMinEnergy( G4double anEnergy, G4Element *anElement )
|
|---|
| 2168 | void SetMinEnergy( G4double anEnergy, G4Material *aMaterial )
|
|---|
| 2169 | void SetMinEnergy( const G4double anEnergy )
|
|---|
| 2170 | void SetMaxEnergy( G4double anEnergy, G4Element *anElement )
|
|---|
| 2171 | void SetMaxEnergy( G4double anEnergy, G4Material *aMaterial )
|
|---|
| 2172 | void SetMaxEnergy( const G4double anEnergy )
|
|---|
| 2173 | </programlisting>
|
|---|
| 2174 | </informalexample>
|
|---|
| 2175 | </para>
|
|---|
| 2176 |
|
|---|
| 2177 | <!-- ******* Bridgehead ******* -->
|
|---|
| 2178 | <bridgehead renderas='sect4'>
|
|---|
| 2179 | Which models are there, and what are the defaults
|
|---|
| 2180 | </bridgehead>
|
|---|
| 2181 |
|
|---|
| 2182 | <para>
|
|---|
| 2183 | In Geant4, any model can be run together with any other model
|
|---|
| 2184 | without the need for the implementation of a special interface, or
|
|---|
| 2185 | batch suite, and the ranges of applicability for the different
|
|---|
| 2186 | models can be steered at initialisation time. This way, highly
|
|---|
| 2187 | specialised models (valid only for one material and particle, and
|
|---|
| 2188 | applicable only in a very restricted energy range) can be used in
|
|---|
| 2189 | the same application, together with more general code, in a
|
|---|
| 2190 | coherent fashion.
|
|---|
| 2191 | </para>
|
|---|
| 2192 |
|
|---|
| 2193 | <para>
|
|---|
| 2194 | Each model has an intrinsic range of applicability, and the
|
|---|
| 2195 | model chosen for a simulation depends very much on the use-case.
|
|---|
| 2196 | Consequently, there are no ``defaults''. However, physics lists are
|
|---|
| 2197 | provided which specify sets of models for various purposes.
|
|---|
| 2198 | </para>
|
|---|
| 2199 |
|
|---|
| 2200 | <para>
|
|---|
| 2201 | Three types of hadronic shower models have been implemented:
|
|---|
| 2202 | parametrisation driven models, data driven models, and theory
|
|---|
| 2203 | driven models.
|
|---|
| 2204 |
|
|---|
| 2205 | <itemizedlist spacing="compact">
|
|---|
| 2206 | <listitem><para>
|
|---|
| 2207 | Parametrisation driven models are used for all processes
|
|---|
| 2208 | pertaining to particles coming to rest, and interacting with the
|
|---|
| 2209 | nucleus. For particles in flight, two sets of models exist for
|
|---|
| 2210 | inelastic scattering; low energy, and high energy models. Both sets
|
|---|
| 2211 | are based originally on the <emphasis role="bold">GHEISHA</emphasis>
|
|---|
| 2212 | package of Geant3.21,
|
|---|
| 2213 | and the original approaches to primary interaction, nuclear
|
|---|
| 2214 | excitation, intra-nuclear cascade and evaporation is kept. The
|
|---|
| 2215 | models are located in the sub-directories
|
|---|
| 2216 | <literal>hadronics/models/low_energy</literal> and
|
|---|
| 2217 | <literal>hadronics/models/high_energy</literal>. The low energy models are
|
|---|
| 2218 | targeted towards energies below 20 GeV; the high energy models
|
|---|
| 2219 | cover the energy range from 20 GeV to O(TeV). Fission, capture and
|
|---|
| 2220 | coherent elastic scattering are also modeled through parametrised
|
|---|
| 2221 | models.
|
|---|
| 2222 | </para></listitem>
|
|---|
| 2223 | <listitem><para>
|
|---|
| 2224 | Data driven models are available for the transport of low
|
|---|
| 2225 | energy neutrons in matter in sub-directory
|
|---|
| 2226 | <literal>hadronics/models/neutron_hp</literal>. The modeling is based
|
|---|
| 2227 | on the data formats of <emphasis role="bold">ENDF/B-VI</emphasis>,
|
|---|
| 2228 | and all distributions of this standard data format are implemented.
|
|---|
| 2229 | The data sets used are selected from data libraries that conform to
|
|---|
| 2230 | these standard formats. The file system is used in order to allow granular
|
|---|
| 2231 | access to, and flexibility in, the use of the cross sections for different
|
|---|
| 2232 | isotopes, and channels. The energy coverage of these models is from
|
|---|
| 2233 | thermal energies to 20 MeV.
|
|---|
| 2234 | </para></listitem>
|
|---|
| 2235 | <listitem><para>
|
|---|
| 2236 | Theory driven models are available for inelastic scattering in
|
|---|
| 2237 | a first implementation, covering the full energy range of LHC
|
|---|
| 2238 | experiments. They are located in sub-directory
|
|---|
| 2239 | <literal>hadronics/models/generator</literal>. The current philosophy
|
|---|
| 2240 | implies the usage of parton string models at high energies, of
|
|---|
| 2241 | intra-nuclear transport models at intermediate energies, and of
|
|---|
| 2242 | statistical break-up models for de-excitation.
|
|---|
| 2243 | </para></listitem>
|
|---|
| 2244 | </itemizedlist>
|
|---|
| 2245 | </para>
|
|---|
| 2246 |
|
|---|
| 2247 | </sect3>
|
|---|
| 2248 | </sect2>
|
|---|
| 2249 |
|
|---|
| 2250 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 2251 | <sect2 id="sect.PhysProc.Decay">
|
|---|
| 2252 | <title>
|
|---|
| 2253 | Particle Decay Process
|
|---|
| 2254 | </title>
|
|---|
| 2255 |
|
|---|
| 2256 | <para>
|
|---|
| 2257 | This section briefly introduces decay processes installed in
|
|---|
| 2258 | Geant4. For details of the implementation of particle decays,
|
|---|
| 2259 | please refer to the
|
|---|
| 2260 | <ulink url="http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/html/PhysicsReferenceManual.html">
|
|---|
| 2261 | <emphasis role="bold">Physics Reference Manual</emphasis></ulink>.
|
|---|
| 2262 | </para>
|
|---|
| 2263 |
|
|---|
| 2264 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2265 | <sect3 id="sect.PhysProc.Decay.Class">
|
|---|
| 2266 | <title>
|
|---|
| 2267 | Particle Decay Class
|
|---|
| 2268 | </title>
|
|---|
| 2269 |
|
|---|
| 2270 | <para>
|
|---|
| 2271 | Geant4 provides a <emphasis>G4Decay</emphasis> class for both ``at rest'' and
|
|---|
| 2272 | ``in flight'' particle decays. <emphasis>G4Decay</emphasis> can be applied to all
|
|---|
| 2273 | particles except:
|
|---|
| 2274 |
|
|---|
| 2275 | <variablelist>
|
|---|
| 2276 | <varlistentry>
|
|---|
| 2277 | <term>
|
|---|
| 2278 | massless particles, i.e.,
|
|---|
| 2279 | </term>
|
|---|
| 2280 | <listitem>
|
|---|
| 2281 | <literal>G4ParticleDefinition::thePDGMass <= 0</literal>
|
|---|
| 2282 | </listitem>
|
|---|
| 2283 | </varlistentry>
|
|---|
| 2284 | <varlistentry>
|
|---|
| 2285 | <term>
|
|---|
| 2286 | particles with ``negative'' life time, i.e.,
|
|---|
| 2287 | </term>
|
|---|
| 2288 | <listitem>
|
|---|
| 2289 | <literal>G4ParticleDefinition::thePDGLifeTime < 0</literal>
|
|---|
| 2290 | </listitem>
|
|---|
| 2291 | </varlistentry>
|
|---|
| 2292 | <varlistentry>
|
|---|
| 2293 | <term>
|
|---|
| 2294 | shortlived particles, i.e.,
|
|---|
| 2295 | </term>
|
|---|
| 2296 | <listitem>
|
|---|
| 2297 | <literal>G4ParticleDefinition::fShortLivedFlag = True</literal>
|
|---|
| 2298 | </listitem>
|
|---|
| 2299 | </varlistentry>
|
|---|
| 2300 | </variablelist>
|
|---|
| 2301 | </para>
|
|---|
| 2302 |
|
|---|
| 2303 | <para>
|
|---|
| 2304 | Decay for some particles may be switched on or off by using
|
|---|
| 2305 | <literal>G4ParticleDefinition::SetPDGStable()</literal> as well as
|
|---|
| 2306 | <literal>ActivateProcess()</literal> and <literal>InActivateProcess()</literal>
|
|---|
| 2307 | methods of <emphasis>G4ProcessManager</emphasis>.
|
|---|
| 2308 | </para>
|
|---|
| 2309 |
|
|---|
| 2310 | <para>
|
|---|
| 2311 | <emphasis>G4Decay</emphasis> proposes the step length (or step time for
|
|---|
| 2312 | <literal>AtRest</literal>) according to the lifetime of the particle unless
|
|---|
| 2313 | <literal>PreAssignedDecayProperTime</literal> is defined in
|
|---|
| 2314 | <emphasis>G4DynamicParticle</emphasis>.
|
|---|
| 2315 | </para>
|
|---|
| 2316 |
|
|---|
| 2317 | <para>
|
|---|
| 2318 | The <emphasis>G4Decay</emphasis> class itself does not define decay modes of
|
|---|
| 2319 | the particle. Geant4 provides two ways of doing this:
|
|---|
| 2320 |
|
|---|
| 2321 | <itemizedlist spacing="compact">
|
|---|
| 2322 | <listitem><para>
|
|---|
| 2323 | using <emphasis>G4DecayChannel</emphasis> in <emphasis>G4DecayTable</emphasis>,
|
|---|
| 2324 | and
|
|---|
| 2325 | </para></listitem>
|
|---|
| 2326 | <listitem><para>
|
|---|
| 2327 | using <literal>thePreAssignedDecayProducts</literal> of
|
|---|
| 2328 | <emphasis>G4DynamicParticle</emphasis>
|
|---|
| 2329 | </para></listitem>
|
|---|
| 2330 | </itemizedlist>
|
|---|
| 2331 | </para>
|
|---|
| 2332 |
|
|---|
| 2333 | <para>
|
|---|
| 2334 | The <emphasis>G4Decay</emphasis> class calculates the
|
|---|
| 2335 | <literal>PhysicalInteractionLength</literal> and boosts decay products
|
|---|
| 2336 | created by <emphasis>G4VDecayChannel</emphasis> or event generators. See below
|
|---|
| 2337 | for information on the determination of the decay modes.
|
|---|
| 2338 | </para>
|
|---|
| 2339 |
|
|---|
| 2340 | <para>
|
|---|
| 2341 | An object of <emphasis>G4Decay</emphasis> can be shared by particles.
|
|---|
| 2342 | Registration of the decay process to particles in the
|
|---|
| 2343 | <literal>ConstructPhysics</literal> method of <emphasis>PhysicsList</emphasis>
|
|---|
| 2344 | (see <xref linkend="sect.HowToSpecPhysProc.SpecPhysProc" />)
|
|---|
| 2345 | is shown in <xref linkend="programlist_PhysProc_4" />.
|
|---|
| 2346 |
|
|---|
| 2347 | <example id="programlist_PhysProc_4">
|
|---|
| 2348 | <title>
|
|---|
| 2349 | Registration of the decay process to particles in the
|
|---|
| 2350 | <literal>ConstructPhysics</literal> method of <emphasis>PhysicsList</emphasis>.
|
|---|
| 2351 | </title>
|
|---|
| 2352 |
|
|---|
| 2353 | <programlisting>
|
|---|
| 2354 | #include "G4Decay.hh"
|
|---|
| 2355 | void ExN02PhysicsList::ConstructGeneral()
|
|---|
| 2356 | {
|
|---|
| 2357 | // Add Decay Process
|
|---|
| 2358 | G4Decay* theDecayProcess = new G4Decay();
|
|---|
| 2359 | theParticleIterator->reset();
|
|---|
| 2360 | while( (*theParticleIterator)() ){
|
|---|
| 2361 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2362 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2363 | if (theDecayProcess->IsApplicable(*particle)) {
|
|---|
| 2364 | pmanager ->AddProcess(theDecayProcess);
|
|---|
| 2365 | // set ordering for PostStepDoIt and AtRestDoIt
|
|---|
| 2366 | pmanager ->SetProcessOrdering(theDecayProcess, idxPostStep);
|
|---|
| 2367 | pmanager ->SetProcessOrdering(theDecayProcess, idxAtRest);
|
|---|
| 2368 | }
|
|---|
| 2369 | }
|
|---|
| 2370 | }
|
|---|
| 2371 | </programlisting>
|
|---|
| 2372 | </example>
|
|---|
| 2373 | </para>
|
|---|
| 2374 |
|
|---|
| 2375 | </sect3>
|
|---|
| 2376 |
|
|---|
| 2377 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2378 | <sect3 id="sect.PhysProc.Decay.Table">
|
|---|
| 2379 | <title>
|
|---|
| 2380 | Decay Table
|
|---|
| 2381 | </title>
|
|---|
| 2382 |
|
|---|
| 2383 | <para>
|
|---|
| 2384 | Each particle has its <emphasis>G4DecayTable</emphasis>, which stores information
|
|---|
| 2385 | on the decay modes of the particle. Each decay mode, with its
|
|---|
| 2386 | branching ratio, corresponds to an object of various ``decay
|
|---|
| 2387 | channel'' classes derived from <emphasis>G4VDecayChannel</emphasis>. Default
|
|---|
| 2388 | decay modes are created in the constructors of particle classes.
|
|---|
| 2389 | For example, the decay table of the neutral pion has
|
|---|
| 2390 | <emphasis>G4PhaseSpaceDecayChannel</emphasis> and
|
|---|
| 2391 | <emphasis>G4DalitzDecayChannel</emphasis> as follows:
|
|---|
| 2392 |
|
|---|
| 2393 | <informalexample>
|
|---|
| 2394 | <programlisting>
|
|---|
| 2395 | // create a decay channel
|
|---|
| 2396 | G4VDecayChannel* mode;
|
|---|
| 2397 | // pi0 -> gamma + gamma
|
|---|
| 2398 | mode = new G4PhaseSpaceDecayChannel("pi0",0.988,2,"gamma","gamma");
|
|---|
| 2399 | table->Insert(mode);
|
|---|
| 2400 | // pi0 -> gamma + e+ + e-
|
|---|
| 2401 | mode = new G4DalitzDecayChannel("pi0",0.012,"e-","e+");
|
|---|
| 2402 | table->Insert(mode);
|
|---|
| 2403 | </programlisting>
|
|---|
| 2404 | </informalexample>
|
|---|
| 2405 | </para>
|
|---|
| 2406 |
|
|---|
| 2407 | <para>
|
|---|
| 2408 | Decay modes and branching ratios defined in Geant4 are listed in
|
|---|
| 2409 | <xref linkend="sect.Parti.Def" />.
