| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- -->
|
|---|
| 3 | <!-- [History] -->
|
|---|
| 4 | <!-- Changed by: Katsuya Amako, 4-Aug-1998 -->
|
|---|
| 5 | <!-- Changed by: Katsuya Amako, 9-Jul-1998 -->
|
|---|
| 6 | <!-- Proof read by: Joe Chuma, 2-Jul-1999 -->
|
|---|
| 7 | <!-- few corrections in 3.18.7: mma, 11-Jan-2001 -->
|
|---|
| 8 | <!-- Converted to DocBook: Katsuya Amako, Aug-2006 -->
|
|---|
| 9 | <!-- -->
|
|---|
| 10 | <!-- ******************************************************** -->
|
|---|
| 11 |
|
|---|
| 12 |
|
|---|
| 13 | <!-- ******************* Section (Level#1) ****************** -->
|
|---|
| 14 | <sect1 id="sect.ProThres">
|
|---|
| 15 | <title>
|
|---|
| 16 | Production Threshold versus Tracking Cut
|
|---|
| 17 | </title>
|
|---|
| 18 |
|
|---|
| 19 |
|
|---|
| 20 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 21 | <sect2 id="sect.ProThres.Gen">
|
|---|
| 22 | <title>
|
|---|
| 23 | General considerations
|
|---|
| 24 | </title>
|
|---|
| 25 |
|
|---|
| 26 | <para>
|
|---|
| 27 | We have to fulfill two contradictory requirements. It is the
|
|---|
| 28 | responsibility of each individual <emphasis role="bold">process</emphasis>
|
|---|
| 29 | to produce secondary particles according to its own capabilities. On
|
|---|
| 30 | the other hand, it is only the Geant4 kernel (i.e., tracking) which can
|
|---|
| 31 | ensure an overall coherence of the simulation.
|
|---|
| 32 | </para>
|
|---|
| 33 |
|
|---|
| 34 | <para>
|
|---|
| 35 | The general principles in Geant4 are the following:
|
|---|
| 36 |
|
|---|
| 37 | <orderedlist spacing="compact">
|
|---|
| 38 | <listitem><para>
|
|---|
| 39 | Each <emphasis role="bold">process</emphasis> has its intrinsic limit(s)
|
|---|
| 40 | to produce secondary particles.
|
|---|
| 41 | </para></listitem>
|
|---|
| 42 | <listitem><para>
|
|---|
| 43 | All particles produced (and accepted) will be tracked up to
|
|---|
| 44 | <emphasis role="bold">zero range</emphasis>.
|
|---|
| 45 | </para></listitem>
|
|---|
| 46 | <listitem><para>
|
|---|
| 47 | Each <emphasis role="bold">particle</emphasis> has a suggested cut in range
|
|---|
| 48 | (which is converted to energy for all materials), and defined via a
|
|---|
| 49 | <literal>SetCut()</literal> method (see
|
|---|
| 50 | <xref linkend="sect.HowToSpecParti.RangeCuts" />).
|
|---|
| 51 | </para></listitem>
|
|---|
| 52 | </orderedlist>
|
|---|
| 53 | </para>
|
|---|
| 54 |
|
|---|
| 55 | <para>
|
|---|
| 56 | Points 1 and 2 imply that the cut associated with the
|
|---|
| 57 | <emphasis role="bold">particle</emphasis> is a (recommended)
|
|---|
| 58 | <emphasis role="bold">production</emphasis> threshold of secondary particles.
|
|---|
| 59 | </para>
|
|---|
| 60 |
|
|---|
| 61 | </sect2>
|
|---|
| 62 |
|
|---|
| 63 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 64 | <sect2 id="sect.ProThres.Set">
|
|---|
| 65 | <title>
|
|---|
| 66 | Set production threshold (<literal>SetCut</literal> methods)
|
|---|
| 67 | </title>
|
|---|
| 68 |
|
|---|
| 69 | <para>
|
|---|
| 70 | As already mentioned, each kind of particle has a suggested
|
|---|
| 71 | production threshold. Some of the processes will not use this
|
|---|
| 72 | threshold (e.g., decay), while other processes will use it as a
|
|---|
| 73 | default value for their intrinsic limits (e.g., ionisation and
|
|---|
| 74 | bremsstrahlung).
