| 1 | <!-- ******************************************************** -->
|
|---|
| 2 | <!-- Docbook Version: For Toolkit Developers Guide -->
|
|---|
| 3 | <!-- ******************************************************** -->
|
|---|
| 4 |
|
|---|
| 5 | <!-- ******************* Section (Level#1) ****************** -->
|
|---|
| 6 | <sect1 id="sect.ExtdFuncHadPhys">
|
|---|
| 7 | <title>
|
|---|
| 8 | Hadronic Physics
|
|---|
| 9 | </title>
|
|---|
| 10 |
|
|---|
| 11 | <!--
|
|---|
| 12 | This is a verbatim of a paper published in a refereed journal.
|
|---|
| 13 | A suggestion by one of the documentation referees to re-write
|
|---|
| 14 | completely seems quite inappropriate.
|
|---|
| 15 | -->
|
|---|
| 16 |
|
|---|
| 17 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 18 | <sect2 id="sect.ExtdFuncHadPhys.Intro">
|
|---|
| 19 | <title>
|
|---|
| 20 | Introduction
|
|---|
| 21 | </title>
|
|---|
| 22 |
|
|---|
| 23 | <para>
|
|---|
| 24 | Optimal exploitation of hadronic final
|
|---|
| 25 | states played a key role in successes of all recent collider experiment in HEP,
|
|---|
| 26 | and the ability to use hadronic final states will continue to be one of the
|
|---|
| 27 | decisive issues during the analysis phase of the LHC experiments.
|
|---|
| 28 | Monte Carlo programs like Geant4 facilitate the use of
|
|---|
| 29 | hadronic final states, and have been developed for many years.
|
|---|
| 30 | </para>
|
|---|
| 31 |
|
|---|
| 32 | <para>
|
|---|
| 33 | We give an overview of the Object Oriented frameworks for hadronic generators
|
|---|
| 34 | in Geant4, and illustrate the physics models underlying hadronic shower
|
|---|
| 35 | simulation on examples, including the three basic types of modeling;
|
|---|
| 36 | data-driven, parametrisation-driven, and theory-driven modeling, and their
|
|---|
| 37 | possible realisations in the Object Oriented component system of Geant4.
|
|---|
| 38 | We put particular focus on the level of extendibility that can and has been
|
|---|
| 39 | achieved by our Russian dolls approach to Object Oriented design, and the
|
|---|
| 40 | role and importance of the frameworks in a component system.
|
|---|
| 41 | </para>
|
|---|
| 42 |
|
|---|
| 43 | </sect2>
|
|---|
| 44 |
|
|---|
| 45 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 46 | <sect2 id="sect.ExtdFuncHadPhys.PrncCnsd">
|
|---|
| 47 | <title>
|
|---|
| 48 | Principal Considerations
|
|---|
| 49 | </title>
|
|---|
| 50 |
|
|---|
| 51 | <para>
|
|---|
| 52 | The purpose of this section is to explain the implementation frameworks used
|
|---|
| 53 | in and provided by Geant4 for hadronic shower simulation as in the 1.1
|
|---|
| 54 | release of the program. The implementation frameworks follow the Russian dolls
|
|---|
| 55 | approach to implementation framework design.
|
|---|
| 56 | A top-level, very abstracting implementation framework provides the basic
|
|---|
| 57 | interface to the other Geant4 categories, and fulfils the most general
|
|---|
| 58 | use-case for hadronic shower simulation. It is refined for more specific
|
|---|
| 59 | use-cases by implementing a hierarchy of implementation frameworks, each level
|
|---|
| 60 | implementing the common logic of a particular use-case package in a concrete
|
|---|
| 61 | implementation of the interface specification of one framework level above,
|
|---|
| 62 | this way refining the granularity of abstraction and delegation. This defines
|
|---|
| 63 | the Russian dolls architectural pattern.
|
|---|
| 64 | Abstract classes are used as the delegation mechanism
|
|---|
| 65 |
|
|---|
| 66 | <footnote>
|
|---|
| 67 | <para>
|
|---|
| 68 | The same can be achieved with template specialisations
|
|---|
| 69 | with slightly improved CPU performance but at the cost of significantly more
|
|---|
| 70 | complex designs and, with present compilers, significantly reduced
|
|---|
| 71 | portability.
|
|---|
| 72 | </para>
|
|---|
| 73 | </footnote>
|
|---|
| 74 | .
|
|---|
| 75 | </para>
|
|---|
| 76 |
|
|---|
| 77 | <para>
|
|---|
| 78 | All framework functional requirements were obtained through use-case analysis.
|
|---|
| 79 | In the following we present for each framework level the compressed use-cases,
|
|---|
| 80 | requirements, designs including the flexibility provided, and illustrate the
|
|---|
| 81 | framework functionality with examples. All design patterns cited are to
|
|---|
| 82 | be read as defined in
|
|---|
| 83 | <citation><xref linkend="biblio.Gamma1995" endterm="biblio.Gamma1995.abbrev" /></citation>.
|
|---|
| 84 | </para>
|
|---|
| 85 |
|
|---|
| 86 | </sect2>
|
|---|
| 87 |
|
|---|
| 88 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 89 | <sect2 id="sect.ExtdFuncHadPhys.L1_Proc">
|
|---|
| 90 | <title>
|
|---|
| 91 | Level 1 Framework - processes
|
|---|
| 92 | </title>
|
|---|
| 93 |
|
|---|
| 94 | <para>
|
|---|
| 95 | There are two principal use-cases of the level 1 framework. A user will
|
|---|
| 96 | want to choose the processes used for his particular simulation run, and a
|
|---|
| 97 | physicist will want to write code for processes of his own and use these
|
|---|
| 98 | together with the rest of the system in a seamless manner.
|
|---|
| 99 | </para>
|
|---|
| 100 |
|
|---|
| 101 | <!-- ******* Bridgehead ******* -->
|
|---|
| 102 | <bridgehead renderas='sect4'>
|
|---|
| 103 | Requirements
|
|---|
| 104 | </bridgehead>
|
|---|
| 105 |
|
|---|
| 106 | <para>
|
|---|
| 107 | <orderedlist spacing="compact">
|
|---|
| 108 | <listitem><para>
|
|---|
| 109 | Provide a standard interface to be used by process implementations.