|
|---|
| 2410 | </para>
|
|---|
| 2411 |
|
|---|
| 2412 | </sect3>
|
|---|
| 2413 |
|
|---|
| 2414 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2415 | <sect3 id="sect.PhysProc.Decay.PreAssgn">
|
|---|
| 2416 | <title>
|
|---|
| 2417 | Pre-assigned Decay Modes by Event Generators
|
|---|
| 2418 | </title>
|
|---|
| 2419 |
|
|---|
| 2420 | <para>
|
|---|
| 2421 | Decays of heavy flavor particles such as B mesons are very complex,
|
|---|
| 2422 | with many varieties of decay modes and decay mechanisms. There are
|
|---|
| 2423 | many models for heavy particle decay provided by various event
|
|---|
| 2424 | generators and it is impossible to define all the decay modes of
|
|---|
| 2425 | heavy particles by using <emphasis>G4VDecayChannel</emphasis>. In other words,
|
|---|
| 2426 | decays of heavy particles cannot be defined by the Geant4 decay
|
|---|
| 2427 | process, but should be defined by event generators or other
|
|---|
| 2428 | external packages. Geant4 provides two ways to do this:
|
|---|
| 2429 | <literal>pre-assigned decay mode</literal> and <literal>external decayer</literal>.
|
|---|
| 2430 | </para>
|
|---|
| 2431 |
|
|---|
| 2432 | <para>
|
|---|
| 2433 | In the latter approach, the class <emphasis>G4VExtDecayer</emphasis> is used
|
|---|
| 2434 | for the interface to an external package which defines decay modes
|
|---|
| 2435 | for a particle. If an instance of <emphasis>G4VExtDecayer</emphasis> is attached
|
|---|
| 2436 | to <emphasis>G4Decay</emphasis>, daughter particles will be generated by the
|
|---|
| 2437 | external decay handler.
|
|---|
| 2438 | </para>
|
|---|
| 2439 |
|
|---|
| 2440 | <para>
|
|---|
| 2441 | In the former case, decays of heavy particles are simulated by
|
|---|
| 2442 | an event generator and the primary event contains the decay
|
|---|
| 2443 | information. <emphasis>G4VPrimaryGenerator</emphasis> automatically attaches any
|
|---|
| 2444 | daughter particles to the parent particle as the
|
|---|
| 2445 | PreAssignedDecayProducts member of <emphasis>G4DynamicParticle</emphasis>.
|
|---|
| 2446 | <emphasis>G4Decay</emphasis> adopts these pre-assigned daughter particles instead
|
|---|
| 2447 | of asking <emphasis>G4VDecayChannel</emphasis> to generate decay products.
|
|---|
| 2448 | </para>
|
|---|
| 2449 |
|
|---|
| 2450 | <para>
|
|---|
| 2451 | In addition, the user may assign a <literal>pre-assigned</literal> decay
|
|---|
| 2452 | time for a specific track in its rest frame (i.e. decay time is
|
|---|
| 2453 | defined in the proper time) by using the
|
|---|
| 2454 | <emphasis>G4PrimaryParticle::SetProperTime()</emphasis> method.
|
|---|
| 2455 | <emphasis>G4VPrimaryGenerator</emphasis> sets the PreAssignedDecayProperTime
|
|---|
| 2456 | member of <emphasis>G4DynamicParticle</emphasis>. <emphasis>G4Decay</emphasis>
|
|---|
| 2457 | uses this decay time instead of the life time of the particle type.
|
|---|
| 2458 | </para>
|
|---|
| 2459 |
|
|---|
| 2460 | </sect3>
|
|---|
| 2461 | </sect2>
|
|---|
| 2462 |
|
|---|
| 2463 |
|
|---|
| 2464 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 2465 | <sect2 id="sect.PhysProc.PhotoHad">
|
|---|
| 2466 | <title>
|
|---|
| 2467 | Photolepton-hadron Processes
|
|---|
| 2468 | </title>
|
|---|
| 2469 |
|
|---|
| 2470 | <para>
|
|---|
| 2471 | To be delivered.
|
|---|
| 2472 | </para>
|
|---|
| 2473 |
|
|---|
| 2474 | </sect2>
|
|---|
| 2475 |
|
|---|
| 2476 |
|
|---|
| 2477 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 2478 | <sect2 id="sect.PhysProc.Photo">
|
|---|
| 2479 | <title>
|
|---|
| 2480 | Optical Photon Processes
|
|---|
| 2481 | </title>
|
|---|
| 2482 |
|
|---|
| 2483 | <para>
|
|---|
| 2484 | A photon is considered to be <emphasis>optical</emphasis> when its wavelength
|
|---|
| 2485 | is much greater than the typical atomic spacing. In GEANT4 optical
|
|---|
| 2486 | photons are treated as a class of particle distinct from their
|
|---|
| 2487 | higher energy <emphasis>gamma</emphasis> cousins. This implementation allows the
|
|---|
| 2488 | wave-like properties of electromagnetic radiation to be
|
|---|
| 2489 | incorporated into the optical photon process. Because this
|
|---|
| 2490 | theoretical description breaks down at higher energies, there is no
|
|---|
| 2491 | smooth transition as a function of energy between the optical
|
|---|
| 2492 | photon and gamma particle classes.
|
|---|
| 2493 | </para>
|
|---|
| 2494 |
|
|---|
| 2495 | <para>
|
|---|
| 2496 | For the simulation of optical photons to work correctly in
|
|---|
| 2497 | GEANT4, they must be imputed a linear polarization. This is unlike
|
|---|
| 2498 | most other particles in GEANT4 but is automatically and correctly
|
|---|
| 2499 | done for optical photons that are generated as secondaries by
|
|---|
| 2500 | existing processes in GEANT4. Not so, if the user wishes to start
|
|---|
| 2501 | optical photons as primary particles. In this case, the user must
|
|---|
| 2502 | set the linear polarization using particle gun methods, the General
|
|---|
| 2503 | Particle Source, or his/her PrimaryGeneratorAction. For an
|
|---|
| 2504 | unpolarized source, the linear polarization should be sampled
|
|---|
| 2505 | randomly for each new primary photon.
|
|---|
| 2506 | </para>
|
|---|
| 2507 |
|
|---|
| 2508 | <para>
|
|---|
| 2509 | The GEANT4 catalogue of processes at optical wavelengths
|
|---|
| 2510 | includes refraction and reflection at medium boundaries, bulk
|
|---|
| 2511 | absorption and Rayleigh scattering. Processes which produce optical
|
|---|
| 2512 | photons include the Cerenkov effect, transition radiation and
|
|---|
| 2513 | scintillation. Optical photons are generated in GEANT4 without
|
|---|
| 2514 | energy conservation and their energy must therefore not be tallied
|
|---|
| 2515 | as part of the energy balance of an event.
|
|---|
| 2516 | </para>
|
|---|
| 2517 |
|
|---|
| 2518 | <para>
|
|---|
| 2519 | The optical properties of the medium which are key to the
|
|---|
| 2520 | implementation of these types of processes are stored as entries in
|
|---|
| 2521 | a <literal>G4MaterialPropertiesTable</literal> which is linked to the
|
|---|
| 2522 | <literal>G4Material</literal> in question. These properties may be constants
|
|---|
| 2523 | or they may be expressed as a function of the photon's wavelength.
|
|---|
| 2524 | This table is a private data member of the <literal>G4Material</literal>
|
|---|
| 2525 | class. The <literal>G4MaterialPropertiesTable</literal> is implemented as a
|
|---|
| 2526 | hash directory, in which each entry consists of a <emphasis>value</emphasis> and
|
|---|
| 2527 | a <emphasis>key</emphasis>. The key is used to quickly and efficiently retrieve
|
|---|
| 2528 | the corresponding value. All values in the dictionary are either
|
|---|
| 2529 | instantiations of <literal>G4double</literal> or the class
|
|---|
| 2530 | <literal>G4MaterialPropertyVector</literal>, and all keys are of type
|
|---|
| 2531 | <literal>G4String</literal>.
|
|---|
| 2532 | </para>
|
|---|
| 2533 |
|
|---|
| 2534 | <para>
|
|---|
| 2535 | A <literal>G4MaterialPropertyVector</literal> is composed of
|
|---|
| 2536 | instantiations of the class <literal>G4MPVEntry</literal>. The
|
|---|
| 2537 | <literal>G4MPVEntry</literal> is a pair of numbers, which in the case of an
|
|---|
| 2538 | optical property, are the photon momentum and corresponding
|
|---|
| 2539 | property value. The <literal>G4MaterialPropertyVector</literal> is
|
|---|
| 2540 | implemented as a <literal>G4std::vector</literal>, with the sorting operation
|
|---|
| 2541 | defined as
|
|---|
| 2542 | MPVEntry<subscript>1</subscript> < MPVEntry<subscript>2</subscript> ==
|
|---|
| 2543 | photon_momentum<subscript>1</subscript> < photon_momentum<subscript>2</subscript>.
|
|---|
| 2544 | This results in all <literal>G4MaterialPropertyVector</literal>s being sorted in
|
|---|
| 2545 | ascending order of photon momenta. It is possible for the user to
|
|---|
| 2546 | add as many material (optical) properties to the material as he
|
|---|
| 2547 | wishes using the methods supplied by the
|
|---|
| 2548 | <literal>G4MaterialPropertiesTable</literal> class. An example of this is
|
|---|
| 2549 | shown in <xref linkend="programlist_PhysProc_5" />.
|
|---|
| 2550 |
|
|---|
| 2551 | <example id="programlist_PhysProc_5">
|
|---|
| 2552 | <title>
|
|---|
| 2553 | Optical properties added to a <literal>G4MaterialPropertiesTable</literal>
|
|---|
| 2554 | and linked to a <literal>G4Material</literal>
|
|---|
| 2555 | </title>
|
|---|
| 2556 |
|
|---|
| 2557 | <programlisting>
|
|---|
| 2558 | const G4int NUMENTRIES = 32;
|
|---|
| 2559 |
|
|---|
| 2560 | G4double ppckov[NUMENTRIES] = {2.034*eV, ......, 4.136*eV};
|
|---|
| 2561 | G4double rindex[NUMENTRIES] = {1.3435, ......, 1.3608};
|
|---|
| 2562 | G4double absorption[NUMENTRIES] = {344.8*cm, ......, 1450.0*cm];
|
|---|
| 2563 |
|
|---|
| 2564 | G4MaterialPropertiesTable *MPT = new G4MaterialPropertiesTable();
|
|---|
| 2565 |
|
|---|
| 2566 | MPT -> AddConstProperty("SCINTILLATIONYIELD",100./MeV);
|
|---|
| 2567 |
|
|---|
| 2568 | MPT -> AddProperty("RINDEX",ppckov,rindex,NUMENTRIES};
|
|---|
| 2569 | MPT -> AddProperty("ABSLENGTH",ppckov,absorption,NUMENTRIES};
|
|---|
| 2570 |
|
|---|
| 2571 | scintillator -> SetMaterialPropertiesTable(MPT);
|
|---|
| 2572 | </programlisting>
|
|---|
| 2573 | </example>
|
|---|
| 2574 | </para>
|
|---|
| 2575 |
|
|---|
| 2576 |
|
|---|
| 2577 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2578 | <sect3 id="sect.PhysProc.Photo.Cerenkov">
|
|---|
| 2579 | <title>
|
|---|
| 2580 | Generation of Photons in
|
|---|
| 2581 | <literal>processes/electromagnetic/xrays</literal> - Cerenkov Effect
|
|---|
| 2582 | </title>
|
|---|
| 2583 |
|
|---|
| 2584 | <para>
|
|---|
| 2585 | The radiation of Cerenkov light occurs when a charged particle
|
|---|
| 2586 | moves through a dispersive medium faster than the group velocity of
|
|---|
| 2587 | light in that medium. Photons are emitted on the surface of a cone,
|
|---|
| 2588 | whose opening angle with respect to the particle's instantaneous
|
|---|
| 2589 | direction decreases as the particle slows down. At the same time,
|
|---|
| 2590 | the frequency of the photons emitted increases, and the number
|
|---|
| 2591 | produced decreases. When the particle velocity drops below the
|
|---|
| 2592 | local speed of light, the radiation ceases and the emission cone
|
|---|
| 2593 | angle collapses to zero. The photons produced by this process have
|
|---|
| 2594 | an inherent polarization perpendicular to the cone's surface at
|
|---|
| 2595 | production.
|
|---|
| 2596 | </para>
|
|---|
| 2597 |
|
|---|
| 2598 | <para>
|
|---|
| 2599 | The flux, spectrum, polarization and emission of Cerenkov
|
|---|
| 2600 | radiation in the <literal>AlongStepDoIt</literal> method of the class
|
|---|
| 2601 | <literal>G4Cerenkov</literal> follow well-known formulae, with two inherent
|
|---|
| 2602 | computational limitations. The first arises from step-wise
|
|---|
| 2603 | simulation, and the second comes from the requirement that
|
|---|
| 2604 | numerical integration calculate the average number of Cerenkov
|
|---|
| 2605 | photons per step. The process makes use of a
|
|---|
| 2606 | <literal>G4PhysicsTable</literal> which contains incremental integrals to
|
|---|
| 2607 | expedite this calculation.
|
|---|
| 2608 | </para>
|
|---|
| 2609 |
|
|---|
| 2610 | <para>
|
|---|
| 2611 | The time and position of Cerenkov photon emission are calculated
|
|---|
| 2612 | from quantities known at the beginning of a charged particle's
|
|---|
| 2613 | step. The step is assumed to be rectilinear even in the presence of
|
|---|
| 2614 | a magnetic field. The user may limit the step size by specifying a
|
|---|
| 2615 | maximum (average) number of Cerenkov photons created during the
|
|---|
| 2616 | step, using the <literal>SetMaxNumPhotonsPerStep(const G4int
|
|---|
| 2617 | NumPhotons)</literal> method. The actual number generated will
|
|---|
| 2618 | necessarily be different due to the Poissonian nature of the
|
|---|
| 2619 | production. In the present implementation, the production density
|
|---|
| 2620 | of photons is distributed evenly along the particle's track
|
|---|
| 2621 | segment, even if the particle has slowed significantly during the
|
|---|
| 2622 | step.
|
|---|
| 2623 | </para>
|
|---|
| 2624 |
|
|---|
| 2625 | <para>
|
|---|
| 2626 | The frequently very large number of secondaries produced in a
|
|---|
| 2627 | single step (about 300/cm in water), compelled the idea in
|
|---|
| 2628 | GEANT3.21 of suspending the primary particle until all its progeny
|
|---|
| 2629 | have been tracked. Despite the fact that GEANT4 employs dynamic
|
|---|
| 2630 | memory allocation and thus does not suffer from the limitations of
|
|---|
| 2631 | GEANT3.21 with its fixed large initial ZEBRA store, GEANT4
|
|---|
| 2632 | nevertheless provides for an analogous functionality with the
|
|---|
| 2633 | public method <literal>SetTrackSecondariesFirst</literal>. An example of the
|
|---|
| 2634 | registration of the Cerenkov process is given in
|
|---|
| 2635 | <xref linkend="programlist_PhysProc_6" />.