|
|---|
| 75 | </para>
|
|---|
| 76 |
|
|---|
| 77 | <para>See
|
|---|
| 78 | <xref linkend="sect.HowToSpecParti.RangeCuts" /> to see how to set
|
|---|
| 79 | the production threshold.
|
|---|
| 80 | </para>
|
|---|
| 81 |
|
|---|
| 82 | </sect2>
|
|---|
| 83 |
|
|---|
| 84 |
|
|---|
| 85 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 86 | <sect2 id="sect.ProThres.Apply">
|
|---|
| 87 | <title>
|
|---|
| 88 | Apply cut
|
|---|
| 89 | </title>
|
|---|
| 90 |
|
|---|
| 91 | <para>
|
|---|
| 92 | The <literal>DoIt</literal> methods of each process can produce secondary
|
|---|
| 93 | particles. Two cases can happen:
|
|---|
| 94 |
|
|---|
| 95 | <itemizedlist spacing="compact">
|
|---|
| 96 | <listitem><para>
|
|---|
| 97 | a process sets its intrinsic limit greater than or equal to the
|
|---|
| 98 | recommended production threshold. OK. Nothing has to be done
|
|---|
| 99 | (nothing can be done !).
|
|---|
| 100 | </para></listitem>
|
|---|
| 101 | <listitem><para>
|
|---|
| 102 | a process sets its intrinsic limit smaller than the production
|
|---|
| 103 | threshold (for instance 0).
|
|---|
| 104 | </para></listitem>
|
|---|
| 105 | </itemizedlist>
|
|---|
| 106 | </para>
|
|---|
| 107 |
|
|---|
| 108 | <para>
|
|---|
| 109 | The list of secondaries is sent to the <emphasis>SteppingManager</emphasis>
|
|---|
| 110 | via a <emphasis>ParticleChange</emphasis> object.
|
|---|
| 111 | </para>
|
|---|
| 112 |
|
|---|
| 113 | <para>
|
|---|
| 114 | <emphasis>Before</emphasis> being recopied to the temporary stack for later
|
|---|
| 115 | tracking, the particles below the production threshold will be kept or
|
|---|
| 116 | deleted according to the safe mechanism explained hereafter.
|
|---|
| 117 |
|
|---|
| 118 | <itemizedlist spacing="compact">
|
|---|
| 119 | <listitem><para>
|
|---|
| 120 | The <emphasis>ParticleDefinition</emphasis>
|
|---|
| 121 | (or <emphasis>ParticleWithCuts</emphasis>) has a boolean data member:
|
|---|
| 122 | <literal>ApplyCut</literal>.</para></listitem>
|
|---|
| 123 | <listitem><para><literal>ApplyCut</literal> is OFF: do nothing.
|
|---|
| 124 | All the secondaries are stacked (and then tracked later on), regardless
|
|---|
| 125 | of their initial energy. The Geant4 kernel respects the best that the
|
|---|
| 126 | physics can do, but neglects the overall coherence and the efficiency.
|
|---|
| 127 | Energy conservation is respected as far as the processes know how to
|
|---|
| 128 | handle correctly the particles they produced!
|
|---|
| 129 | </para></listitem>
|
|---|
| 130 | <listitem><para>
|
|---|
| 131 | <literal>ApplyCut</literal> in ON: the <emphasis>TrackingManager</emphasis>
|
|---|
| 132 | checks the range of each secondary against the production threshold and
|
|---|
| 133 | against the safety. The particle is stacked if <literal>range >
|
|---|
| 134 | min(cut,safety).</literal>
|
|---|
| 135 | <itemizedlist spacing="compact">
|
|---|
| 136 | <listitem><para>
|
|---|
| 137 | If not, check if the process has nevertheless set the flag
|
|---|
| 138 | ``good for tracking'' and then stack it (see
|
|---|
| 139 | <xref linkend="sect.ProThres.WhyProd" />
|
|---|
| 140 | below for the explanation of the <literal>GoodForTracking</literal> flag).
|
|---|
| 141 | </para></listitem>
|
|---|
| 142 | <listitem><para>
|
|---|
| 143 | If not, recuperate its kinetic energy in the
|
|---|
| 144 | <literal>localEnergyDeposit</literal>, and set
|
|---|
| 145 | <literal>tkin=0</literal>.