|
|---|
| 110 | </para></listitem>
|
|---|
| 111 | <listitem><para>
|
|---|
| 112 | Provide registration mechanisms for processes.
|
|---|
| 113 | </para></listitem>
|
|---|
| 114 | </orderedlist>
|
|---|
| 115 | </para>
|
|---|
| 116 |
|
|---|
| 117 | <!-- ******* Bridgehead ******* -->
|
|---|
| 118 | <bridgehead renderas='sect4'>
|
|---|
| 119 | Design and interfaces
|
|---|
| 120 | </bridgehead>
|
|---|
| 121 |
|
|---|
| 122 | <para>
|
|---|
| 123 | Both requirements are implemented in a sub-set of the tracking-physics
|
|---|
| 124 | interface in Geant4}. The class diagram is shown in
|
|---|
| 125 | <xref linkend="fig.ExtdFuncHadPhys_1" />.
|
|---|
| 126 |
|
|---|
| 127 | <figure id="fig.ExtdFuncHadPhys_1">
|
|---|
| 128 | <title>
|
|---|
| 129 | Level 1 implementation framework of the hadronic category of GEANT4.
|
|---|
| 130 | </title>
|
|---|
| 131 | <mediaobject>
|
|---|
| 132 | <imageobject role="fo">
|
|---|
| 133 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level1.gif"
|
|---|
| 134 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 135 | </imageobject>
|
|---|
| 136 | <imageobject role="html">
|
|---|
| 137 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level1.gif"
|
|---|
| 138 | format="GIF" align="center" />
|
|---|
| 139 | </imageobject>
|
|---|
| 140 | </mediaobject>
|
|---|
| 141 | </figure>
|
|---|
| 142 | </para>
|
|---|
| 143 |
|
|---|
| 144 | <para>
|
|---|
| 145 | All processes have a common base-class <literal>G4VProcess</literal>,
|
|---|
| 146 | from which a set of specialised classes are derived. Three of them are
|
|---|
| 147 | used as base classes for hadronic processes for particles at rest
|
|---|
| 148 | (<literal>G4VRestProcess</literal>), for interactions in flight
|
|---|
| 149 | (<literal>G4VDiscreteProcess</literal>), and for processes like
|
|---|
| 150 | radioactive decay where the same implementation can represent both these
|
|---|
| 151 | extreme cases (<literal>G4VRestDiscrete-Process</literal>).
|
|---|
| 152 | </para>
|
|---|
| 153 |
|
|---|
| 154 | <para>
|
|---|
| 155 | Each of these classes declares two types of methods; one for calculating the
|
|---|
| 156 | time to interaction or the physical interaction length, allowing tracking to
|
|---|
| 157 | request the information necessary to decide on the process responsible for
|
|---|
| 158 | final state production, and one to compute the final state. These are pure
|
|---|
| 159 | virtual methods, and have to be implemented in each individual derived class,
|
|---|
| 160 | as enforced by the compiler.
|
|---|
| 161 | </para>
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 | <!-- ******* Bridgehead ******* -->
|
|---|
| 165 | <bridgehead renderas='sect4'>
|
|---|
| 166 | Framework functionality
|
|---|
| 167 | </bridgehead>
|
|---|
| 168 |
|
|---|
| 169 | <para>
|
|---|
| 170 | The functionality provided is through the use of process base-class pointers
|
|---|
| 171 | in the tracking-physics interface, and the
|
|---|
| 172 | <literal>G4Process-Manager</literal>.
|
|---|
| 173 | All functionality is implemented in abstract, and registration of derived process
|
|---|
| 174 | classes with the <literal>G4Process-Manager</literal> of an individual particle
|
|---|
| 175 | allows for arbitrary combination of both Geant4 provided processes, and
|
|---|
| 176 | user-implemented processes. This registration mechanism is a modification on a
|
|---|
| 177 | Chain of Responsibility. It is outside the scope of the current paper, and its
|
|---|
| 178 | description is available from
|
|---|
| 179 | <ulink url="http://geant4.web.cern.ch/geant4/support/userdocuments.shtml">
|
|---|
| 180 | G4Manual</ulink>.
|
|---|
| 181 | </para>
|
|---|
| 182 |
|
|---|
| 183 | </sect2>
|
|---|
| 184 |
|
|---|
| 185 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 186 | <sect2 id="sect.ExtdFuncHadPhys.L2F_CrssSctMdl">
|
|---|
| 187 | <title>
|
|---|
| 188 | Level 2 Framework - Cross Sections and Models
|
|---|
| 189 | </title>
|
|---|
| 190 |
|
|---|
| 191 | <para>
|
|---|
| 192 | At the next level of abstraction, only processes that occur for particles
|
|---|
| 193 | in flight are considered. For these, it is easily observed that the sources
|
|---|
| 194 | of cross sections and final state production are rarely the same. Also,
|
|---|
| 195 | different sources will come with different restrictions. The principal
|
|---|
| 196 | use-cases of the framework are addressing these commonalities. A user might
|
|---|
| 197 | want to combine different cross sections and final state or isotope production
|
|---|
| 198 | models as provided by Geant4, and a physicist might
|
|---|
| 199 | want to implement his own model for particular situation, and add cross-section
|
|---|
| 200 | data sets that are relevant for his particular analysis to the system in a
|
|---|
| 201 | seamless manner.
|
|---|
| 202 | </para>
|
|---|
| 203 |
|
|---|
| 204 | <!-- ******* Bridgehead ******* -->
|
|---|
| 205 | <bridgehead renderas='sect4'>
|
|---|
| 206 | Requirements
|
|---|
| 207 | </bridgehead>
|
|---|
| 208 |
|
|---|
| 209 | <para>
|
|---|
| 210 | <orderedlist spacing="compact">
|
|---|
| 211 | <listitem><para>
|
|---|
| 212 | Flexible choice of inclusive scattering cross-sections.
|
|---|
| 213 | </para></listitem>
|
|---|
| 214 | <listitem><para>
|
|---|
| 215 | Ability to use different data-sets for different parts of
|
|---|
| 216 | the simulation, depending on the conditions at the point of interaction.
|
|---|
| 217 | </para></listitem>
|
|---|
| 218 | <listitem><para>
|
|---|
| 219 | Ability to add user-defined data-sets in a seamless manner.