|
|---|
| 2636 |
|
|---|
| 2637 | <example id="programlist_PhysProc_6">
|
|---|
| 2638 | <title>
|
|---|
| 2639 | Registration of the Cerenkov process in <literal>PhysicsList</literal>.
|
|---|
| 2640 | </title>
|
|---|
| 2641 |
|
|---|
| 2642 | <programlisting>
|
|---|
| 2643 | #include "G4Cerenkov.hh"
|
|---|
| 2644 |
|
|---|
| 2645 | void ExptPhysicsList::ConstructOp(){
|
|---|
| 2646 |
|
|---|
| 2647 | G4Cerenkov* theCerenkovProcess = new G4Cerenkov("Cerenkov");
|
|---|
| 2648 |
|
|---|
| 2649 | G4int MaxNumPhotons = 300;
|
|---|
| 2650 |
|
|---|
| 2651 | theCerenkovProcess->SetTrackSecondariesFirst(true);
|
|---|
| 2652 | theCerenkovProcess->SetMaxNumPhotonsPerStep(MaxNumPhotons);
|
|---|
| 2653 |
|
|---|
| 2654 | theParticleIterator->reset();
|
|---|
| 2655 | while( (*theParticleIterator)() ){
|
|---|
| 2656 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2657 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2658 | G4String particleName = particle->GetParticleName();
|
|---|
| 2659 | if (theCerenkovProcess->IsApplicable(*particle)) {
|
|---|
| 2660 | pmanager->AddContinuousProcess(theCerenkovProcess);
|
|---|
| 2661 | }
|
|---|
| 2662 | }
|
|---|
| 2663 | }
|
|---|
| 2664 | </programlisting>
|
|---|
| 2665 | </example>
|
|---|
| 2666 | </para>
|
|---|
| 2667 |
|
|---|
| 2668 | </sect3>
|
|---|
| 2669 |
|
|---|
| 2670 |
|
|---|
| 2671 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2672 | <sect3 id="sect.PhysProc.Photo.Scinti">
|
|---|
| 2673 | <title>
|
|---|
| 2674 | Generation of Photons in
|
|---|
| 2675 | <literal>processes/electromagnetic/xrays</literal> - Scintillation
|
|---|
| 2676 | </title>
|
|---|
| 2677 |
|
|---|
| 2678 | <para>
|
|---|
| 2679 | Every scintillating material has a characteristic light yield,
|
|---|
| 2680 | <literal>SCINTILLATIONYIELD</literal>, and an intrinsic resolution,
|
|---|
| 2681 | <literal>RESOLUTIONSCALE</literal>, which generally broadens the statistical
|
|---|
| 2682 | distribution of generated photons. A wider intrinsic resolution is
|
|---|
| 2683 | due to impurities which are typical for doped crystals like NaI(Tl)
|
|---|
| 2684 | and CsI(Tl). On the other hand, the intrinsic resolution can also
|
|---|
| 2685 | be narrower when the Fano factor plays a role. The actual number of
|
|---|
| 2686 | emitted photons during a step fluctuates around the mean number of
|
|---|
| 2687 | photons with a width given by
|
|---|
| 2688 | <literal>ResolutionScale*sqrt(MeanNumberOfPhotons)</literal>. The average
|
|---|
| 2689 | light yield, <literal>MeanNumberOfPhotons</literal>, has a linear dependence
|
|---|
| 2690 | on the local energy deposition, but it may be different for minimum
|
|---|
| 2691 | ionizing and non-minimum ionizing particles.
|
|---|
| 2692 | </para>
|
|---|
| 2693 |
|
|---|
| 2694 | <para>
|
|---|
| 2695 | A scintillator is also characterized by its photon emission
|
|---|
| 2696 | spectrum and by the exponential decay of its time spectrum. In
|
|---|
| 2697 | GEANT4 the scintillator can have a fast and a slow component. The
|
|---|
| 2698 | relative strength of the fast component as a fraction of total
|
|---|
| 2699 | scintillation yield is given by the <literal>YIELDRATIO</literal>.
|
|---|
| 2700 | Scintillation may be simulated by specifying these empirical
|
|---|
| 2701 | parameters for each material. It is sufficient to specify in the
|
|---|
| 2702 | user's <literal>DetectorConstruction</literal> class a relative spectral
|
|---|
| 2703 | distribution as a function of photon energy for the scintillating
|
|---|
| 2704 | material. An example of this is shown in
|
|---|
| 2705 | <xref linkend="programlist_PhysProc_7" />
|
|---|
| 2706 |
|
|---|
| 2707 | <example id="programlist_PhysProc_7">
|
|---|
| 2708 | <title>
|
|---|
| 2709 | Specification of scintillation properties in
|
|---|
| 2710 | <literal>DetectorConstruction</literal>.
|
|---|
| 2711 | </title>
|
|---|
| 2712 | <programlisting>
|
|---|
| 2713 | const G4int NUMENTRIES = 9;
|
|---|
| 2714 | G4double Scnt_PP[NUMENTRIES] = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,
|
|---|
| 2715 | 7.0*eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV };
|
|---|
| 2716 |
|
|---|
| 2717 | G4double Scnt_FAST[NUMENTRIES] = { 0.000134, 0.004432, 0.053991, 0.241971,
|
|---|
| 2718 | 0.398942, 0.000134, 0.004432, 0.053991,
|
|---|
| 2719 | 0.241971 };
|
|---|
| 2720 | G4double Scnt_SLOW[NUMENTRIES] = { 0.000010, 0.000020, 0.000030, 0.004000,
|
|---|
| 2721 | 0.008000, 0.005000, 0.020000, 0.001000,
|
|---|
| 2722 | 0.000010 };
|
|---|
| 2723 |
|
|---|
| 2724 | G4Material* Scnt;
|
|---|
| 2725 | G4MaterialPropertiesTable* Scnt_MPT = new G4MaterialPropertiesTable();
|
|---|
| 2726 |
|
|---|
| 2727 | Scnt_MPT->AddProperty("FASTCOMPONENT", Scnt_PP, Scnt_FAST, NUMENTRIES);
|
|---|
| 2728 | Scnt_MPT->AddProperty("SLOWCOMPONENT", Scnt_PP, Scnt_SLOW, NUMENTRIES);
|
|---|
| 2729 |
|
|---|
| 2730 | Scnt_MPT->AddConstProperty("SCINTILLATIONYIELD", 5000./MeV);
|
|---|
| 2731 | Scnt_MPT->AddConstProperty("RESOLUTIONSCALE", 2.0);
|
|---|
| 2732 | Scnt_MPT->AddConstProperty("FASTTIMECONSTANT", 1.*ns);
|
|---|
| 2733 | Scnt_MPT->AddConstProperty("SLOWTIMECONSTANT", 10.*ns);
|
|---|
| 2734 | Scnt_MPT->AddConstProperty("YIELDRATIO", 0.8);
|
|---|
| 2735 |
|
|---|
| 2736 | Scnt->SetMaterialPropertiesTable(Scnt_MPT);
|
|---|
| 2737 | </programlisting>
|
|---|
| 2738 | </example>
|
|---|
| 2739 | </para>
|
|---|
| 2740 |
|
|---|
| 2741 | <para>
|
|---|
| 2742 | In cases where the scintillation yield of a scintillator depends
|
|---|
| 2743 | on the particle type, different scintillation processes may be
|
|---|
| 2744 | defined for them. How this yield scales to the one specified for
|
|---|
| 2745 | the material is expressed with the
|
|---|
| 2746 | <literal>ScintillationYieldFactor</literal> in the user's
|
|---|
| 2747 | <literal>PhysicsList</literal> as shown in
|
|---|
| 2748 | <xref linkend="programlist_PhysProc_8" />.
|
|---|
| 2749 | In those cases where the fast to slow excitation ratio changes with particle
|
|---|
| 2750 | type, the method <literal>SetScintillationExcitationRatio</literal> can be
|
|---|
| 2751 | called for each scintillation process (see the advanced
|
|---|
| 2752 | underground_physics example). This overwrites the
|
|---|
| 2753 | <literal>YieldRatio</literal> obtained from the
|
|---|
| 2754 | <literal>G4MaterialPropertiesTable</literal>.
|
|---|
| 2755 |
|
|---|
| 2756 | <example id="programlist_PhysProc_8">
|
|---|
| 2757 | <title>
|
|---|
| 2758 | Implementation of the scintillation process in
|
|---|
| 2759 | <literal>PhysicsList</literal>.
|
|---|
| 2760 | </title>
|
|---|
| 2761 |
|
|---|
| 2762 | <programlisting>
|
|---|
| 2763 | G4Scintillation* theMuonScintProcess = new G4Scintillation("Scintillation");
|
|---|
| 2764 |
|
|---|
| 2765 | theMuonScintProcess->SetTrackSecondariesFirst(true);
|
|---|
| 2766 | theMuonScintProcess->SetScintillationYieldFactor(0.8);
|
|---|
| 2767 |
|
|---|
| 2768 | theParticleIterator->reset();
|
|---|
| 2769 | while( (*theParticleIterator)() ){
|
|---|
| 2770 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 2771 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 2772 | G4String particleName = particle->GetParticleName();
|
|---|
| 2773 | if (theMuonScintProcess->IsApplicable(*particle)) {
|
|---|
| 2774 | if (particleName == "mu+") {
|
|---|
| 2775 | pmanager->AddProcess(theMuonScintProcess);
|
|---|
| 2776 | pmanager->SetProcessOrderingToLast(theMuonScintProcess, idxAtRest);
|
|---|
| 2777 | pmanager->SetProcessOrderingToLast(theMuonScintProcess, idxPostStep);
|
|---|
| 2778 | }
|
|---|
| 2779 | }
|
|---|
| 2780 | }
|
|---|
| 2781 | </programlisting>
|
|---|
| 2782 | </example>
|
|---|
| 2783 | </para>
|
|---|
| 2784 |
|
|---|
| 2785 | <para>
|
|---|
| 2786 | A Gaussian-distributed number of photons is generated according
|
|---|
| 2787 | to the energy lost during the step. A resolution scale of 1.0
|
|---|
| 2788 | produces a statistical fluctuation around the average yield set
|
|---|
| 2789 | with <literal>AddConstProperty("SCINTILLATIONYIELD")</literal>, while values
|
|---|
| 2790 | > 1 broaden the fluctuation. A value of zero produces no
|
|---|
| 2791 | fluctuation. Each photon's frequency is sampled from the empirical
|
|---|
| 2792 | spectrum. The photons originate evenly along the track segment and
|
|---|
| 2793 | are emitted uniformly into 4π with a random linear polarization
|
|---|
| 2794 | and at times characteristic for the scintillation component.
|
|---|
| 2795 | </para>
|
|---|
| 2796 |
|
|---|
| 2797 | </sect3>
|
|---|
| 2798 |
|
|---|
| 2799 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2800 | <sect3 id="sect.PhysProc.Photo.WaveShift">
|
|---|
| 2801 | <title>
|
|---|
| 2802 | Generation of Photons in
|
|---|
| 2803 | <literal>processes/optical</literal> - Wavelength Shifting
|
|---|
| 2804 | </title>
|
|---|
| 2805 |
|
|---|
| 2806 | <para>
|
|---|
| 2807 | Wavelength Shifting (WLS) fibers are used in many high-energy
|
|---|
| 2808 | particle physics experiments. They absorb light at one wavelength
|
|---|
| 2809 | and re-emit light at a different wavelength and are used for
|
|---|
| 2810 | several reasons. For one, they tend to decrease the self-absorption
|
|---|
| 2811 | of the detector so that as much light reaches the PMTs as possible.
|
|---|
| 2812 | WLS fibers are also used to match the emission spectrum of the
|
|---|
| 2813 | detector with the input spectrum of the PMT.
|
|---|
| 2814 | </para>
|
|---|
| 2815 |
|
|---|
| 2816 | <para>
|
|---|
| 2817 | A WLS material is characterized by its photon absorption and
|
|---|
| 2818 | photon emission spectrum and by a possible time delay between the
|
|---|
| 2819 | absorption and re-emission of the photon. Wavelength Shifting may
|
|---|
| 2820 | be simulated by specifying these empirical parameters for each WLS
|
|---|
| 2821 | material in the simulation. It is sufficient to specify in the
|
|---|
| 2822 | user's <literal>DetectorConstruction</literal> class a relative spectral
|
|---|
| 2823 | distribution as a function of photon energy for the WLS material.
|
|---|
| 2824 | WLSABSLENGTH is the absorption length of the material as a function
|
|---|
| 2825 | of the photon's momentum. WLSCOMPONENT is the relative emission
|
|---|
| 2826 | spectrum of the material as a function of the photon's momentum,
|
|---|
| 2827 | and WLSTIMECONSTANT accounts for any time delay which may occur
|
|---|
| 2828 | between absorption and re-emission of the photon. An example is
|
|---|
| 2829 | shown in <xref linkend="programlist_PhysProc_9" />.
|
|---|
| 2830 |
|
|---|
| 2831 | <example id="programlist_PhysProc_9">
|
|---|
| 2832 | <title>
|
|---|
| 2833 | Specification of WLS properties in <literal>DetectorConstruction</literal>.