|
|---|
| 146 | </para></listitem>
|
|---|
| 147 | <listitem><para>
|
|---|
| 148 | Then check in the <emphasis>ProcessManager</emphasis> if the vector of
|
|---|
| 149 | <emphasis>ProcessAtRest</emphasis> is not empty. If yes, stack the
|
|---|
| 150 | particle for performing the ``Action At Rest'' later. If not, and only
|
|---|
| 151 | in this case, abandon this secondary.
|
|---|
| 152 | </para></listitem>
|
|---|
| 153 | </itemizedlist>
|
|---|
| 154 | </para></listitem>
|
|---|
| 155 | </itemizedlist>
|
|---|
| 156 | </para>
|
|---|
| 157 |
|
|---|
| 158 | <para>
|
|---|
| 159 | With this sophisticated mechanism we have the global cut that we
|
|---|
| 160 | wanted, but with energy conservation, and we respect boundary
|
|---|
| 161 | constraint (safety) and the wishes of the processes (via ``good for
|
|---|
| 162 | tracking'').
|
|---|
| 163 | </para>
|
|---|
| 164 |
|
|---|
| 165 | </sect2>
|
|---|
| 166 |
|
|---|
| 167 |
|
|---|
| 168 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 169 | <sect2 id="sect.ProThres.WhyProd">
|
|---|
| 170 | <title>
|
|---|
| 171 | Why produce secondaries below threshold?
|
|---|
| 172 | </title>
|
|---|
| 173 |
|
|---|
| 174 | <para>
|
|---|
| 175 | A process may have good reasons to produce particles below the
|
|---|
| 176 | recommended threshold:
|
|---|
| 177 |
|
|---|
| 178 | <itemizedlist spacing="compact">
|
|---|
| 179 | <listitem><para>
|
|---|
| 180 | checking the range of the secondary versus geometrical
|
|---|
| 181 | quantities like safety may allow one to realize the possibility
|
|---|
| 182 | that the produced particle, even below threshold, will reach a
|
|---|
| 183 | sensitive part of the detector;
|
|---|
| 184 | </para></listitem>
|
|---|
| 185 | <listitem><para>
|
|---|
| 186 | another example is the gamma conversion: the positron is always
|
|---|
| 187 | produced, even at zero energy, for further annihilation.
|
|---|
| 188 | </para></listitem>
|
|---|
| 189 | </itemizedlist>
|
|---|
| 190 | </para>
|
|---|
| 191 |
|
|---|
| 192 | <para>
|
|---|
| 193 | These secondary particles are sent to the ``Stepping Manager''
|
|---|
| 194 | with a flag <literal>GoodForTracking</literal> to pass the filter explained
|
|---|
| 195 | in the previous section (even when <literal>ApplyCut</literal> is ON).
|
|---|
| 196 | </para>
|
|---|
| 197 |
|
|---|
| 198 | </sect2>
|
|---|
| 199 |
|
|---|
| 200 |
|
|---|
| 201 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 202 | <sect2 id="sect.ProThres.RangOrEner">
|
|---|
| 203 | <title>
|
|---|
| 204 | Cuts in stopping range or in energy?
|
|---|
| 205 | </title>
|
|---|
| 206 |
|
|---|
| 207 | <para>
|
|---|
| 208 | The cuts in stopping range allow one to say that the energy has
|
|---|
| 209 | been released at the correct space position, limiting the
|
|---|
| 210 | approximation within a given distance. On the contrary, cuts in
|
|---|
| 211 | energy imply accuracies of the energy depositions which depend on
|
|---|
| 212 | the material.
|
|---|
| 213 | </para>
|
|---|
| 214 |
|
|---|
| 215 | </sect2>
|
|---|
| 216 |
|
|---|
| 217 |
|
|---|
| 218 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 219 | <sect2 id="sect.ProThres.Sum">
|
|---|
| 220 | <title>
|
|---|
| 221 | Summary
|
|---|
| 222 | </title>
|
|---|
| 223 |
|
|---|
| 224 | <para>
|
|---|
| 225 | In summary, we do not have tracking cuts; we only have production
|
|---|
| 226 | thresholds in range. All particles produced and accepted are
|
|---|
| 227 | tracked up to zero range.