|
|---|
| 220 | </para></listitem>
|
|---|
| 221 | <listitem><para>
|
|---|
| 222 | Flexible, unconstrained choice of final state production models.
|
|---|
| 223 | </para></listitem>
|
|---|
| 224 | <listitem><para>
|
|---|
| 225 | Ability to use different final state production codes
|
|---|
| 226 | for different parts of the simulation, depending on the conditions at the
|
|---|
| 227 | point of interaction.
|
|---|
| 228 | </para></listitem>
|
|---|
| 229 | <listitem><para>
|
|---|
| 230 | Ability to add user-defined final state production models in
|
|---|
| 231 | a seamless manner.
|
|---|
| 232 | </para></listitem>
|
|---|
| 233 | <listitem><para>
|
|---|
| 234 | Flexible choice of isotope production models, to run in
|
|---|
| 235 | parasitic mode to any kind of transport models.
|
|---|
| 236 | </para></listitem>
|
|---|
| 237 | <listitem><para>
|
|---|
| 238 | Ability to use different isotope production codes
|
|---|
| 239 | for different parts of the simulation, depending on the conditions at the
|
|---|
| 240 | point of interaction.
|
|---|
| 241 | </para></listitem>
|
|---|
| 242 | <listitem><para>
|
|---|
| 243 | Ability to add user-defined isotope production models in a seamless manner.
|
|---|
| 244 | </para></listitem>
|
|---|
| 245 | </orderedlist>
|
|---|
| 246 | </para>
|
|---|
| 247 |
|
|---|
| 248 |
|
|---|
| 249 | <!-- ******* Bridgehead ******* -->
|
|---|
| 250 | <bridgehead renderas='sect4'>
|
|---|
| 251 | Design and interfaces
|
|---|
| 252 | </bridgehead>
|
|---|
| 253 |
|
|---|
| 254 | <para>
|
|---|
| 255 | The above requirements are implemented in three framework components, one
|
|---|
| 256 | for cross-sections, final state production, and isotope production each.
|
|---|
| 257 | The class diagrams are shown in
|
|---|
| 258 | <xref linkend="fig.ExtdFuncHadPhys_2" />
|
|---|
| 259 | for the cross-section aspects,
|
|---|
| 260 | <xref linkend="fig.ExtdFuncHadPhys_3" />
|
|---|
| 261 | for the final state production aspects, and figure
|
|---|
| 262 | <xref linkend="fig.ExtdFuncHadPhys_4" />
|
|---|
| 263 | for the isotope production aspects.
|
|---|
| 264 |
|
|---|
| 265 | <figure id="fig.ExtdFuncHadPhys_2">
|
|---|
| 266 | <title>
|
|---|
| 267 | Level 2 implementation framework of the hadronic category of Geant4;
|
|---|
| 268 | cross-section aspect.
|
|---|
| 269 | </title>
|
|---|
| 270 | <mediaobject>
|
|---|
| 271 | <imageobject role="fo">
|
|---|
| 272 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level2_1.gif"
|
|---|
| 273 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 274 | </imageobject>
|
|---|
| 275 | <imageobject role="html">
|
|---|
| 276 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level2_1.gif"
|
|---|
| 277 | format="GIF" align="center" />
|
|---|
| 278 | </imageobject>
|
|---|
| 279 | </mediaobject>
|
|---|
| 280 | </figure>
|
|---|
| 281 |
|
|---|
| 282 | <figure id="fig.ExtdFuncHadPhys_3">
|
|---|
| 283 | <title>
|
|---|
| 284 | Level 2 implementation framework of the hadronic category of Geant4;
|
|---|
| 285 | final state production aspect.
|
|---|
| 286 | </title>
|
|---|
| 287 | <mediaobject>
|
|---|
| 288 | <imageobject role="fo">
|
|---|
| 289 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level2_2.gif"
|
|---|
| 290 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 291 | </imageobject>
|
|---|
| 292 | <imageobject role="html">
|
|---|
| 293 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level2_2.gif"
|
|---|
| 294 | format="GIF" align="center" />
|
|---|
| 295 | </imageobject>
|
|---|
| 296 | </mediaobject>
|
|---|
| 297 | </figure>
|
|---|
| 298 |
|
|---|
| 299 | <figure id="fig.ExtdFuncHadPhys_4">
|
|---|
| 300 | <title>
|
|---|
| 301 | Level 2 implementation framework of the hadronic category of Geant4;
|
|---|
| 302 | isotope production aspect
|
|---|
| 303 | </title>
|
|---|
| 304 | <mediaobject>
|
|---|
| 305 | <imageobject role="fo">
|
|---|
| 306 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level2_3.gif"
|
|---|
| 307 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 308 | </imageobject>
|
|---|
| 309 | <imageobject role="html">
|
|---|
| 310 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level2_3.gif"
|
|---|
| 311 | format="GIF" align="center" />
|
|---|
| 312 | </imageobject>
|
|---|
| 313 | </mediaobject>
|
|---|
| 314 | </figure>
|
|---|
| 315 | </para>
|
|---|
| 316 |
|
|---|
| 317 | <para>
|
|---|
| 318 | The three parts are integrated in the <literal>G4Hadronic-Process</literal>
|
|---|
| 319 | class, that serves as base-class for all hadronic processes of particles in flight.
|
|---|
| 320 | </para>
|
|---|
| 321 |
|
|---|
| 322 |
|
|---|
| 323 | <!-- ******* Bridgehead ******* -->
|
|---|
| 324 | <bridgehead renderas='sect4'>
|
|---|
| 325 | Cross-sections
|
|---|
| 326 | </bridgehead>
|
|---|
| 327 |
|
|---|
| 328 | <para>
|
|---|
| 329 | Each hadronic process is derived from <literal>G4Hadronic-Process}</literal>,
|
|---|
| 330 | which holds a list of ``cross section data sets''.
|
|---|
| 331 | The term ``data set'' is
|
|---|
| 332 | representing an object that encapsulates methods and data for calculating
|
|---|
| 333 | total cross sections for a given process in a certain range of validity.
|
|---|
| 334 | The implementations may take any form. It can be a simple equation as well as
|
|---|
| 335 | sophisticated parameterisations, or evaluated data.