|
|---|
| 2834 | </title>
|
|---|
| 2835 |
|
|---|
| 2836 | <programlisting>
|
|---|
| 2837 | const G4int nEntries = 9;
|
|---|
| 2838 |
|
|---|
| 2839 | G4double PhotonEnergy[nEntries] = { 6.6*eV, 6.7*eV, 6.8*eV, 6.9*eV,
|
|---|
| 2840 | 7.0*eV, 7.1*eV, 7.2*eV, 7.3*eV, 7.4*eV };
|
|---|
| 2841 |
|
|---|
| 2842 | G4double RIndexFiber[nEntries] =
|
|---|
| 2843 | { 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60, 1.60 };
|
|---|
| 2844 | G4double AbsFiber[nEntries] =
|
|---|
| 2845 | {0.1*mm,0.2*mm,0.3*mm,0.4*cm,1.0*cm,10*cm,1.0*m,10.0*m,10.0*m};
|
|---|
| 2846 | G4double EmissionFiber[nEntries] =
|
|---|
| 2847 | {0.0, 0.0, 0.0, 0.1, 0.5, 1.0, 5.0, 10.0, 10.0 };
|
|---|
| 2848 |
|
|---|
| 2849 | G4Material* WLSFiber;
|
|---|
| 2850 | G4MaterialPropertiesTable* MPTFiber = new G4MaterialPropertiesTable();
|
|---|
| 2851 |
|
|---|
| 2852 | MPTFiber->AddProperty("RINDEX",PhotonEnergy,RIndexFiber,nEntries);
|
|---|
| 2853 | MPTFiber->AddProperty("WLSABSLENGTH",PhotonEnergy,AbsFiber,nEntries);
|
|---|
| 2854 | MPTFiber->AddProperty("WLSCOMPONENT",PhotonEnergy,EmissionFiber,nEntries);
|
|---|
| 2855 | MPTFiber->AddConstProperty("WLSTIMECONSTANT", 0.5*ns);
|
|---|
| 2856 |
|
|---|
| 2857 | WLSFiber->SetMaterialPropertiesTable(MPTFiber);
|
|---|
| 2858 | </programlisting>
|
|---|
| 2859 | </example>
|
|---|
| 2860 | </para>
|
|---|
| 2861 |
|
|---|
| 2862 | <para>
|
|---|
| 2863 | The process is defined in the PhysicsList in the usual way. The
|
|---|
| 2864 | process class name is G4OpWLS. It should be instantiated with
|
|---|
| 2865 | theWLSProcess = new G4OpWLS("OpWLS") and attached to the process
|
|---|
| 2866 | manager of the optical photon as a DiscreteProcess. The way the
|
|---|
| 2867 | WLSTIMECONSTANT is used depends on the time profile method chosen
|
|---|
| 2868 | by the user. If in the PhysicsList
|
|---|
| 2869 | theWLSProcess->UseTimeGenerator("exponential") option is set,
|
|---|
| 2870 | the time delay between absorption and re-emission of the photon is
|
|---|
| 2871 | sampled from an exponential distribution, with the decay term equal
|
|---|
| 2872 | to WLSTIMECONSTANT. If, on the other hand,
|
|---|
| 2873 | theWLSProcess->UseTimeGenerator("delta") is chosen, the time
|
|---|
| 2874 | delay is a delta function and equal to WLSTIMECONSTANT. The default
|
|---|
| 2875 | is "delta" in case the G4OpWLS::UseTimeGenerator(const G4String
|
|---|
| 2876 | name) method is not used.
|
|---|
| 2877 | </para>
|
|---|
| 2878 |
|
|---|
| 2879 | </sect3>
|
|---|
| 2880 |
|
|---|
| 2881 |
|
|---|
| 2882 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 2883 | <sect3 id="sect.PhysProc.Photo.Track">
|
|---|
| 2884 | <title>
|
|---|
| 2885 | Tracking of Photons in <literal>processes/optical</literal>
|
|---|
| 2886 | </title>
|
|---|
| 2887 |
|
|---|
| 2888 | <!-- ******* Bridgehead ******* -->
|
|---|
| 2889 | <bridgehead renderas='sect4'>
|
|---|
| 2890 | Absorption
|
|---|
| 2891 | </bridgehead>
|
|---|
| 2892 |
|
|---|
| 2893 | <para>
|
|---|
| 2894 | The implementation of optical photon bulk absorption,
|
|---|
| 2895 | <literal>G4OpAbsorption</literal>, is trivial in that the process merely
|
|---|
| 2896 | kills the particle. The procedure requires the user to fill the
|
|---|
| 2897 | relevant <literal>G4MaterialPropertiesTable</literal> with empirical data for
|
|---|
| 2898 | the absorption length, using <literal>ABSLENGTH</literal> as the property key
|
|---|
| 2899 | in the public method <literal>AddProperty</literal>. The absorption length is
|
|---|
| 2900 | the average distance traveled by a photon before being absorpted by
|
|---|
| 2901 | the medium; i.e. it is the mean free path returned by the
|
|---|
| 2902 | <literal>GetMeanFreePath</literal> method.
|
|---|
| 2903 | </para>
|
|---|
| 2904 |
|
|---|
| 2905 | <!-- ******* Bridgehead ******* -->
|
|---|
| 2906 | <bridgehead renderas='sect4'>
|
|---|
| 2907 | Rayleigh Scattering
|
|---|
| 2908 | </bridgehead>
|
|---|
| 2909 |
|
|---|
| 2910 | <para>
|
|---|
| 2911 | The differential cross section in Rayleigh scattering,
|
|---|
| 2912 | σ/ω, is proportional
|
|---|
| 2913 | to cos<superscript>2</superscript>(&thetas;),
|
|---|
| 2914 | where &thetas; is the polar of the new polarization vector with
|
|---|
| 2915 | respect to the old polarization vector. The <literal>G4OpRayleigh</literal>
|
|---|
| 2916 | scattering process samples this angle accordingly and then
|
|---|
| 2917 | calculates the scattered photon's new direction by requiring that
|
|---|
| 2918 | it be perpendicular to the photon's new polarization in such a way
|
|---|
| 2919 | that the final direction, initial and final polarizations are all
|
|---|
| 2920 | in one plane. This process thus depends on the particle's
|
|---|
| 2921 | polarization (spin). The photon's polarization is a data member of
|
|---|
| 2922 | the <literal>G4DynamicParticle</literal> class.
|
|---|
| 2923 | </para>
|
|---|
| 2924 |
|
|---|
| 2925 | <para>
|
|---|
| 2926 | A photon which is not assigned a polarization at production,
|
|---|
| 2927 | either via the <literal>SetPolarization</literal> method of the
|
|---|
| 2928 | <literal>G4PrimaryParticle</literal> class, or indirectly with the
|
|---|
| 2929 | <literal>SetParticlePolarization</literal> method of the
|
|---|
| 2930 | <literal>G4ParticleGun</literal> class, may not be Rayleigh scattered.
|
|---|
| 2931 | Optical photons produced by the <literal>G4Cerenkov</literal> process have
|
|---|
| 2932 | inherently a polarization perpendicular to the cone's surface at
|
|---|
| 2933 | production. Scintillation photons have a random linear polarization
|
|---|
| 2934 | perpendicular to their direction.
|
|---|
| 2935 | </para>
|
|---|
| 2936 |
|
|---|
| 2937 | <para>
|
|---|
| 2938 | The process requires a <literal>G4MaterialPropertiesTable</literal> to be
|
|---|
| 2939 | filled by the user with Rayleigh scattering length data. The
|
|---|
| 2940 | Rayleigh scattering attenuation length is the average distance
|
|---|
| 2941 | traveled by a photon before it is Rayleigh scattered in the medium
|
|---|
| 2942 | and it is the distance returned by the <literal>GetMeanFreePath</literal>
|
|---|
| 2943 | method. The <literal>G4OpRayleigh</literal> class provides a
|
|---|
| 2944 | <literal>RayleighAttenuationLengthGenerator</literal> method which calculates
|
|---|
| 2945 | the attenuation coefficient of a medium following the
|
|---|
| 2946 | Einstein-Smoluchowski formula whose derivation requires the use of
|
|---|
| 2947 | statistical mechanics, includes temperature, and depends on the
|
|---|
| 2948 | isothermal compressibility of the medium. This generator is
|
|---|
| 2949 | convenient when the Rayleigh attenuation length is not known from
|
|---|
| 2950 | measurement but may be calculated from first principles using the
|
|---|
| 2951 | above material constants. For a medium named <emphasis>Water</emphasis> and no
|
|---|
| 2952 | Rayleigh scattering attenutation length specified by the user, the
|
|---|
| 2953 | program automatically calls the
|
|---|
| 2954 | <literal>RayleighAttenuationLengthGenerator</literal>
|
|---|
| 2955 | which calculates it for 10 degrees Celsius liquid water.
|
|---|
| 2956 | </para>
|
|---|
| 2957 |
|
|---|
| 2958 | <!-- ******* Bridgehead ******* -->
|
|---|
| 2959 | <bridgehead renderas='sect4'>
|
|---|
| 2960 | Boundary Process
|
|---|
| 2961 | </bridgehead>
|
|---|
| 2962 |
|
|---|
| 2963 | <para>
|
|---|
| 2964 | Reference: E. Hecht and A. Zajac, Optics
|
|---|
| 2965 | <citation>
|
|---|
| 2966 | <xref linkend="biblio.hecht1974" endterm="biblio.hecht1974.abbrev" />
|
|---|
| 2967 | </citation>
|
|---|
| 2968 | </para>
|
|---|
| 2969 |
|
|---|
| 2970 | <para>
|
|---|
| 2971 | For the simple case of a perfectly smooth interface between two
|
|---|
| 2972 | dielectric materials, all the user needs to provide are the
|
|---|
| 2973 | refractive indices of the two materials stored in their respective
|
|---|
| 2974 | <literal>G4MaterialPropertiesTable</literal>. In all other cases, the optical
|
|---|
| 2975 | boundary process design relies on the concept of <emphasis>surfaces</emphasis>.
|
|---|
| 2976 | The information is split into two classes. One class in the
|
|---|
| 2977 | material category keeps information about the physical properties
|
|---|
| 2978 | of the surface itself, and a second class in the geometry category
|
|---|
| 2979 | holds pointers to the relevant physical and logical volumes
|
|---|
| 2980 | involved and has an association to the physical class. Surface
|
|---|
| 2981 | objects of the second type are stored in a related table and can be
|
|---|
| 2982 | retrieved by either specifying the two ordered pairs of physical
|
|---|
| 2983 | volumes touching at the surface, or by the logical volume entirely
|
|---|
| 2984 | surrounded by this surface. The former is called a <emphasis>border
|
|---|
| 2985 | surface</emphasis> while the latter is referred to as the <emphasis>skin
|
|---|
| 2986 | surface</emphasis>. This second type of surface is useful in situations
|
|---|
| 2987 | where a volume is coded with a reflector and is placed into many
|
|---|
| 2988 | different mother volumes. A limitation is that the skin surface can
|
|---|
| 2989 | only have one and the same optical property for all of the enclosed
|
|---|
| 2990 | volume's sides. The border surface is an ordered pair of physical
|
|---|
| 2991 | volumes, so in principle, the user can choose different optical
|
|---|
| 2992 | properties for photons arriving from the reverse side of the same
|
|---|
| 2993 | interface. For the optical boundary process to use a border
|
|---|
| 2994 | surface, the two volumes must have been positioned with
|
|---|
| 2995 | <literal>G4PVPlacement</literal>. The ordered combination can exist at many
|
|---|
| 2996 | places in the simulation. When the surface concept is not needed,
|
|---|
| 2997 | and a perfectly smooth surface exists beteen two dielectic
|
|---|
| 2998 | materials, the only relevant property is the index of refraction, a
|
|---|
| 2999 | quantity stored with the material, and no restriction exists on how
|
|---|
| 3000 | the volumes were positioned.
|
|---|
| 3001 | </para>
|
|---|
| 3002 |
|
|---|
| 3003 | <para>
|
|---|
| 3004 | The physical surface object also specifies which model the
|
|---|
| 3005 | boundary process should use to simulate interactions with that
|
|---|
| 3006 | surface. In addition, the physical surface can have a material
|
|---|
| 3007 | property table all its own. The usage of this table allows all
|
|---|
| 3008 | specular constants to be wavelength dependent. In case the surface
|
|---|
| 3009 | is painted or wrapped (but not a cladding), the table may include
|
|---|
| 3010 | the thin layer's index of refraction. This allows the simulation of
|
|---|
| 3011 | boundary effects at the intersection between the medium and the
|
|---|
| 3012 | surface layer, as well as the Lambertian reflection at the far side
|
|---|
| 3013 | of the thin layer. This occurs within the process itself and does
|
|---|
| 3014 | not invoke the <literal>G4Navigator</literal>. Combinations of surface finish
|
|---|
| 3015 | properties, such as <emphasis>polished</emphasis> or
|
|---|
| 3016 | <emphasis>ground</emphasis> and <emphasis>front
|
|---|
| 3017 | painted</emphasis> or <emphasis>back painted</emphasis>, enumerate the different
|
|---|
| 3018 | situations which can be simulated.
|
|---|
| 3019 | </para>
|
|---|
| 3020 |
|
|---|
| 3021 | <para>
|
|---|
| 3022 | When a photon arrives at a medium boundary its behavior depends
|
|---|
| 3023 | on the nature of the two materials that join at that boundary.
|
|---|
| 3024 | Medium boundaries may be formed between two dielectric materials or
|
|---|
| 3025 | a dielectric and a metal. In the case of two dielectric materials,
|
|---|
| 3026 | the photon can undergo total internal reflection, refraction or
|
|---|
| 3027 | reflection, depending on the photon's wavelength, angle of
|
|---|
| 3028 | incidence, and the refractive indices on both sides of the
|
|---|
| 3029 | boundary. Furthermore, reflection and transmission probabilites are
|
|---|
| 3030 | sensitive to the state of linear polarization. In the case of an
|
|---|
| 3031 | interface between a dielectric and a metal, the photon can be
|
|---|
| 3032 | absorbed by the metal or reflected back into the dielectric. If the
|
|---|
| 3033 | photon is absorbed it can be detected according to the
|
|---|
| 3034 | photoelectron efficiency of the metal.
|
|---|
| 3035 | </para>
|
|---|
| 3036 |
|
|---|
| 3037 | <para>
|
|---|
| 3038 | As expressed in Maxwell's equations, Fresnel reflection and
|
|---|
| 3039 | refraction are intertwined through their relative probabilities of
|
|---|
| 3040 | occurrence. Therefore neither of these processes, nor total
|
|---|
| 3041 | internal reflection, are viewed as individual processes deserving
|
|---|
| 3042 | separate class implementation. Nonetheless, an attempt was made to
|
|---|
| 3043 | adhere to the abstraction of having independent processes by
|
|---|
| 3044 | splitting the code into different methods where practicable.
|
|---|
| 3045 | </para>
|
|---|
| 3046 |
|
|---|
| 3047 | <para>
|
|---|
| 3048 | One implementation of the <literal>G4OpBoundaryProcess</literal> class
|
|---|
| 3049 | employs the
|
|---|
| 3050 | <ulink url="http://geant4.slac.stanford.edu/UsersWorkshop/G4Lectures/Peter/moisan.ps">
|
|---|
| 3051 | UNIFIED model</ulink>
|
|---|
| 3052 | [A. Levin and C. Moisan, A More Physical Approach
|
|---|
| 3053 | to Model the Surface Treatment of Scintillation Counters and its
|
|---|
| 3054 | Implementation into DETECT, TRIUMF Preprint TRI-PP-96-64, Oct.
|
|---|
| 3055 | 1996] of the DETECT program [G.F. Knoll, T.F. Knoll and T.M.
|
|---|
| 3056 | Henderson, Light Collection Scintillation Detector Composites for
|
|---|
| 3057 | Neutron Detection, IEEE Trans. Nucl. Sci., 35 (1988) 872.]. It
|
|---|
| 3058 | applies to dielectric-dielectric interfaces and tries to provide a
|
|---|
| 3059 | realistic simulation, which deals with all aspects of surface
|
|---|
| 3060 | finish and reflector coating. The surface may be assumed as smooth
|
|---|
| 3061 | and covered with a metallized coating representing a specular
|
|---|
| 3062 | reflector with given reflection coefficient, or painted with a
|
|---|
| 3063 | diffuse reflecting material where Lambertian reflection occurs. The
|
|---|
| 3064 | surfaces may or may not be in optical contact with another
|
|---|
| 3065 | component and most importantly, one may consider a surface to be
|
|---|
| 3066 | made up of micro-facets with normal vectors that follow given
|
|---|
| 3067 | distributions around the nominal normal for the volume at the
|
|---|
| 3068 | impact point. For very rough surfaces, it is possible for the
|
|---|
| 3069 | photon to inversely aim at the same surface again after reflection
|
|---|
| 3070 | of refraction and so multiple interactions with the boundary are
|
|---|
| 3071 | possible within the process itself and without the need for
|
|---|
| 3072 | relocation by <literal>G4Navigator</literal>.