|
|---|
| 228 | </para>
|
|---|
| 229 |
|
|---|
| 230 | <para>
|
|---|
| 231 | It must be clear that the overall coherency that we provide
|
|---|
| 232 | cannot go beyond the capability of processes to produce particles
|
|---|
| 233 | down to the recommended threshold.
|
|---|
| 234 | </para>
|
|---|
| 235 |
|
|---|
| 236 | <para>
|
|---|
| 237 | In other words a process can produce the secondaries down to the
|
|---|
| 238 | recommended threshold, and by interrogating the geometry, or by
|
|---|
| 239 | realizing when mass-to-energy conversion can occur, recognize when
|
|---|
| 240 | particles below the threshold have to be produced.
|
|---|
| 241 | </para>
|
|---|
| 242 |
|
|---|
| 243 | </sect2>
|
|---|
| 244 |
|
|---|
| 245 |
|
|---|
| 246 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 247 | <sect2 id="sect.ProThres.Spe">
|
|---|
| 248 | <title>
|
|---|
| 249 | Special tracking cuts
|
|---|
| 250 | </title>
|
|---|
| 251 |
|
|---|
| 252 | <para>
|
|---|
| 253 | One may need to cut given particle types in given volumes for
|
|---|
| 254 | optimisation reasons. This decision is under user control, and can
|
|---|
| 255 | happen for particles during tracking as well.
|
|---|
| 256 | </para>
|
|---|
| 257 |
|
|---|
| 258 | <para>
|
|---|
| 259 | The user must be able to apply these special cuts only for the
|
|---|
| 260 | desired particles and in the desired volumes, without introducing
|
|---|
| 261 | an overhead for all the rest.
|
|---|
| 262 | </para>
|
|---|
| 263 |
|
|---|
| 264 | <para>
|
|---|
| 265 | The approach is as follows:
|
|---|
| 266 |
|
|---|
| 267 | <itemizedlist spacing="compact">
|
|---|
| 268 | <listitem><para>
|
|---|
| 269 | special user cuts are registered in the <emphasis>UserLimits</emphasis>
|
|---|
| 270 | class (or its descendant), which is associated with the logical volume
|
|---|
| 271 | class.
|
|---|
| 272 | <para>
|
|---|
| 273 | The current default list is:
|
|---|
| 274 | <itemizedlist spacing="compact">
|
|---|
| 275 | <listitem><para>
|
|---|
| 276 | max allowed step size
|
|---|
| 277 | </para></listitem>
|
|---|
| 278 | <listitem><para>
|
|---|
| 279 | max total track length
|
|---|
| 280 | </para></listitem>
|
|---|
| 281 | <listitem><para>
|
|---|
| 282 | max total time of flight
|
|---|
| 283 | </para></listitem>
|
|---|
| 284 | <listitem><para>
|
|---|
| 285 | min kinetic energy
|
|---|
| 286 | </para></listitem>
|
|---|
| 287 | <listitem><para>
|
|---|
| 288 | min remaining range
|
|---|
| 289 | </para></listitem>
|
|---|
| 290 | </itemizedlist>
|
|---|
| 291 | </para>
|
|---|
| 292 | <para>
|
|---|
| 293 | The user can instantiate a <emphasis>UserLimits</emphasis> object only
|
|---|
| 294 | for the desired logical volumes and do the association.
|
|---|
| 295 | </para>
|
|---|
| 296 | <para>
|
|---|
| 297 | The first item (max step size) is automatically taken into
|
|---|
| 298 | account by the G4 kernel while the others items must be managed by
|
|---|
| 299 | the user, as explained below.