|
|---|
| 336 | All cross section data set classes are derived from the abstract class
|
|---|
| 337 | <literal>G4VCrossSection-DataSet}</literal>, which declares methods that allow
|
|---|
| 338 | the process inquire, about the applicability of an individual data-set through
|
|---|
| 339 | <literal>IsApplicable(const G4DynamicParticle*, const G4Element*)</literal>,
|
|---|
| 340 | and to delegate the calculation of the actual cross-section value through
|
|---|
| 341 | <literal>GetCrossSection(const G4DynamicParticle*, const G4Element*)</literal>.
|
|---|
| 342 | </para>
|
|---|
| 343 |
|
|---|
| 344 | <!-- ******* Bridgehead ******* -->
|
|---|
| 345 | <bridgehead renderas='sect4'>
|
|---|
| 346 | Final state production
|
|---|
| 347 | </bridgehead>
|
|---|
| 348 |
|
|---|
| 349 | <para>
|
|---|
| 350 | The <literal>G4HadronicInteraction</literal> base class is provided for final state
|
|---|
| 351 | generation. It declares a minimal interface of only one pure virtual method:
|
|---|
| 352 | <literal>G4VParticleChange* ApplyYourself(const G4Track &, G4Nucleus &)}.
|
|---|
| 353 | </literal>
|
|---|
| 354 |
|
|---|
| 355 | <literal>G4HadronicProcess</literal> provides a registry for final state
|
|---|
| 356 | production models inheriting from <literal>G4Hadronic-Interaction</literal>.
|
|---|
| 357 | Again, final state production model is meant in very general terms. This can
|
|---|
| 358 | be an implementation of a quark gluon string model
|
|---|
| 359 | <citation><xref linkend="biblio.QGSM" endterm="biblio.QGSM.abbrev"/></citation>,
|
|---|
| 360 | a sampling code for ENDF/B data formats
|
|---|
| 361 | <citation><xref linkend="biblio.ENDFForm" endterm="biblio.ENDFForm.abbrev"/></citation>,
|
|---|
| 362 | or a parametrisation describing only
|
|---|
| 363 | neutron elastic scattering off Silicon up to 300~MeV.
|
|---|
| 364 | </para>
|
|---|
| 365 |
|
|---|
| 366 | <!-- ******* Bridgehead ******* -->
|
|---|
| 367 | <bridgehead renderas='sect4'>
|
|---|
| 368 | Isotope production
|
|---|
| 369 | </bridgehead>
|
|---|
| 370 |
|
|---|
| 371 | <para>
|
|---|
| 372 | For isotope production, a base class (<literal>G4VIsotope-Production</literal>)
|
|---|
| 373 | is provided. It declares a method
|
|---|
| 374 | <literal>G4IsoResult * GetIsotope(const G4Track &, const G4Nucleus &)</literal>
|
|---|
| 375 | that calculates and returns the isotope production information. Any concrete
|
|---|
| 376 | isotope production model will inherit from this class, and implement the
|
|---|
| 377 | method. Again, the modeling possibilities are not limited, and the
|
|---|
| 378 | implementation of concrete production models is not restricted in any way.
|
|---|
| 379 | By convention, the <literal>GetIsotope</literal> method returns NULL, if the model
|
|---|
| 380 | is not applicable for the current projectile target combination.
|
|---|
| 381 | </para>
|
|---|
| 382 |
|
|---|
| 383 | <!-- ******* Bridgehead ******* -->
|
|---|
| 384 | <bridgehead renderas='sect3'>
|
|---|
| 385 | Framework functionality:
|
|---|
| 386 | </bridgehead>
|
|---|
| 387 |
|
|---|
| 388 | <para>
|
|---|
| 389 | </para>
|
|---|
| 390 |
|
|---|
| 391 | <!-- ******* Bridgehead ******* -->
|
|---|
| 392 | <bridgehead renderas='sect4'>
|
|---|
| 393 | Cross Sections
|
|---|
| 394 | </bridgehead>
|
|---|
| 395 |
|
|---|
| 396 | <para>
|
|---|
| 397 | <literal>G4HadronicProcess</literal> provides registering possibilities
|
|---|
| 398 | for data sets. A default is provided covering all possible
|
|---|
| 399 | conditions to some approximation. The process stores and retrieves
|
|---|
| 400 | the data sets through a data store that acts like a FILO stack
|
|---|
| 401 | (a Chain of Responsibility with a
|
|---|
| 402 | First In Last Out decision strategy). This allows the user to map out
|
|---|
| 403 | the entire parameter space by overlaying cross section data sets to optimise
|
|---|
| 404 | the overall result. Examples are the cross sections for low energy neutron
|
|---|
| 405 | transport. If these are registered last by the user, they will be used
|
|---|
| 406 | whenever low energy neutrons are encountered. In all other conditions the
|
|---|
| 407 | system falls back on the default, or data sets with earlier registration dates.
|
|---|
| 408 | The fact that the registration is done through abstract base classes with no
|
|---|
| 409 | side-effects allows the user to implement and use his own cross sections.
|
|---|
| 410 | Examples are special reaction cross sections of
|
|---|
| 411 | κ<superscript>0</superscript>-nuclear interactions
|
|---|
| 412 | that might be used for ε/ε' analysis at LHC to control the
|
|---|
| 413 | systematic error.
|
|---|
| 414 | </para>
|
|---|
| 415 |
|
|---|
| 416 | <!-- ******* Bridgehead ******* -->
|
|---|
| 417 | <bridgehead renderas='sect4'>
|
|---|
| 418 | Final state production
|
|---|
| 419 | </bridgehead>
|
|---|
| 420 |
|
|---|
| 421 | <para>
|
|---|
| 422 | The <literal>G4HadronicProcess</literal> class provides a
|
|---|
| 423 | registration service for classes deriving from
|
|---|
| 424 | <literal>G4Hadronic-Interaction</literal>, and delegates final state
|
|---|
| 425 | production to the applicable model.
|
|---|
| 426 | <literal>G4Hadronic-Interaction</literal>provides the functionality needed
|
|---|
| 427 | to define and enforce the applicability of a particular model.
|
|---|
| 428 | Models inheriting from <literal>G4Hadronic-Interaction</literal>
|
|---|
| 429 | can be restricted in applicability in projectile
|
|---|
| 430 | type and energy, and can be activated/deactivated for individual materials and
|
|---|
| 431 | elements. This allows a user to use final state production models in
|
|---|
| 432 | arbitrary combinations, and to write his own models for
|
|---|
| 433 | final state production. The design is a variant of a Chain of Responsibility.