|
|---|
| 3073 | </para>
|
|---|
| 3074 |
|
|---|
| 3075 | <para>
|
|---|
| 3076 | The UNIFIED model provides for a range of different reflection
|
|---|
| 3077 | mechanisms. The specular lobe constant represents the reflection
|
|---|
| 3078 | probability about the normal of a micro facet. The specular spike
|
|---|
| 3079 | constant, in turn, illustrates the probability of reflection about
|
|---|
| 3080 | the average surface normal. The diffuse lobe constant is for the
|
|---|
| 3081 | probability of internal Lambertian reflection, and finally the
|
|---|
| 3082 | back-scatter spike constant is for the case of several reflections
|
|---|
| 3083 | within a deep groove with the ultimate result of exact
|
|---|
| 3084 | back-scattering. The four probabilities must add up to one, with
|
|---|
| 3085 | the diffuse lobe constant being implicit. The reader may consult
|
|---|
| 3086 | the reference for a thorough description of the model.
|
|---|
| 3087 |
|
|---|
| 3088 | <example id="programlist_PhysProc_10">
|
|---|
| 3089 | <title>
|
|---|
| 3090 | Dielectric-dielectric surface properties
|
|---|
| 3091 | defined via the <emphasis>G4OpticalSurface</emphasis>.
|
|---|
| 3092 | </title>
|
|---|
| 3093 |
|
|---|
| 3094 | <programlisting>
|
|---|
| 3095 | G4VPhysicalVolume* volume1;
|
|---|
| 3096 | G4VPhysicalVolume* volume2;
|
|---|
| 3097 |
|
|---|
| 3098 | G4OpticalSurface* OpSurface = new G4OpticalSurface("name");
|
|---|
| 3099 |
|
|---|
| 3100 | G4LogicalBorderSurface* Surface = new
|
|---|
| 3101 | G4LogicalBorderSurface("name",volume1,volume2,OpSurface);
|
|---|
| 3102 |
|
|---|
| 3103 | G4double sigma_alpha = 0.1;
|
|---|
| 3104 |
|
|---|
| 3105 | OpSurface -> SetType(dielectric_dielectric);
|
|---|
| 3106 | OpSurface -> SetModel(unified);
|
|---|
| 3107 | OpSurface -> SetFinish(groundbackpainted);
|
|---|
| 3108 | OpSurface -> SetSigmaAlpha(sigma_alpha);
|
|---|
| 3109 |
|
|---|
| 3110 | const G4int NUM = 2;
|
|---|
| 3111 |
|
|---|
| 3112 | G4double pp[NUM] = {2.038*eV, 4.144*eV};
|
|---|
| 3113 | G4double specularlobe[NUM] = {0.3, 0.3};
|
|---|
| 3114 | G4double specularspike[NUM] = {0.2, 0.2};
|
|---|
| 3115 | G4double backscatter[NUM] = {0.1, 0.1};
|
|---|
| 3116 | G4double rindex[NUM] = {1.35, 1.40};
|
|---|
| 3117 | G4double reflectivity[NUM] = {0.3, 0.5};
|
|---|
| 3118 | G4double efficiency[NUM] = {0.8, 0.1};
|
|---|
| 3119 |
|
|---|
| 3120 | G4MaterialPropertiesTable* SMPT = new G4MaterialPropertiesTable();
|
|---|
| 3121 |
|
|---|
| 3122 | SMPT -> AddProperty("RINDEX",pp,rindex,NUM);
|
|---|
| 3123 | SMPT -> AddProperty("SPECULARLOBECONSTANT",pp,specularlobe,NUM);
|
|---|
| 3124 | SMPT -> AddProperty("SPECULARSPIKECONSTANT",pp,specularspike,NUM);
|
|---|
| 3125 | SMPT -> AddProperty("BACKSCATTERCONSTANT",pp,backscatter,NUM);
|
|---|
| 3126 | SMPT -> AddProperty("REFLECTIVITY",pp,reflectivity,NUM);
|
|---|
| 3127 | SMPT -> AddProperty("EFFICIENCY",pp,efficiency,NUM);
|
|---|
| 3128 |
|
|---|
| 3129 | OpSurface -> SetMaterialPropertiesTable(SMPT);
|
|---|
| 3130 | </programlisting>
|
|---|
| 3131 | </example>
|
|---|
| 3132 | </para>
|
|---|
| 3133 |
|
|---|
| 3134 | <para>
|
|---|
| 3135 | The original
|
|---|
| 3136 | <ulink url="http://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/node231.html">
|
|---|
| 3137 | GEANT3.21 implementation</ulink> of this process is also available via
|
|---|
| 3138 | the GLISUR methods flag. [GEANT Detector Description and Simulation
|
|---|
| 3139 | Tool, Application Software Group, Computing and Networks Division,
|
|---|
| 3140 | CERN, PHYS260-6 tp 260-7.].
|
|---|
| 3141 |
|
|---|
| 3142 | <example id="programlist_PhysProc_11">
|
|---|
| 3143 | <title>
|
|---|
| 3144 | Dielectric metal surface properties defined via the
|
|---|
| 3145 | <emphasis>G4OpticalSurface</emphasis>.
|
|---|
| 3146 | </title>
|
|---|
| 3147 |
|
|---|
| 3148 | <programlisting>
|
|---|
| 3149 | G4LogicalVolume* volume_log;
|
|---|
| 3150 |
|
|---|
| 3151 | G4OpticalSurface* OpSurface = new G4OpticalSurface("name");
|
|---|
| 3152 |
|
|---|
| 3153 | G4LogicalSkinSurface* Surface = new
|
|---|
| 3154 | G4LogicalSkinSurface("name",volume_log,OpSurface);
|
|---|
| 3155 |
|
|---|
| 3156 | OpSurface -> SetType(dielectric_metal);
|
|---|
| 3157 | OpSurface -> SetFinish(ground);
|
|---|
| 3158 | OpSurface -> SetModel(glisur);
|
|---|
| 3159 |
|
|---|
| 3160 | G4double polish = 0.8;
|
|---|
| 3161 |
|
|---|
| 3162 | G4MaterialPropertiesTable *OpSurfaceProperty = new G4MaterialPropertiesTable();
|
|---|
| 3163 |
|
|---|
| 3164 | OpSurfaceProperty -> AddProperty("REFLECTIVITY",pp,reflectivity,NUM);
|
|---|
| 3165 | OpSurfaceProperty -> AddProperty("EFFICIENCY",pp,efficiency,NUM);
|
|---|
| 3166 |
|
|---|
| 3167 | OpSurface -> SetMaterialPropertiesTable(OpSurfaceProperty);
|
|---|
| 3168 | </programlisting>
|
|---|
| 3169 | </example>
|
|---|
| 3170 | </para>
|
|---|
| 3171 |
|
|---|
| 3172 | <para>
|
|---|
| 3173 | The reflectivity off a metal surface can also be calculated by way of a complex
|
|---|
| 3174 | index of refraction. Instead of storing the REFLECTIVITY directly, the user
|
|---|
| 3175 | stores the real part (REALRINDEX) and the imaginary part (IMAGINARYRINDEX) as
|
|---|
| 3176 | a function of photon energy separately in the G4MaterialPropertyTable. Geant4
|
|---|
| 3177 | then
|
|---|
| 3178 | <ulink url="./AllResources/TrackingAndPhysics/physicsProcessOptical.src/GetReflectivity.pdf">
|
|---|
| 3179 | calculates the reflectivity
|
|---|
| 3180 | </ulink>
|
|---|
| 3181 | depending on the incident angle, photon energy, degree of TE and TM
|
|---|
| 3182 | polarization, and this complex refractive index.
|
|---|
| 3183 | </para>
|
|---|
| 3184 |
|
|---|
| 3185 | <para>
|
|---|
| 3186 | The program defaults to the GLISUR model and <emphasis>polished</emphasis>
|
|---|
| 3187 | surface finish when no specific model and surface finish is
|
|---|
| 3188 | specified by the user. In the case of a dielectric-metal interface,
|
|---|
| 3189 | or when the GLISUR model is specified, the only surface finish
|
|---|
| 3190 | options available are <emphasis>polished</emphasis> or <emphasis>ground</emphasis>. For
|
|---|
| 3191 | dielectric-metal surfaces, the <literal>G4OpBoundaryProcess</literal> also
|
|---|
| 3192 | defaults to unit reflectivity and zero detection efficiency. In
|
|---|
| 3193 | cases where the user specifies the UNIFIED model, but does not
|
|---|
| 3194 | otherwise specify the model reflection probability constants, the
|
|---|
| 3195 | default becomes Lambertian reflection.
|
|---|
| 3196 | </para>
|
|---|
| 3197 |
|
|---|
| 3198 | </sect3>
|
|---|
| 3199 | </sect2>
|
|---|
| 3200 |
|
|---|
| 3201 |
|
|---|
| 3202 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 3203 | <sect2 id="sect.PhysProc.Param">
|
|---|
| 3204 | <title>
|
|---|
| 3205 | Parameterization
|
|---|
| 3206 | </title>
|
|---|
| 3207 |
|
|---|
| 3208 | <para>
|
|---|
| 3209 | In this section we describe how to use the parameterization or
|
|---|
| 3210 | "fast simulation" facilities of GEANT4. Examples are provided in
|
|---|
| 3211 | the <emphasis role="bold">examples/novice/N05 directory</emphasis>.
|
|---|
| 3212 | </para>
|
|---|
| 3213 |
|
|---|
| 3214 |
|
|---|
| 3215 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3216 | <sect3 id="sect.PhysProc.Param.Gene">
|
|---|
| 3217 | <title>
|
|---|
| 3218 | Generalities:
|
|---|
| 3219 | </title>
|
|---|
| 3220 |
|
|---|
| 3221 | <para>
|
|---|
| 3222 | The Geant4 parameterization facilities allow you to shortcut the
|
|---|
| 3223 | detailed tracking in a given volume and for given particle types in
|
|---|
| 3224 | order for you to provide your own implementation of the physics and
|
|---|
| 3225 | of the detector response.
|
|---|
| 3226 | </para>
|
|---|
| 3227 |
|
|---|
| 3228 | <para>
|
|---|
| 3229 | Parameterisations are bound to a
|
|---|
| 3230 | <emphasis role="bold"><literal>G4Region</literal></emphasis>
|
|---|
| 3231 | object, which, in the case of fast simulation is also called an
|
|---|
| 3232 | <emphasis role="bold">envelope</emphasis>. Prior to release 8.0,
|
|---|
| 3233 | parameterisations were bound
|
|---|
| 3234 | to a <literal>G4LogicalVolume</literal>, the root of a volume hierarchy.
|
|---|
| 3235 | These root volumes are now attributes of the <literal>G4Region</literal>.
|
|---|
| 3236 | Envelopes often correspond to the volumes of sub-detectors:
|
|---|
| 3237 | electromagnetic calorimeters, tracking chambers, etc. With GEANT4
|
|---|
| 3238 | it is also possible to define envelopes by overlaying a parallel or
|
|---|
| 3239 | "ghost" geometry as discussed in <xref linkend="sect.PhysProc.Param.Ghost" />.
|
|---|
| 3240 | </para>
|
|---|
| 3241 |
|
|---|
| 3242 | <para>
|
|---|
| 3243 | In GEANT4, parameterisations have three main features. You must
|
|---|
| 3244 | specify:
|
|---|
| 3245 |
|
|---|
| 3246 | <itemizedlist spacing="compact">
|
|---|
| 3247 | <listitem><para>
|
|---|
| 3248 | the particle types for which your parameterisation is valid;
|
|---|
| 3249 | </para></listitem>
|
|---|
| 3250 | <listitem><para>
|
|---|
| 3251 | the dynamics conditions for which your parameterisation is
|
|---|
| 3252 | valid and must be triggered;
|
|---|
| 3253 | </para></listitem>
|
|---|
| 3254 | <listitem><para>
|
|---|
| 3255 | the parameterisation itself: where the primary will be killed
|
|---|
| 3256 | or moved, whether or not to create it or create secondaries, etc.,
|
|---|
| 3257 | and where the detector response will be computed.
|
|---|
| 3258 | </para></listitem>
|
|---|
| 3259 | </itemizedlist>
|
|---|
| 3260 | </para>
|
|---|
| 3261 |
|
|---|
| 3262 | <para>
|
|---|
| 3263 | GEANT4 will message your parameterisation code for each step
|
|---|
| 3264 | starting in any root G4LogicalVolume (including daughters.
|
|---|
| 3265 | sub-daughters, etc. of this volume) of the <literal>G4Region</literal>.
|
|---|
| 3266 | It will proceed by first asking the available parameterisations for
|
|---|
| 3267 | the current particle type if one of them (and only one) wants to
|
|---|
| 3268 | issue a trigger. If so it will invoke its parameterisation. In this
|
|---|
| 3269 | case, the tracking
|
|---|
| 3270 | <emphasis role="bold"><emphasis>will not apply physics</emphasis></emphasis>
|
|---|
| 3271 | to the particle in the step. Instead, the UserSteppingAction will be
|
|---|
| 3272 | invoked.
|
|---|
| 3273 | </para>
|
|---|
| 3274 |
|
|---|
| 3275 | <para>
|
|---|
| 3276 | Parameterisations look like a "user stepping action" but are more
|
|---|
| 3277 | advanced because:
|
|---|
| 3278 |
|
|---|
| 3279 | <itemizedlist spacing="compact">
|
|---|
| 3280 | <listitem><para>
|
|---|
| 3281 | parameterisation code is messaged only in the
|
|---|
| 3282 | <literal>G4Region</literal> to which it is bound;
|
|---|
| 3283 | </para></listitem>
|
|---|
| 3284 | <listitem><para>
|
|---|
| 3285 | parameterisation code is messaged anywhere in the
|
|---|
| 3286 | <literal>G4Region</literal>, that is, any volume in which the track is
|
|---|
| 3287 | located;
|
|---|
| 3288 | </para></listitem>
|
|---|
| 3289 | <listitem><para>
|
|---|
| 3290 | GEANT4 will provide information to your parameterisation code
|
|---|
| 3291 | about the current root volume of the <literal>G4Region</literal>
|
|---|
| 3292 | in which the track is travelling.