|
|---|
| 300 | </para>
|
|---|
| 301 | <para>
|
|---|
| 302 | <emphasis role="bold">Example</emphasis>(see novice/N02):
|
|---|
| 303 | in the Tracker region, in order to force the step size not to exceed
|
|---|
| 304 | 1/10 of the Tracker thickness, it is enough to put the following code in
|
|---|
| 305 | <literal>DetectorConstruction::Construct()</literal>:
|
|---|
| 306 | <informalexample>
|
|---|
| 307 | <programlisting>
|
|---|
| 308 | G4double maxStep = 0.1*TrackerLength;
|
|---|
| 309 | logicTracker->SetUserLimits(new G4UserLimits(maxStep));
|
|---|
| 310 | </programlisting>
|
|---|
| 311 | </informalexample>
|
|---|
| 312 | and in <literal>PhysicsList</literal>, the process
|
|---|
| 313 | <literal>G4StepLimiter</literal> needs to be attached to each
|
|---|
| 314 | particle's process manager where step limitation in the Tracker region
|
|---|
| 315 | is required:
|
|---|
| 316 | <informalexample>
|
|---|
| 317 | <programlisting>
|
|---|
| 318 | // Step limitation seen as a process
|
|---|
| 319 | G4StepLimiter* stepLimiter = new G4StepLimiter();
|
|---|
| 320 | pmanager->AddDiscreteProcess(StepLimiter);
|
|---|
| 321 | </programlisting>
|
|---|
| 322 | </informalexample>
|
|---|
| 323 | </para>
|
|---|
| 324 | <para>
|
|---|
| 325 | The <emphasis>G4UserLimits</emphasis> class is in
|
|---|
| 326 | <literal>source/global/management</literal>.
|
|---|
| 327 | </para>
|
|---|
| 328 | </para></listitem>
|
|---|
| 329 | <listitem><para>
|
|---|
| 330 | Concerning the others cuts, the user must define
|
|---|
| 331 | dedicaced process(es). He registers this process (or its descendant)
|
|---|
| 332 | only for the desired particles in their process manager. He can apply
|
|---|
| 333 | his cuts in the <literal>DoIt</literal> of this process, since, via
|
|---|
| 334 | <emphasis>G4Track</emphasis>, he can access the logical volume and
|
|---|
| 335 | <emphasis>UserLimits</emphasis>.
|
|---|
| 336 |
|
|---|
| 337 | <para>
|
|---|
| 338 | An example of such process (called <emphasis>UserSpecialCuts</emphasis>) is
|
|---|
| 339 | provided in the repository, but not inserted in any process manager
|
|---|
| 340 | of any particle.
|
|---|
| 341 | </para>
|
|---|
| 342 | <para>
|
|---|
| 343 | <emphasis role="bold">Example: neutrons.</emphasis> One may need to abandon
|
|---|
| 344 | the tracking of neutrons after a given time of flight (or a charged
|
|---|
| 345 | particle in a magnetic field after a given total track length ... etc ...).
|
|---|
| 346 | </para>
|
|---|
| 347 | <para>
|
|---|
| 348 | Example(see novice/N02): in the Tracker region, in order to
|
|---|
| 349 | force the total time of flight of the neutrons not to exceed 10
|
|---|
| 350 | milliseconds, put the following code in
|
|---|
| 351 | <literal>DetectorConstruction::Construct()</literal>:
|
|---|
| 352 |
|
|---|
| 353 | <informalexample>
|
|---|
| 354 | <programlisting>
|
|---|
| 355 | G4double maxTime = 10*ms;
|
|---|
| 356 | logicTracker->SetUserLimits(new G4UserLimits(DBL_MAX,DBL_MAX,maxTime));
|
|---|
| 357 | </programlisting>
|
|---|
| 358 | </informalexample>
|
|---|
| 359 |
|
|---|
| 360 | and put the following code in <literal>N02PhysicsList</literal>:
|
|---|
| 361 |
|
|---|
| 362 | <informalexample>
|
|---|
| 363 | <programlisting>
|
|---|
| 364 | G4ProcessManager* pmanager = G4Neutron::Neutron->GetProcessManager();
|
|---|
| 365 | pmanager->AddProcess(new G4UserSpecialCuts(),-1,-1,1);
|
|---|
| 366 | </programlisting>
|
|---|
| 367 | </informalexample>
|
|---|
| 368 | </para>
|
|---|
| 369 | <para>
|
|---|
| 370 | (The default <emphasis>G4UserSpecialCuts</emphasis> class is in
|
|---|
| 371 | <literal>source/processes/transportation</literal>.)
|
|---|
| 372 | </para>
|
|---|
| 373 | </para></listitem>
|
|---|
| 374 | </itemizedlist>
|
|---|
| 375 | </para>
|
|---|
| 376 |
|
|---|
| 377 | </sect2>
|
|---|
| 378 | </sect1>
|
|---|