|
|---|
| 434 | An example would be the likely CMS scenario - the combination of low energy
|
|---|
| 435 | neutron transport with a quantum molecular dynamics
|
|---|
| 436 | <citation><xref linkend="biblio.QMD" endterm="biblio.QMD.abbrev"/></citation>,
|
|---|
| 437 | invariant phase space decay
|
|---|
| 438 | <citation><xref linkend="biblio.CHIPS" endterm="biblio.CHIPS.abbrev"/></citation>,
|
|---|
| 439 | and fast parametrised models for calorimeter materials, with user defined
|
|---|
| 440 | modeling of interactions of spallation nucleons with the most abundant
|
|---|
| 441 | tracker and calorimeter materials.
|
|---|
| 442 | </para>
|
|---|
| 443 |
|
|---|
| 444 | <!-- ******* Bridgehead ******* -->
|
|---|
| 445 | <bridgehead renderas='sect4'>
|
|---|
| 446 | Isotope production
|
|---|
| 447 | </bridgehead>
|
|---|
| 448 |
|
|---|
| 449 | <para>
|
|---|
| 450 | The <literal>G4HadronicProcess</literal> by default calculates the isotope production
|
|---|
| 451 | information from the final state given by the transport model. In addition, it
|
|---|
| 452 | provides a registering mechanism for isotope production models that run in
|
|---|
| 453 | parasitic mode to the transport models and inherit from
|
|---|
| 454 | <literal>G4VIsotope-Production</literal>. The registering mechanism behaves like a FILO
|
|---|
| 455 | stack, again based on Chain of Responsibility. The models will be asked for
|
|---|
| 456 | isotope production information in inverse order of registration. The first
|
|---|
| 457 | model that returns a non-NULL value will be applied. In addition, the
|
|---|
| 458 | <literal>G4Hadronic-Process</literal> provides the basic infrastructure for accessing and
|
|---|
| 459 | steering of isotope-production information. It allows to enable and disable
|
|---|
| 460 | the calculation of isotope production information globally, or for individual
|
|---|
| 461 | processes, and to retrieve the isotope production information through the
|
|---|
| 462 | <literal>G4IsoParticleChange * GetIsotopeProductionInfo()}</literal>
|
|---|
| 463 | method at the end of each step. The <literal>G4HadronicProcess</literal> is a finite state
|
|---|
| 464 | machine that will ensure the <literal>GetIsotope-ProductionInfo</literal> returns a
|
|---|
| 465 | non-zero value only at the first call after isotope production occurred. An
|
|---|
| 466 | example of the use of this functionality is the study of activation of a
|
|---|
| 467 | Germanium detector in a high precision, low background experiment.
|
|---|
| 468 | </para>
|
|---|
| 469 |
|
|---|
| 470 | </sect2>
|
|---|
| 471 |
|
|---|
| 472 |
|
|---|
| 473 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 474 | <sect2 id="sect.ExtdFuncHadPhys.L3F_ThrtMdl">
|
|---|
| 475 | <title>
|
|---|
| 476 | Level 3 Framework - Theoretical Models
|
|---|
| 477 | </title>
|
|---|
| 478 |
|
|---|
| 479 | <para>
|
|---|
| 480 | <figure id="fig.ExtdFuncHadPhys_5">
|
|---|
| 481 | <title>
|
|---|
| 482 | Level 3 implementation framework of the hadronic category of Geant4;
|
|---|
| 483 | theoretical model aspect.
|
|---|
| 484 | </title>
|
|---|
| 485 | <mediaobject>
|
|---|
| 486 | <imageobject role="fo">
|
|---|
| 487 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level3_1.gif"
|
|---|
| 488 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 489 | </imageobject>
|
|---|
| 490 | <imageobject role="html">
|
|---|
| 491 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level3_1.gif"
|
|---|
| 492 | format="GIF" align="center" />
|
|---|
| 493 | </imageobject>
|
|---|
| 494 | </mediaobject>
|
|---|
| 495 | </figure>
|
|---|
| 496 |
|
|---|
| 497 | Geant4 provides at present one implementation framework for theory
|
|---|
| 498 | driven models. The main use-case is that of a user wishing to use theoretical
|
|---|
| 499 | models in general, and to use various intra-nuclear transport or pre-compound
|
|---|
| 500 | models together with models simulating the initial interactions at very high
|
|---|
| 501 | energies.
|
|---|
| 502 | </para>
|
|---|
| 503 |
|
|---|
| 504 | <!-- ******* Bridgehead ******* -->
|
|---|
| 505 | <bridgehead renderas='sect4'>
|
|---|
| 506 | Requirements
|
|---|
| 507 | </bridgehead>
|
|---|
| 508 |
|
|---|
| 509 | <para>
|
|---|
| 510 | <orderedlist spacing="compact">
|
|---|
| 511 | <listitem><para>
|
|---|
| 512 | Allow to use or adapt any string-parton or parton transport
|
|---|
| 513 | <citation><xref linkend="biblio.VNI" endterm="biblio.VNI.abbrev"/></citation>,
|
|---|
| 514 | </para></listitem>
|
|---|
| 515 | <listitem><para>
|
|---|
| 516 | Allow to adapt event generators, ex.
|
|---|
| 517 | <citation><xref linkend="biblio.PYTHIA7" endterm="biblio.PYTHIA7.abbrev"/></citation>,
|
|---|
| 518 | state production in shower simulation.
|
|---|
| 519 | </para></listitem>
|
|---|
| 520 | <listitem><para>
|
|---|
| 521 | Allow for combination of the above with any intra-nuclear transport (INT).
|
|---|
| 522 | </para></listitem>
|
|---|
| 523 | <listitem><para>
|
|---|
| 524 | Allow stand-alone use of intra-nuclear transport.
|
|---|
| 525 | </para></listitem>
|
|---|
| 526 | <listitem><para>
|
|---|
| 527 | Allow for combination of the above with any pre-compound model.
|
|---|
| 528 | </para></listitem>
|
|---|
| 529 | <listitem><para>
|
|---|
| 530 | Allow stand-alone use of any pre-compound model.