|
|---|
| 3293 | </para></listitem>
|
|---|
| 3294 | </itemizedlist>
|
|---|
| 3295 | </para>
|
|---|
| 3296 |
|
|---|
| 3297 | </sect3>
|
|---|
| 3298 |
|
|---|
| 3299 |
|
|---|
| 3300 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3301 | <sect3 id="sect.PhysProc.Param.OvComp">
|
|---|
| 3302 | <title>
|
|---|
| 3303 | Overview of Parameterisation Components
|
|---|
| 3304 | </title>
|
|---|
| 3305 |
|
|---|
| 3306 | <para>
|
|---|
| 3307 | The GEANT4 components which allow the implementation and control
|
|---|
| 3308 | of parameterisations are:
|
|---|
| 3309 |
|
|---|
| 3310 | <variablelist>
|
|---|
| 3311 | <varlistentry>
|
|---|
| 3312 | <term>
|
|---|
| 3313 | <literal><emphasis role="bold">G4VFastSimulationModel</emphasis></literal>
|
|---|
| 3314 | </term>
|
|---|
| 3315 | <listitem><para>
|
|---|
| 3316 | This is the abstract class for the implementation of parameterisations.
|
|---|
| 3317 | You must inherit from it to implement your concrete parameterisation model.
|
|---|
| 3318 | </para></listitem>
|
|---|
| 3319 | </varlistentry>
|
|---|
| 3320 | <varlistentry>
|
|---|
| 3321 | <term>
|
|---|
| 3322 | <literal><emphasis role="bold">G4FastSimulationManager</emphasis></literal>
|
|---|
| 3323 | </term>
|
|---|
| 3324 | <listitem><para>
|
|---|
| 3325 | The G4VFastSimulationModel objects are attached to the
|
|---|
| 3326 | <literal>G4Region</literal> through a G4FastSimulationManager.
|
|---|
| 3327 | This object will manage the list of models and will message them at
|
|---|
| 3328 | tracking time.
|
|---|
| 3329 | </para></listitem>
|
|---|
| 3330 | </varlistentry>
|
|---|
| 3331 | <varlistentry>
|
|---|
| 3332 | <term>
|
|---|
| 3333 | <literal><emphasis role="bold">G4Region/Envelope</emphasis></literal>
|
|---|
| 3334 | </term>
|
|---|
| 3335 | <listitem><para>
|
|---|
| 3336 | As mentioned before, an envelope in GEANT4 is a
|
|---|
| 3337 | <literal><emphasis role="bold">G4Region</emphasis></literal>.
|
|---|
| 3338 | The parameterisation is bound to the <literal>G4Region</literal> by
|
|---|
| 3339 | setting a <literal>G4FastSimulationManager</literal> pointer to it.
|
|---|
| 3340 | </para>
|
|---|
| 3341 | <para>
|
|---|
| 3342 | The figure below shows how the <literal>G4VFastSimulationModel</literal>
|
|---|
| 3343 | and <literal>G4FastSimulationManager</literal> objects are bound to the
|
|---|
| 3344 | <literal>G4Region</literal>. Then for all root G4LogicalVolume's held by
|
|---|
| 3345 | the G4Region, the fast simulation code is active.
|
|---|
| 3346 |
|
|---|
| 3347 | <mediaobject>
|
|---|
| 3348 | <imageobject role="fo">
|
|---|
| 3349 | <imagedata fileref="./AllResources/TrackingAndPhysics/physicsProcessPARAM.src/ComponentsWithRegion.jpg"
|
|---|
| 3350 | format="JPG" contentwidth="7.0cm" align="center" />
|
|---|
| 3351 | </imageobject>
|
|---|
| 3352 | <imageobject role="html">
|
|---|
| 3353 | <imagedata fileref="./AllResources/TrackingAndPhysics/physicsProcessPARAM.src/ComponentsWithRegion.jpg"
|
|---|
| 3354 | format="JPG" align="center" />
|
|---|
| 3355 | </imageobject>
|
|---|
| 3356 | <caption>
|
|---|
| 3357 | </caption>
|
|---|
| 3358 | </mediaobject>
|
|---|
| 3359 |
|
|---|
| 3360 | </para></listitem>
|
|---|
| 3361 | </varlistentry>
|
|---|
| 3362 | <varlistentry>
|
|---|
| 3363 | <term>
|
|---|
| 3364 | <literal><emphasis role="bold">G4FastSimulationManagerProcess</emphasis></literal>
|
|---|
| 3365 | </term>
|
|---|
| 3366 | <listitem><para>
|
|---|
| 3367 | This is a <literal>G4VProcess</literal>. It provides the interface
|
|---|
| 3368 | between the tracking and the parameterisation. It must be set in the
|
|---|
| 3369 | process list of the particles you want to parameterise.
|
|---|
| 3370 | </para></listitem>
|
|---|
| 3371 | </varlistentry>
|
|---|
| 3372 | <varlistentry>
|
|---|
| 3373 | <term>
|
|---|
| 3374 | <literal><emphasis role="bold">G4GlobalFastSimulationManager</emphasis></literal>
|
|---|
| 3375 | </term>
|
|---|
| 3376 | <listitem><para>
|
|---|
| 3377 | This a singleton class which provides the management of the
|
|---|
| 3378 | <literal>G4FastSimulationManager</literal> objects and some ghost
|
|---|
| 3379 | facilities.
|
|---|
| 3380 | </para></listitem>
|
|---|
| 3381 | </varlistentry>
|
|---|
| 3382 | </variablelist>
|
|---|
| 3383 | </para>
|
|---|
| 3384 |
|
|---|
| 3385 | </sect3>
|
|---|
| 3386 |
|
|---|
| 3387 |
|
|---|
| 3388 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3389 | <sect3 id="sect.PhysProc.Param.FastSimModel">
|
|---|
| 3390 | <title>
|
|---|
| 3391 | The <literal>G4VFastSimulationModel</literal> Abstract Class
|
|---|
| 3392 | </title>
|
|---|
| 3393 |
|
|---|
| 3394 | <!-- ******* Bridgehead ******* -->
|
|---|
| 3395 | <bridgehead renderas='sect4'>
|
|---|
| 3396 | Constructors:
|
|---|
| 3397 | </bridgehead>
|
|---|
| 3398 |
|
|---|
| 3399 | <para>
|
|---|
| 3400 | The <literal>G4VFastSimulationModel</literal> class has two constructors.
|
|---|
| 3401 | The second one allows you to get started quickly:
|
|---|
| 3402 |
|
|---|
| 3403 | <variablelist>
|
|---|
| 3404 | <varlistentry>
|
|---|
| 3405 | <term>
|
|---|
| 3406 | <emphasis role="bold"><literal>G4VFastSimulationModel(
|
|---|
| 3407 | const G4String& aName)</literal></emphasis>:
|
|---|
| 3408 | </term>
|
|---|
| 3409 | <listitem><para>
|
|---|
| 3410 | Here <literal>aName</literal> identifies the parameterisation model.
|
|---|
| 3411 | </para></listitem>
|
|---|
| 3412 | </varlistentry>
|
|---|
| 3413 | <varlistentry>
|
|---|
| 3414 | <term>
|
|---|
| 3415 | <emphasis role="bold"><literal>G4VFastSimulationModel(const G4String&
|
|---|
| 3416 | aName, G4Region*, G4bool IsUnique=false):</literal></emphasis>
|
|---|
| 3417 | </term>
|
|---|
| 3418 | <listitem><para>
|
|---|
| 3419 | In addition to the model name, this constructor accepts a G4Region pointer.
|
|---|
| 3420 | The needed G4FastSimulationManager object is constructed if necessary,
|
|---|
| 3421 | passing to it the G4Region pointer and the boolean value. If it
|
|---|
| 3422 | already exists, the model is simply added to this manager. Note
|
|---|
| 3423 | that the <emphasis>G4VFastSimulationModel object will not keep track of
|
|---|
| 3424 | the G4Region passed in the constructor</emphasis>.
|
|---|
| 3425 | The boolean argument is there for optimization purposes: if you
|
|---|
| 3426 | know that the G4Region has a unique root G4LogicalVolume, uniquely
|
|---|
| 3427 | placed, you can set the boolean value to "true".
|
|---|
| 3428 | </para></listitem>
|
|---|
| 3429 | </varlistentry>
|
|---|
| 3430 | </variablelist>
|
|---|
| 3431 | </para>
|
|---|
| 3432 |
|
|---|
| 3433 | <!-- ******* Bridgehead ******* -->
|
|---|
| 3434 | <bridgehead renderas='sect4'>
|
|---|
| 3435 | Virtual methods:
|
|---|
| 3436 | </bridgehead>
|
|---|
| 3437 |
|
|---|
| 3438 | <para>
|
|---|
| 3439 | The G4VFastSimulationModel has three pure virtual methods which
|
|---|
| 3440 | must be overriden in your concrete class:
|
|---|
| 3441 |
|
|---|
| 3442 | <variablelist>
|
|---|
| 3443 | <varlistentry>
|
|---|
| 3444 | <term>
|
|---|
| 3445 | <emphasis role="bold"><literal>G4VFastSimulationModel(
|
|---|
| 3446 | <emphasis>const G4String& aName</emphasis>):</literal></emphasis>
|
|---|
| 3447 | </term>
|
|---|
| 3448 | <listitem><para>
|
|---|
| 3449 | Here aName identifies the parameterisation model.
|
|---|
| 3450 | </para></listitem>
|
|---|
| 3451 | </varlistentry>
|
|---|
| 3452 | <varlistentry>
|
|---|
| 3453 | <term>
|
|---|
| 3454 | <emphasis role="bold"><literal>G4bool ModelTrigger(
|
|---|
| 3455 | <emphasis>const G4FastTrack&</emphasis>):</literal></emphasis>
|
|---|
| 3456 | </term>
|
|---|
| 3457 | <listitem><para>
|
|---|
| 3458 | You must return "true" when the dynamic conditions to trigger your
|
|---|
| 3459 | parameterisation are fulfilled.
|
|---|
| 3460 | G4FastTrack provides access to the current G4Track, gives simple
|
|---|
| 3461 | access to the current root G4LogicalVolume related features (its
|
|---|
| 3462 | G4VSolid, and G4AffineTransform references between the global and
|
|---|
| 3463 | the root G4LogicalVolume local coordinates systems) and simple
|
|---|
| 3464 | access to the position and momentum expressed in the root
|
|---|
| 3465 | G4LogicalVolume coordinate system. Using these quantities and the
|
|---|
| 3466 | G4VSolid methods, you can for example easily check how far you are
|
|---|
| 3467 | from the root G4LogicalVolume boundary.
|
|---|
| 3468 | </para></listitem>
|
|---|
| 3469 | </varlistentry>
|
|---|
| 3470 | <varlistentry>
|
|---|
| 3471 | <term>
|
|---|
| 3472 | <emphasis role="bold"><literal>G4bool IsApplicable(
|
|---|
| 3473 | <emphasis>const G4ParticleDefinition&</emphasis>):</literal></emphasis>
|
|---|
| 3474 | </term>
|
|---|
| 3475 | <listitem><para>
|
|---|
| 3476 | In your implementation, you must return "true" when your model is
|
|---|
| 3477 | applicable to the G4ParticleDefinition passed to this method. The
|
|---|
| 3478 | G4ParticleDefinition provides all intrinsic particle information
|
|---|
| 3479 | (mass, charge, spin, name ...).
|
|---|
| 3480 | </para>
|
|---|
| 3481 | <para>
|
|---|
| 3482 | If you want to implement a model which is valid only for certain
|
|---|
| 3483 | particle types, it is recommended for efficiency that you use the
|
|---|
| 3484 | static pointer of the corresponding particle classes.
|
|---|
| 3485 | </para>
|
|---|
| 3486 | <para>
|
|---|
| 3487 | As an example, in a model valid for <emphasis>gamma</emphasis>s only,
|
|---|
| 3488 | the IsApplicable() method should take the form:
|
|---|
| 3489 |
|
|---|
| 3490 | <informalexample>
|
|---|
| 3491 | <programlisting>
|
|---|
| 3492 | #include "G4Gamma.hh"
|
|---|
| 3493 |
|
|---|
| 3494 | G4bool MyGammaModel::IsApplicable(const G4ParticleDefinition& partDef)
|
|---|
| 3495 | {
|
|---|
| 3496 | return &partDef == G4Gamma::GammaDefinition();
|
|---|
| 3497 | }
|
|---|
| 3498 | </programlisting>
|
|---|
| 3499 | </informalexample>
|
|---|
| 3500 | </para></listitem>
|
|---|
| 3501 | </varlistentry>
|
|---|
| 3502 | <varlistentry>
|
|---|
| 3503 | <term>
|
|---|
| 3504 | <emphasis role="bold"><literal>G4bool ModelTrigger(
|
|---|
| 3505 | <emphasis>const G4FastTrack&</emphasis>):</literal></emphasis>
|
|---|
| 3506 | </term>
|
|---|
| 3507 | <listitem><para>
|
|---|
| 3508 | You must return "true" when the dynamic conditions to trigger your
|
|---|
| 3509 | parameterisation are fulfilled.
|
|---|
| 3510 | The G4FastTrack provides access to the current G4Track, gives
|
|---|
| 3511 | simple access to envelope related features (G4LogicalVolume,
|
|---|
| 3512 | G4VSolid, and G4AffineTransform references between the global and
|
|---|
| 3513 | the envelope local coordinates systems) and simple access to the
|
|---|
| 3514 | position and momentum expressed in the envelope coordinate system.
|
|---|
| 3515 | Using these quantities and the G4VSolid methods, you can for
|
|---|
| 3516 | example easily check how far you are from the envelope boundary.
|
|---|
| 3517 | </para></listitem>
|
|---|
| 3518 | </varlistentry>
|
|---|
| 3519 | <varlistentry>
|
|---|
| 3520 | <term>
|
|---|
| 3521 | <emphasis role="bold"><literal>void DoIt(
|
|---|
| 3522 | <emphasis>const G4FastTrack&, G4FastStep&</emphasis>):</literal></emphasis>
|
|---|
| 3523 | </term>
|
|---|
| 3524 | <listitem><para>
|
|---|
| 3525 | The details of your parameterisation will be implemented in this method.
|
|---|
| 3526 | The G4FastTrack reference provides the input information, and the final
|
|---|
| 3527 | state of the particles after parameterisation must be returned
|
|---|
| 3528 | through the G4FastStep reference. Tracking for the final state
|
|---|
| 3529 | particles is requested after your parameterisation has been invoked.
|
|---|
| 3530 | </para></listitem>
|
|---|
| 3531 | </varlistentry>
|
|---|
| 3532 | </variablelist>
|
|---|
| 3533 | </para>
|
|---|
| 3534 |
|
|---|
| 3535 | </sect3>
|
|---|
| 3536 |
|
|---|
| 3537 |
|
|---|
| 3538 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3539 | <sect3 id="sect.PhysProc.Param.FastSimMan">
|
|---|
| 3540 | <title>
|
|---|
| 3541 | The <literal>G4FastSimulationManager</literal> Class:
|
|---|
| 3542 | </title>
|
|---|
| 3543 |
|
|---|
| 3544 | <para>
|
|---|
| 3545 | G4FastSimulationManager functionnalities regarding the use of ghost
|
|---|
| 3546 | volumes are explained in <xref linkend="sect.PhysProc.Param.Ghost" />.