|
|---|
| 531 | </para></listitem>
|
|---|
| 532 | <listitem><para>
|
|---|
| 533 | Allow for use of any evaporation code.
|
|---|
| 534 | </para></listitem>
|
|---|
| 535 | <listitem><para>
|
|---|
| 536 | Allow for seamless integration of user defined components for any of the above.
|
|---|
| 537 | </para></listitem>
|
|---|
| 538 | </orderedlist>
|
|---|
| 539 | </para>
|
|---|
| 540 |
|
|---|
| 541 | <!-- ******* Bridgehead ******* -->
|
|---|
| 542 | <bridgehead renderas='sect4'>
|
|---|
| 543 | Design and interfaces
|
|---|
| 544 | </bridgehead>
|
|---|
| 545 |
|
|---|
| 546 | <para>
|
|---|
| 547 | To provide the above flexibility, the following abstract base classes have been
|
|---|
| 548 | implemented:
|
|---|
| 549 |
|
|---|
| 550 | <itemizedlist spacing="compact">
|
|---|
| 551 | <listitem><para>
|
|---|
| 552 | <literal>G4VHighEnergyGenerator</literal>
|
|---|
| 553 | </para></listitem>
|
|---|
| 554 | <listitem><para>
|
|---|
| 555 | <literal>G4VIntranuclearTransportModel</literal>
|
|---|
| 556 | </para></listitem>
|
|---|
| 557 | <listitem><para>
|
|---|
| 558 | <literal>G4VPreCompoundModel</literal>
|
|---|
| 559 | </para></listitem>
|
|---|
| 560 | <listitem><para>
|
|---|
| 561 | <literal>G4VExcitationHandler</literal>
|
|---|
| 562 | </para></listitem>
|
|---|
| 563 | </itemizedlist>
|
|---|
| 564 | </para>
|
|---|
| 565 |
|
|---|
| 566 | <para>
|
|---|
| 567 | In addition, the class <literal>G4TheoFS-Generator</literal> is provided to orchestrate
|
|---|
| 568 | interactions between these classes. The class diagram is shown in
|
|---|
| 569 | <xref linkend="fig.ExtdFuncHadPhys_5" />.
|
|---|
| 570 | </para>
|
|---|
| 571 |
|
|---|
| 572 | <para>
|
|---|
| 573 | <literal>G4VHighEnergy-Generator</literal> serves as base class for parton transport or
|
|---|
| 574 | parton string models, and for Adapters to event generators. This class
|
|---|
| 575 | declares two methods, <literal>Scatter</literal>, and
|
|---|
| 576 | <literal>GetWoundedNucleus</literal>.
|
|---|
| 577 | </para>
|
|---|
| 578 |
|
|---|
| 579 | <para>
|
|---|
| 580 | The base class for INT inherits from <literal>G4Hadronic-Interaction</literal>,
|
|---|
| 581 | making any concrete implementation usable as a stand-alone model. In doing so, it
|
|---|
| 582 | re-declares the <literal>ApplyYourself</literal> interface of
|
|---|
| 583 | <literal>G4Hadronic-Interaction</literal>,
|
|---|
| 584 | and adds a second interface, <literal>Propagate</literal>, for further propagation
|
|---|
| 585 | after high energy interactions. <literal>Propagate</literal> takes as arguments a
|
|---|
| 586 | three-dimensional model of a wounded nucleus, and a set of secondaries with
|
|---|
| 587 | energies and positions.
|
|---|
| 588 | </para>
|
|---|
| 589 |
|
|---|
| 590 | <para>
|
|---|
| 591 | The base class for pre-equilibrium decay models, <literal>G4VPre-CompoundModel</literal>,
|
|---|
| 592 | inherits from <literal>G4Hadronic-Interaction</literal>, again making any concrete
|
|---|
| 593 | implementation usable as stand-alone model. It adds a pure virtual
|
|---|
| 594 | <literal>DeExcite</literal> method for further evolution of the system when
|
|---|
| 595 | intra-nuclear transport assumptions break down.
|
|---|
| 596 | <literal>DeExcite</literal> takes a <literal>G4Fragment</literal>,
|
|---|
| 597 | the Geant4 representation of an excited nucleus, as argument.
|
|---|
| 598 | </para>
|
|---|
| 599 |
|
|---|
| 600 | <para>
|
|---|
| 601 | The base class for evaporation phases, <literal>G4VExcitation-Handler</literal>,
|
|---|
| 602 | declares an abstract method, <literal>BreakItUP()</literal>, for compound decay.
|
|---|
| 603 | </para>
|
|---|
| 604 |
|
|---|
| 605 |
|
|---|
| 606 | <!-- ******* Bridgehead ******* -->
|
|---|
| 607 | <bridgehead renderas='sect4'>
|
|---|
| 608 | Framework functionality
|
|---|
| 609 | </bridgehead>
|
|---|
| 610 |
|
|---|
| 611 | <para>
|
|---|
| 612 | The <literal>G4TheoFSGenerator</literal> class inherits from
|
|---|
| 613 | <literal>G4Hadronic-Interaction</literal>,
|
|---|
| 614 | and hence can be registered as a model for final state production with a
|
|---|
| 615 | hadronic process. It allows a concrete implementation of
|
|---|
| 616 | <literal>G4VIntranuclear-TransportModel</literal> and
|
|---|
| 617 | <literal>G4VHighEnergy-Generator</literal> to be
|
|---|
| 618 | registered, and delegates initial interactions, and intra-nuclear transport
|
|---|
| 619 | of the corresponding secondaries to the respective classes. The design is a
|
|---|
| 620 | complex variant of a Strategy. The most spectacular application of this
|
|---|
| 621 | pattern is the use of parton-string models for string excitation, quark
|
|---|
| 622 | molecular dynamics for correlated string decay, and quantum molecular dynamics
|
|---|
| 623 | for transport, a combination which promises to result in a coherent
|
|---|
| 624 | description of quark gluon plasma in high energy nucleus-nucleus interactions.
|
|---|
| 625 | </para>
|
|---|
| 626 |
|
|---|
| 627 | <para>
|
|---|
| 628 | The class <literal>G4VIntranuclearTransportModel</literal> provides
|
|---|
| 629 | registering mechanisms for concrete implementations of
|
|---|
| 630 | <literal>G4VPreCompound-Model</literal>, and provides
|
|---|
| 631 | concrete intra-nuclear transports with the possibility of delegating
|
|---|
| 632 | pre-compound decay to these models.