|
|---|
| 3547 | </para>
|
|---|
| 3548 |
|
|---|
| 3549 | <!-- ******* Bridgehead ******* -->
|
|---|
| 3550 | <bridgehead renderas='sect4'>
|
|---|
| 3551 | Constructor:
|
|---|
| 3552 | </bridgehead>
|
|---|
| 3553 |
|
|---|
| 3554 | <para>
|
|---|
| 3555 | <variablelist>
|
|---|
| 3556 | <varlistentry>
|
|---|
| 3557 | <term>
|
|---|
| 3558 | <literal><emphasis role="bold">G4FastSimulationManager(
|
|---|
| 3559 | <emphasis>G4Region *anEnvelope, G4bool IsUnique=false</emphasis>):
|
|---|
| 3560 | </emphasis></literal>
|
|---|
| 3561 | </term>
|
|---|
| 3562 | <listitem><para>
|
|---|
| 3563 | This is the only constructor. You specify the G4Region by providing
|
|---|
| 3564 | its pointer. The G4FastSimulationManager object will bind itself
|
|---|
| 3565 | to this G4Region. If you know that this G4Region has a single root
|
|---|
| 3566 | G4LogicalVolume, placed only once, you can set the IsUnique boolean
|
|---|
| 3567 | to "true" to allow some optimization.
|
|---|
| 3568 | </para>
|
|---|
| 3569 | <para>
|
|---|
| 3570 | Note that if you choose to use the G4VFastSimulationModel(const
|
|---|
| 3571 | G4String&, G4Region*, G4bool) constructor for your model, the
|
|---|
| 3572 | G4FastSimulationManager will be constructed using the given
|
|---|
| 3573 | G4Region* and G4bool values of the model constructor.
|
|---|
| 3574 | </para></listitem>
|
|---|
| 3575 | </varlistentry>
|
|---|
| 3576 | </variablelist>
|
|---|
| 3577 | </para>
|
|---|
| 3578 |
|
|---|
| 3579 | <!-- ******* Bridgehead ******* -->
|
|---|
| 3580 | <bridgehead renderas='sect4'>
|
|---|
| 3581 | G4VFastSimulationModel object management:
|
|---|
| 3582 | </bridgehead>
|
|---|
| 3583 |
|
|---|
| 3584 | <para>
|
|---|
| 3585 | The following two methods provide the usual management
|
|---|
| 3586 | functions.
|
|---|
| 3587 |
|
|---|
| 3588 | <itemizedlist spacing="compact">
|
|---|
| 3589 | <listitem><para>
|
|---|
| 3590 | <literal><emphasis role="bold">void AddFastSimulationModel(
|
|---|
| 3591 | G4VFastSimulationModel*)</emphasis></literal>
|
|---|
| 3592 | </para></listitem>
|
|---|
| 3593 | <listitem><para>
|
|---|
| 3594 | <literal><emphasis role="bold">RemoveFastSimulationModel(
|
|---|
| 3595 | G4VFastSimulationModel*)</emphasis></literal>
|
|---|
| 3596 | </para></listitem>
|
|---|
| 3597 | </itemizedlist>
|
|---|
| 3598 | </para>
|
|---|
| 3599 |
|
|---|
| 3600 | <!-- ******* Bridgehead ******* -->
|
|---|
| 3601 | <bridgehead renderas='sect4'>
|
|---|
| 3602 | Interface with the G4FastSimulationManagerProcess:
|
|---|
| 3603 | </bridgehead>
|
|---|
| 3604 |
|
|---|
| 3605 | <para>
|
|---|
| 3606 | This is described in the User's Guide for Toolkit Developers
|
|---|
| 3607 | (
|
|---|
| 3608 | <!-- !!! xref linkend=""/ or ulink url="" -->
|
|---|
| 3609 | section 3.9.6
|
|---|
| 3610 | <!-- !! /ulink (remove this tag for xref) -->
|
|---|
| 3611 | )
|
|---|
| 3612 | </para>
|
|---|
| 3613 |
|
|---|
| 3614 | </sect3>
|
|---|
| 3615 |
|
|---|
| 3616 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3617 | <sect3 id="sect.PhysProc.Param.FastSimManProc">
|
|---|
| 3618 | <title>
|
|---|
| 3619 | The <literal>G4FastSimulationManagerProcess</literal> Class
|
|---|
| 3620 | </title>
|
|---|
| 3621 |
|
|---|
| 3622 | <para>
|
|---|
| 3623 | This G4VProcess serves as an interface between the tracking and the
|
|---|
| 3624 | parameterisation. At tracking time, it collaborates with the
|
|---|
| 3625 | G4FastSimulationManager of the current volume, if any, to allow the
|
|---|
| 3626 | models to trigger. If no manager exists or if no model issues a
|
|---|
| 3627 | trigger, the tracking goes on normally.
|
|---|
| 3628 | </para>
|
|---|
| 3629 |
|
|---|
| 3630 | <para>
|
|---|
| 3631 | <emphasis>In the present implementation, you must set this process in
|
|---|
| 3632 | the G4ProcessManager of the particles you parameterise to enable
|
|---|
| 3633 | your parameterisation.</emphasis>
|
|---|
| 3634 | </para>
|
|---|
| 3635 |
|
|---|
| 3636 | <para>
|
|---|
| 3637 | The processes ordering is:
|
|---|
| 3638 |
|
|---|
| 3639 | <informalexample>
|
|---|
| 3640 | <programlisting>
|
|---|
| 3641 | [n-3] ...
|
|---|
| 3642 | [n-2] Multiple Scattering
|
|---|
| 3643 | [n-1] G4FastSimulationManagerProcess
|
|---|
| 3644 | [ n ] G4Transportation
|
|---|
| 3645 | </programlisting>
|
|---|
| 3646 | </informalexample>
|
|---|
| 3647 | </para>
|
|---|
| 3648 |
|
|---|
| 3649 | <para>
|
|---|
| 3650 | This ordering is important if you use ghost geometries, since the
|
|---|
| 3651 | G4FastSimulationManagerProcess will provide navigation in the ghost
|
|---|
| 3652 | world to limit the step on ghost boundaries.
|
|---|
| 3653 | </para>
|
|---|
| 3654 |
|
|---|
| 3655 | <para>
|
|---|
| 3656 | The G4FastSimulationManager must be added to the process list of a
|
|---|
| 3657 | particle as a continuous and discrete process if you use ghost
|
|---|
| 3658 | geometries for this particle. You can add it as a discrete process
|
|---|
| 3659 | if you don't use ghosts.
|
|---|
| 3660 | </para>
|
|---|
| 3661 |
|
|---|
| 3662 | <para>
|
|---|
| 3663 | The following code registers the G4FastSimulationManagerProcess
|
|---|
| 3664 | with all the particles as a discrete and continuous process:
|
|---|
| 3665 |
|
|---|
| 3666 | <informalexample>
|
|---|
| 3667 | <programlisting>
|
|---|
| 3668 | void MyPhysicsList::addParameterisation()
|
|---|
| 3669 | {
|
|---|
| 3670 | G4FastSimulationManagerProcess*
|
|---|
| 3671 | theFastSimulationManagerProcess = new G4FastSimulationManagerProcess();
|
|---|
| 3672 | theParticleIterator->reset();
|
|---|
| 3673 | while( (*theParticleIterator)() )
|
|---|
| 3674 | {
|
|---|
| 3675 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 3676 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 3677 | pmanager->AddProcess(theFastSimulationManagerProcess, -1, 0, 0);
|
|---|
| 3678 | }
|
|---|
| 3679 | }
|
|---|
| 3680 | </programlisting>
|
|---|
| 3681 | </informalexample>
|
|---|
| 3682 | </para>
|
|---|
| 3683 |
|
|---|
| 3684 | </sect3>
|
|---|
| 3685 |
|
|---|
| 3686 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3687 | <sect3 id="sect.PhysProc.Param.FastSimManSing">
|
|---|
| 3688 | <title>
|
|---|
| 3689 | The <literal>G4GlobalFastSimulationManager</literal> Singleton Class
|
|---|
| 3690 | </title>
|
|---|
| 3691 |
|
|---|
| 3692 | <para>
|
|---|
| 3693 | This class is a singleton which can be accessed as follows:
|
|---|
| 3694 |
|
|---|
| 3695 | <informalexample>
|
|---|
| 3696 | <programlisting>
|
|---|
| 3697 | #include "G4GlobalFastSimulationManager.hh"
|
|---|
| 3698 | ...
|
|---|
| 3699 | ...
|
|---|
| 3700 | G4GlobalFastSimulationManager* globalFSM;
|
|---|
| 3701 | globalFSM = G4GlobalFastSimulationManager::getGlobalFastSimulationManager();
|
|---|
| 3702 | ...
|
|---|
| 3703 | ...
|
|---|
| 3704 | </programlisting>
|
|---|
| 3705 | </informalexample>
|
|---|
| 3706 | </para>
|
|---|
| 3707 |
|
|---|
| 3708 | <para>
|
|---|
| 3709 | Presently, you will mainly need to use the
|
|---|
| 3710 | GlobalFastSimulationManager if you use ghost geometries.
|
|---|
| 3711 | </para>
|
|---|
| 3712 |
|
|---|
| 3713 | </sect3>
|
|---|
| 3714 |
|
|---|
| 3715 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3716 | <sect3 id="sect.PhysProc.Param.Ghost">
|
|---|
| 3717 | <title>
|
|---|
| 3718 | Parameterisation Using Ghost Geometries
|
|---|
| 3719 | </title>
|
|---|
| 3720 |
|
|---|
| 3721 | <para>
|
|---|
| 3722 | In some cases, volumes of the tracking geometry do not allow
|
|---|
| 3723 | envelopes to be defined. This may be the case with a geometry
|
|---|
| 3724 | coming from a CAD system. Since such a geometry is flat, a parallel
|
|---|
| 3725 | geometry must be used to define the envelopes.
|
|---|
| 3726 | </para>
|
|---|
| 3727 |
|
|---|
| 3728 | <para>
|
|---|
| 3729 | Another interesting case involves defining an envelope which groups
|
|---|
| 3730 | the electromagnetic and hadronic calorimeters of a detector into
|
|---|
| 3731 | one volume. This may be useful when parameterizing the interaction
|
|---|
| 3732 | of charged pions. You will very likely not want electrons to see
|
|---|
| 3733 | this envelope, which means that ghost geometries have to be
|
|---|
| 3734 | organized by particle flavours.
|
|---|
| 3735 | </para>
|
|---|
| 3736 |
|
|---|
| 3737 | <para>
|
|---|
| 3738 | Using ghost geometries implies some more overhead in the
|
|---|
| 3739 | parameterisation mechanism for the particles sensitive to ghosts,
|
|---|
| 3740 | since navigation is provided in the ghost geometry by the
|
|---|
| 3741 | G4FastSimulationManagerProcess. Usually, however, only a few
|
|---|
| 3742 | volumes will be placed in this ghost world, so that the geometry
|
|---|
| 3743 | computations will remain rather cheap.
|
|---|
| 3744 | </para>
|
|---|
| 3745 |
|
|---|
| 3746 | <para>
|
|---|
| 3747 | In the existing implementation (temporary implementation with
|
|---|
| 3748 | G4Region but before parallel geometry implementation), you may only
|
|---|
| 3749 | consider ghost G4Regions with just one root G4LogicalVolume. The
|
|---|
| 3750 | G4GlobalFastSimulationManager provides the construction of the
|
|---|
| 3751 | ghost geometry by making first an empty "clone" of the world for
|
|---|
| 3752 | tracking provided by the construct() method of your
|
|---|
| 3753 | G4VUserDetectorConstruction concrete class. You provide the
|
|---|
| 3754 | placement of the G4Region root G4LogicalVolume relative to the
|
|---|
| 3755 | ghost world coordinates in the G4FastSimulationManager objects. A
|
|---|
| 3756 | ghost G4Region is recognized by the fact that its associated
|
|---|
| 3757 | G4FastSimulationManager retains a non-empty list of placements.
|
|---|
| 3758 | </para>
|
|---|
| 3759 |
|
|---|
| 3760 | <para>
|
|---|
| 3761 | The G4GlobalFastSimulationManager will then use both those
|
|---|
| 3762 | placements and the IsApplicable() methods of the models attached to
|
|---|
| 3763 | the G4FastSimulationManager objects to build the flavour-dependant
|
|---|
| 3764 | ghost geometries.
|
|---|
| 3765 | </para>
|
|---|
| 3766 |
|
|---|
| 3767 | <para>
|
|---|
| 3768 | Then at the beginning of the tracking of a particle, the
|
|---|
| 3769 | appropriate ghost world, if any, will be selected.
|
|---|
| 3770 | </para>
|
|---|
| 3771 |
|
|---|
| 3772 | <para>
|
|---|
| 3773 | The steps required to build one ghost G4Region are:
|
|---|
| 3774 |
|
|---|
| 3775 | <orderedlist spacing="compact">
|
|---|
| 3776 | <listitem><para>
|
|---|
| 3777 | built the ghost G4Region : myGhostRegion;
|
|---|
| 3778 | </para></listitem>
|
|---|
| 3779 | <listitem><para>
|
|---|
| 3780 | build the root G4LogicalVolume: myGhostLogical, set it to
|
|---|
| 3781 | myGhostRegion;
|
|---|
| 3782 | </para></listitem>
|
|---|
| 3783 | <listitem><para>
|
|---|
| 3784 | build a G4FastSimulationManager object, myGhostFSManager,
|
|---|
| 3785 | giving myGhostRegion as argument of the constructor;
|
|---|
| 3786 | </para></listitem>
|
|---|
| 3787 | <listitem><para>
|
|---|
| 3788 | <para>
|
|---|
| 3789 | give to the G4FastSimulationManager the placement of the
|
|---|
| 3790 | myGhostLogical, by invoking for the G4FastSimulationManager method:
|
|---|
| 3791 | <informalexample>
|
|---|
| 3792 | <programlisting>
|
|---|
| 3793 | AddGhostPlacement(G4RotationMatrix*, const G4ThreeVector&);
|
|---|
| 3794 | </programlisting>
|
|---|
| 3795 | </informalexample>
|
|---|
| 3796 | or:
|
|---|
| 3797 | <informalexample>
|
|---|
| 3798 | <programlisting>
|
|---|
| 3799 | AddGhostPlacement(G4Transform3D*);
|
|---|
| 3800 | </programlisting>
|
|---|
| 3801 | </informalexample>
|
|---|
| 3802 |
|
|---|
| 3803 | where the rotation matrix and translation vector of the 3-D
|
|---|
| 3804 | transformation describe the placement relative to the ghost world
|
|---|
| 3805 | coordinates.