|
|---|
| 633 | </para>
|
|---|
| 634 |
|
|---|
| 635 | <para>
|
|---|
| 636 | <literal>G4VPreCompoundModel</literal> provides a registering mechanism
|
|---|
| 637 | for compound decay through the
|
|---|
| 638 | <literal>G4VExcitation-Handler</literal> interface, and provides concrete
|
|---|
| 639 | implementations with the possibility of delegating the decay of a compound
|
|---|
| 640 | nucleus.
|
|---|
| 641 | </para>
|
|---|
| 642 |
|
|---|
| 643 | <para>
|
|---|
| 644 | The concrete scenario of <literal>G4TheoFS-Generator</literal> using a
|
|---|
| 645 | dual parton model
|
|---|
| 646 | and a classical cascade, which in turn uses an exciton pre-compound model that
|
|---|
| 647 | delegates to an evaporation phase, would be the following:
|
|---|
| 648 | <literal>G4TheoFS-Generator</literal> receives the conditions of the interaction;
|
|---|
| 649 | a primary particle and a nucleus. It asks the dual parton model to perform the
|
|---|
| 650 | initial scatterings, and return the final state, along with the by then
|
|---|
| 651 | damaged nucleus. The nucleus records all information on the damage sustained.
|
|---|
| 652 | <literal>G4TheoFS-Generator</literal> forwards all information to the classical cascade,
|
|---|
| 653 | that propagates the particles in the already damaged nucleus, keeping track of
|
|---|
| 654 | interactions, further damage to the nucleus, etc.. Once the cascade assumptions
|
|---|
| 655 | break down, the cascade will collect the information of the current state of
|
|---|
| 656 | the hadronic system, like excitation energy and number of excited particles,
|
|---|
| 657 | and interpret it as a pre-compound system. It delegates the decay of this to
|
|---|
| 658 | the exciton model. The exciton model will take the information provided, and
|
|---|
| 659 | calculate
|
|---|
| 660 | transitions and emissions, until the number of excitons in the system equals
|
|---|
| 661 | the mean number of excitons expected in equilibrium for the current excitation
|
|---|
| 662 | energy. Then it hands over to the
|
|---|
| 663 | evaporation phase. The evaporation phase decays the residual nucleus, and the Chain of
|
|---|
| 664 | Command rolls back to <literal>G4TheoFS-Generator</literal>, accumulating the
|
|---|
| 665 | information produced in the various levels of delegation.
|
|---|
| 666 | </para>
|
|---|
| 667 |
|
|---|
| 668 | </sect2>
|
|---|
| 669 |
|
|---|
| 670 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 671 | <sect2 id="sect.ExtdFuncHadPhys.L4F_StgPartIntNuc">
|
|---|
| 672 | <title>
|
|---|
| 673 | Level 4 Frameworks - String Parton Models and Intra-Nuclear Cascade
|
|---|
| 674 | </title>
|
|---|
| 675 |
|
|---|
| 676 | <para>
|
|---|
| 677 | <figure id="fig.ExtdFuncHadPhys_6">
|
|---|
| 678 | <title>
|
|---|
| 679 | Level 4 implementation framework of the hadronic category of Geant4;
|
|---|
| 680 | parton string aspect.
|
|---|
| 681 | </title>
|
|---|
| 682 | <mediaobject>
|
|---|
| 683 | <imageobject role="fo">
|
|---|
| 684 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level4_1.gif"
|
|---|
| 685 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 686 | </imageobject>
|
|---|
| 687 | <imageobject role="html">
|
|---|
| 688 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level4_1.gif"
|
|---|
| 689 | format="GIF" align="center" />
|
|---|
| 690 | </imageobject>
|
|---|
| 691 | </mediaobject>
|
|---|
| 692 | </figure>
|
|---|
| 693 |
|
|---|
| 694 | <figure id="fig.ExtdFuncHadPhys_7">
|
|---|
| 695 | <title>
|
|---|
| 696 | Level 4 implementation framework of the hadronic category of Geant4;
|
|---|
| 697 | intra-nuclear transport aspect.
|
|---|
| 698 | </title>
|
|---|
| 699 | <mediaobject>
|
|---|
| 700 | <imageobject role="fo">
|
|---|
| 701 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level4_2.gif"
|
|---|
| 702 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 703 | </imageobject>
|
|---|
| 704 | <imageobject role="html">
|
|---|
| 705 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level4_2.gif"
|
|---|
| 706 | format="GIF" align="center" />
|
|---|
| 707 | </imageobject>
|
|---|
| 708 | </mediaobject>
|
|---|
| 709 | </figure>
|
|---|
| 710 | </para>
|
|---|
| 711 |
|
|---|
| 712 | <para>
|
|---|
| 713 | The use-cases of this level are related to commonalities and detailed choices
|
|---|
| 714 | in string-parton models and cascade models. They are use-cases of an expert
|
|---|
| 715 | user wishing to alter details of a model, or a theoretical physicist, wishing
|
|---|
| 716 | to study details of a particular model.
|
|---|
| 717 | </para>
|
|---|
| 718 |
|
|---|
| 719 | <!-- ******* Bridgehead ******* -->
|
|---|
| 720 | <bridgehead renderas='sect4'>
|
|---|
| 721 | Requirements
|
|---|
| 722 | </bridgehead>
|
|---|
| 723 |
|
|---|
| 724 | <para>
|
|---|
| 725 | <orderedlist spacing="compact">
|
|---|
| 726 | <listitem><para>
|
|---|
| 727 | Allow to select string decay algorithm
|
|---|
| 728 | </para></listitem>
|
|---|
| 729 | <listitem><para>
|
|---|
| 730 | Allow to select string excitation.
|
|---|
| 731 | </para></listitem>
|
|---|
| 732 | <listitem><para>
|
|---|
| 733 | Allow the selection of concrete implementations of three-dimensional
|
|---|
| 734 | models of the nucleus
|
|---|
| 735 | </para></listitem>
|
|---|
| 736 | <listitem><para>
|
|---|
| 737 | Allow the selection of concrete implementations of final state and
|
|---|
| 738 | cross sections in intra-nuclear scattering.