|
|---|
| 3806 | </para>
|
|---|
| 3807 | </para></listitem>
|
|---|
| 3808 | <listitem><para>
|
|---|
| 3809 | build your G4VFastSimulationModel objects and add them to the
|
|---|
| 3810 | myGhostFSManager.
|
|---|
| 3811 | <emphasis>The IsApplicable() methods of your models will be used by the
|
|---|
| 3812 | G4GlobalFastSimulationManager to build the ghost geometries
|
|---|
| 3813 | corresponding to a given particle type.</emphasis>
|
|---|
| 3814 | </para></listitem>
|
|---|
| 3815 | <listitem><para>
|
|---|
| 3816 | <para>
|
|---|
| 3817 | Invoke the G4GlobalFastSimulationManager method:
|
|---|
| 3818 |
|
|---|
| 3819 | <informalexample>
|
|---|
| 3820 | <programlisting>
|
|---|
| 3821 | G4GlobalFastSimulationManager::getGlobalFastSimulationManager()->
|
|---|
| 3822 |
|
|---|
| 3823 | CloseFastSimulation();
|
|---|
| 3824 | </programlisting>
|
|---|
| 3825 | </informalexample>
|
|---|
| 3826 | </para>
|
|---|
| 3827 | </para></listitem>
|
|---|
| 3828 | </orderedlist>
|
|---|
| 3829 | </para>
|
|---|
| 3830 |
|
|---|
| 3831 | <para>
|
|---|
| 3832 | This last call will cause the G4GlobalFastSimulationManager to
|
|---|
| 3833 | build the flavour-dependent ghost geometries. This call must be
|
|---|
| 3834 | done before the RunManager closes the geometry. (It is foreseen
|
|---|
| 3835 | that the run manager in the future will invoke the
|
|---|
| 3836 | CloseFastSimulation() to synchronize properly with the closing of
|
|---|
| 3837 | the geometry).
|
|---|
| 3838 | </para>
|
|---|
| 3839 |
|
|---|
| 3840 | <para>
|
|---|
| 3841 | Visualization facilities are provided for ghosts geometries. After
|
|---|
| 3842 | the CloseFastSimulation() invocation, it is possible to ask for the
|
|---|
| 3843 | drawing of ghosts in an interactive session. The basic commands
|
|---|
| 3844 | are:
|
|---|
| 3845 |
|
|---|
| 3846 | <itemizedlist spacing="compact">
|
|---|
| 3847 | <listitem><para>
|
|---|
| 3848 | <para>
|
|---|
| 3849 | /vis/draw/Ghosts particle_name
|
|---|
| 3850 | </para>
|
|---|
| 3851 | <para>
|
|---|
| 3852 | which makes the drawing of the ghost geometry associated with the
|
|---|
| 3853 | particle specified by name in the command line.
|
|---|
| 3854 | </para>
|
|---|
| 3855 | </para></listitem>
|
|---|
| 3856 | <listitem><para>
|
|---|
| 3857 | /vis/draw/Ghosts
|
|---|
| 3858 | <para>
|
|---|
| 3859 | which draws all the ghost geometries.
|
|---|
| 3860 | </para>
|
|---|
| 3861 | </para></listitem>
|
|---|
| 3862 | </itemizedlist>
|
|---|
| 3863 | </para>
|
|---|
| 3864 |
|
|---|
| 3865 | </sect3>
|
|---|
| 3866 |
|
|---|
| 3867 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3868 | <sect3 id="sect.PhysProc.Param.GFlash">
|
|---|
| 3869 | <title>
|
|---|
| 3870 | Gflash Parameterization
|
|---|
| 3871 | </title>
|
|---|
| 3872 |
|
|---|
| 3873 | <para>
|
|---|
| 3874 | This section describes how to use the Gflash library. Gflash is a
|
|---|
| 3875 | concrete parameterization which is based on the equations and
|
|---|
| 3876 | parameters of the original Gflash package from H1(hep-ex/0001020,
|
|---|
| 3877 | Grindhammer & Peters, see physics manual) and uses the "fast
|
|---|
| 3878 | simulation" facilities of GEANT4 described above. Briefly, whenever
|
|---|
| 3879 | a e-/e+ particle enters the calorimeter, it is parameterized if it
|
|---|
| 3880 | has a minimum energy and the shower is expected to be contained in
|
|---|
| 3881 | the calorimeter (or " parameterization envelope"). If this is
|
|---|
| 3882 | fulfilled the particle is killed, as well as all secondaries, and
|
|---|
| 3883 | the energy is deposited according to the Gflash equations. An
|
|---|
| 3884 | example, provided in
|
|---|
| 3885 | <emphasis role="bold">examples/extended/parametrisation/gflash/</emphasis>,
|
|---|
| 3886 | shows how to interface Gflash to your application. The simulation time is
|
|---|
| 3887 | measured, so the user can immediately see the speed increase
|
|---|
| 3888 | resulting from the use of Gflash.
|
|---|
| 3889 | </para>
|
|---|
| 3890 |
|
|---|
| 3891 | </sect3>
|
|---|
| 3892 |
|
|---|
| 3893 | <!-- ******************* Section (Level#3) ****************** -->
|
|---|
| 3894 | <sect3 id="sect.PhysProc.Param.UsingGFlash">
|
|---|
| 3895 | <title>
|
|---|
| 3896 | Using the Gflash Parameterisation
|
|---|
| 3897 | </title>
|
|---|
| 3898 |
|
|---|
| 3899 | <para>
|
|---|
| 3900 | To use Gflash "out of the box" the following steps are necessary:
|
|---|
| 3901 |
|
|---|
| 3902 | <itemizedlist spacing="compact">
|
|---|
| 3903 | <listitem><para>
|
|---|
| 3904 | The user must add the fast simulation process to his process
|
|---|
| 3905 | manager:
|
|---|
| 3906 |
|
|---|
| 3907 | <informalexample>
|
|---|
| 3908 | <programlisting>
|
|---|
| 3909 | void MyPhysicsList::addParameterisation()
|
|---|
| 3910 | {
|
|---|
| 3911 | G4FastSimulationManagerProcess*
|
|---|
| 3912 | theFastSimulationManagerProcess = new G4FastSimulationManagerProcess();
|
|---|
| 3913 | theParticleIterator->reset();
|
|---|
| 3914 | while( (*theParticleIterator)() )
|
|---|
| 3915 | {
|
|---|
| 3916 | G4ParticleDefinition* particle = theParticleIterator->value();
|
|---|
| 3917 | G4ProcessManager* pmanager = particle->GetProcessManager();
|
|---|
| 3918 | pmanager->AddProcess(theFastSimulationManagerProcess, -1, 0, 0);
|
|---|
| 3919 | }
|
|---|
| 3920 | }
|
|---|
| 3921 | </programlisting>
|
|---|
| 3922 | </informalexample>
|
|---|
| 3923 | </para></listitem>
|
|---|
| 3924 | <listitem><para>
|
|---|
| 3925 | <para>
|
|---|
| 3926 | The envelope in which the parameterization should be performed
|
|---|
| 3927 | must be specified (below: G4Region m_calo_region) and the
|
|---|
| 3928 | GFlashShowerModel must be assigned to this region. Furthermore, the
|
|---|
| 3929 | classes GFlashParticleBounds (which provides thresholds for the
|
|---|
| 3930 | parameterization like minimal energy etc.), GflashHitMaker(a helper
|
|---|
| 3931 | class to generate hits in the sensitive detector) and
|
|---|
| 3932 | GFlashHomoShowerParamterisation (which does the computations) must
|
|---|
| 3933 | be constructed (by the user at the moment) and assigned to the
|
|---|
| 3934 | GFlashShowerModel. Please note that at the moment only homogeneous
|
|---|
| 3935 | calorimeters are supported.
|
|---|
| 3936 | </para>
|
|---|
| 3937 | <para>
|
|---|
| 3938 | <informalexample>
|
|---|
| 3939 | <programlisting>
|
|---|
| 3940 | m_theFastShowerModel = new GFlashShowerModel("fastShowerModel",m_calo_region);
|
|---|
| 3941 | m_theParametrisation = new GFlashHomoShowerParamterisation(matManager->getMaterial(mat));
|
|---|
| 3942 | m_theParticleBounds = new GFlashParticleBounds();
|
|---|
| 3943 | m_theHMaker = new GFlashHitMaker();
|
|---|
| 3944 | m_theFastShowerModel->SetParametrisation(*m_theParametrisation);
|
|---|
| 3945 | m_theFastShowerModel->SetParticleBounds(*m_theParticleBounds) ;
|
|---|
| 3946 | m_theFastShowerModel->SetHitMaker(*m_theHMaker);
|
|---|
| 3947 | </programlisting>
|
|---|
| 3948 | </informalexample>
|
|---|
| 3949 | </para>
|
|---|
| 3950 | <para>
|
|---|
| 3951 | The user must also set the material of the calorimeter, since the
|
|---|
| 3952 | computation depends on the material.
|
|---|
| 3953 | </para>
|
|---|
| 3954 | </para></listitem>
|
|---|
| 3955 | <listitem><para>
|
|---|
| 3956 | <para>
|
|---|
| 3957 | It is mandatory to use G4VGFlashSensitiveDetector as
|
|---|
| 3958 | (additional) base class for the sensitive detector.
|
|---|
| 3959 | </para>
|
|---|
| 3960 | <para>
|
|---|
| 3961 | <informalexample>
|
|---|
| 3962 | <programlisting>
|
|---|
| 3963 | class ExGflashSensitiveDetector: public G4VSensitiveDetector ,public G4VGFlashSensitiveDetector
|
|---|
| 3964 | </programlisting>
|
|---|
| 3965 | </informalexample>
|
|---|
| 3966 | </para>
|
|---|
| 3967 | <para>
|
|---|
| 3968 | Here it is necessary to implement a separate interface, where the
|
|---|
| 3969 | GFlash spots are processed.
|
|---|
| 3970 | </para>
|
|---|
| 3971 | <para>
|
|---|
| 3972 | <informalexample>
|
|---|
| 3973 | <programlisting>
|
|---|
| 3974 | (ProcessHits(G4GFlashSpot*aSpot ,G4TouchableHistory* ROhist))
|
|---|
| 3975 | </programlisting>
|
|---|
| 3976 | </informalexample>
|
|---|
| 3977 | </para>
|
|---|
| 3978 | <para>
|
|---|
| 3979 | A separate interface is used, because the Gflash spots naturally
|
|---|
| 3980 | contain less information than the full simulation.
|
|---|
| 3981 | </para>
|
|---|
| 3982 | </para></listitem>
|
|---|
| 3983 | </itemizedlist>
|
|---|
| 3984 | </para>
|
|---|
| 3985 |
|
|---|
| 3986 | <para>
|
|---|
| 3987 | Since the parameters in the Gflash package are taken from fits to
|
|---|
| 3988 | full simulations with Geant3, some retuning might be necessary for
|
|---|
| 3989 | good agreement with Geant4 showers. For experiment-specific
|
|---|
| 3990 | geometries some retuning might be necessary anyway. The tuning is
|
|---|
| 3991 | quite complicated since there are many parameters (some correlated)
|
|---|
| 3992 | and cannot be described here (see again hep-ex/0001020). For brave
|
|---|
| 3993 | users the Gflash framework already forsees the possibility of
|
|---|
| 3994 | passing a class with the (users)
|
|---|
| 3995 | parameters,<emphasis role="bold">GVFlashHomoShowerTuning</emphasis>,
|
|---|
| 3996 | to the GFlashHomoShowerParamterisation constructor.
|
|---|
| 3997 | The default parameters are the original Gflash parameters:
|
|---|
| 3998 |
|
|---|
| 3999 | <informalexample>
|
|---|
| 4000 | <programlisting>
|
|---|
| 4001 | GFlashHomoShowerParameterisation(G4Material * aMat, GVFlashHomoShowerTuning * aPar = 0);
|
|---|
| 4002 | </programlisting>
|
|---|
| 4003 | </informalexample>
|
|---|
| 4004 | </para>
|
|---|
| 4005 |
|
|---|
| 4006 | <para>
|
|---|
| 4007 | Now there is also a preliminary implemenation of a parameterization
|
|---|
| 4008 | for sampling calorimeters.
|
|---|
| 4009 | </para>
|
|---|
| 4010 |
|
|---|
| 4011 | <para>
|
|---|
| 4012 | The user must specify the active and passive material, as well as
|
|---|
| 4013 | the thickness of the active and passive layer.
|
|---|
| 4014 | </para>
|
|---|
| 4015 |
|
|---|
| 4016 | <para>
|
|---|
| 4017 | The sampling structure of the calorimeter is taken into account by
|
|---|
| 4018 | using an "effective medium" to compute the shower shape.
|
|---|
| 4019 | </para>
|
|---|
| 4020 |
|
|---|
| 4021 | <para>
|
|---|
| 4022 | All material properties needed are calculated automatically. If
|
|---|
| 4023 | tuning is required, the user can pass his own parameter set in
|
|---|
| 4024 | the class
|
|---|
| 4025 | <emphasis role="bold">GFlashSamplingShowerTuning</emphasis>.
|
|---|
| 4026 | Here the user can also set his calorimeter resolution.
|
|---|
| 4027 | </para>
|
|---|
| 4028 |
|
|---|
| 4029 | <para>
|
|---|
| 4030 | All in all the constructor looks the following:
|
|---|
| 4031 |
|
|---|
| 4032 | <informalexample>
|
|---|
| 4033 | <programlisting>
|
|---|
| 4034 | GFlashSamplingShowerParamterisation(G4Material * Mat1, G4Material * Mat2,G4double d1,G4double d2,
|
|---|
| 4035 | GVFlashSamplingShowerTuning * aPar = 0);
|
|---|
| 4036 | </programlisting>
|
|---|
| 4037 | </informalexample>
|
|---|
| 4038 | </para>
|
|---|
| 4039 |
|
|---|
| 4040 | <para>
|
|---|
| 4041 | An implementation of some tools that should help the user to tune
|
|---|
| 4042 | the parameterization is forseen.
|
|---|
| 4043 | </para>
|
|---|
| 4044 |
|
|---|
| 4045 | </sect3>
|
|---|
| 4046 | </sect2>
|
|---|
| 4047 |
|
|---|
| 4048 |
|
|---|
| 4049 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 4050 | <sect2 id="sect.PhysProc.Trans">
|
|---|
| 4051 | <title>
|
|---|
| 4052 | Transportation Process
|
|---|
| 4053 | </title>
|
|---|
| 4054 |
|
|---|
| 4055 | <para>
|
|---|
| 4056 | To be delivered by J. Apostolakis (<email>John.Apostolakis@cern.ch</email>).
|
|---|
| 4057 | </para>
|
|---|
| 4058 |
|
|---|
| 4059 |
|
|---|
| 4060 | </sect2>
|
|---|
| 4061 | </sect1>
|
|---|