|
|---|
| 739 | </para></listitem>
|
|---|
| 740 | </orderedlist>
|
|---|
| 741 | </para>
|
|---|
| 742 |
|
|---|
| 743 | <!-- ******* Bridgehead ******* -->
|
|---|
| 744 | <bridgehead renderas='sect4'>
|
|---|
| 745 | Design and interfaces
|
|---|
| 746 | </bridgehead>
|
|---|
| 747 |
|
|---|
| 748 | <para>
|
|---|
| 749 | To fulfil the requirements on string models, two abstract classes are provided,
|
|---|
| 750 | the <literal>G4VParton-StringModel</literal> and the
|
|---|
| 751 | <literal>G4VString-Fragmentation</literal>.
|
|---|
| 752 | The base class for parton string models, <literal>G4VParton-StringModel</literal>,
|
|---|
| 753 | declares the <literal>GetStrings()</literal> pure virtual method.
|
|---|
| 754 | <literal>G4VString-Fragmentation</literal>, the pure abstract base class for string
|
|---|
| 755 | fragmentation, declares the interface for string fragmentation.
|
|---|
| 756 | </para>
|
|---|
| 757 |
|
|---|
| 758 | <para>
|
|---|
| 759 | To fulfill the requirements on intra-nuclear transport, two abstract classes
|
|---|
| 760 | are provided, <literal>G4V3DNucleus</literal>, and <literal>G4VScatterer</literal>.
|
|---|
| 761 | At this point in time, the usage of these intra-nuclear transport related classes
|
|---|
| 762 | by concrete codes is not enforced by designs, as the details of the
|
|---|
| 763 | cascade loop are still model dependent, and more experience has to be gathered to achieve
|
|---|
| 764 | standardisation. It is within the responsibility of the implementers of concrete
|
|---|
| 765 | intra-nuclear transport
|
|---|
| 766 | codes to use the abstract interfaces as defined in these classes.
|
|---|
| 767 | </para>
|
|---|
| 768 |
|
|---|
| 769 | <para>
|
|---|
| 770 | The class diagram is shown in
|
|---|
| 771 | <xref linkend="fig.ExtdFuncHadPhys_6" />
|
|---|
| 772 | for the string parton model aspects, and in
|
|---|
| 773 | <xref linkend="fig.ExtdFuncHadPhys_7" />
|
|---|
| 774 | for the intra-nuclear transport.
|
|---|
| 775 | </para>
|
|---|
| 776 |
|
|---|
| 777 |
|
|---|
| 778 | <!-- ******* Bridgehead ******* -->
|
|---|
| 779 | <bridgehead renderas='sect4'>
|
|---|
| 780 | Framework functionality
|
|---|
| 781 | </bridgehead>
|
|---|
| 782 |
|
|---|
| 783 | <para>
|
|---|
| 784 | Again variants of Strategy, Bridge and Chain of Responsibility are used.
|
|---|
| 785 | <literal>G4VParton-StringModel</literal> implements the initialisation of a
|
|---|
| 786 | three-dimensional model of a nucleus, and the logic of scattering. It
|
|---|
| 787 | delegates secondary production to string fragmentation through a
|
|---|
| 788 | <literal>G4VString-Fragmentation</literal> pointer. It provides a registering service for
|
|---|
| 789 | the concrete string fragmentation, and delegates the string excitation to
|
|---|
| 790 | derived classes. Selection of string excitation is through selection of
|
|---|
| 791 | derived class. Selection of string fragmentation is through registration.
|
|---|
| 792 | </para>
|
|---|
| 793 |
|
|---|
| 794 | </sect2>
|
|---|
| 795 |
|
|---|
| 796 | <!-- ******************* Section (Level#2) ****************** -->
|
|---|
| 797 | <sect2 id="sect.ExtdFuncHadPhys.L5F_StrgDeExc">
|
|---|
| 798 | <title>
|
|---|
| 799 | Level 5 Framework - String De-excitation}
|
|---|
| 800 | </title>
|
|---|
| 801 |
|
|---|
| 802 | <para>
|
|---|
| 803 | <figure id="fig.ExtdFuncHadPhys_8">
|
|---|
| 804 | <title>
|
|---|
| 805 | Level 5 implementation framework of the hadronic category of Geant4;
|
|---|
| 806 | string fragmentation aspect.
|
|---|
| 807 | </title>
|
|---|
| 808 | <mediaobject>
|
|---|
| 809 | <imageobject role="fo">
|
|---|
| 810 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level5_1.gif"
|
|---|
| 811 | format="GIF" align="center" contentwidth="10.0cm" />
|
|---|
| 812 | </imageobject>
|
|---|
| 813 | <imageobject role="html">
|
|---|
| 814 | <imagedata fileref="./AllResources/GuideToExtendFunctionality/HadronicPhysics/Level5_1.gif"
|
|---|
| 815 | format="GIF" align="center" />
|
|---|
| 816 | </imageobject>
|
|---|
| 817 | </mediaobject>
|
|---|
| 818 | </figure>
|
|---|
| 819 | </para>
|
|---|
| 820 |
|
|---|
| 821 | <para>
|
|---|
| 822 | The use-case of this level is that of a user or theoretical physicist wishing
|
|---|
| 823 | to understand the systematic effects involved in combining various
|
|---|
| 824 | fragmentation functions with individual types of string fragmentation. Note
|
|---|
| 825 | that this framework level is meeting the current state of the art, making
|
|---|
| 826 | extensions and changes of interfaces in subsequent releases likely.
|
|---|
| 827 | </para>
|
|---|
| 828 |
|
|---|
| 829 | <!-- ******* Bridgehead ******* -->
|
|---|
| 830 | <bridgehead renderas='sect4'>
|
|---|
| 831 | Requirements
|
|---|
| 832 | </bridgehead>
|
|---|
| 833 |
|
|---|
| 834 | <para>
|
|---|
| 835 | <orderedlist spacing="compact">
|
|---|
| 836 | <listitem><para>
|
|---|
| 837 | Allow the selection of fragmentation function.
|
|---|
| 838 | </para></listitem>
|
|---|
| 839 | </orderedlist>
|
|---|
| 840 | </para>
|
|---|
| 841 |
|
|---|
| 842 | <!-- ******* Bridgehead ******* -->
|
|---|
| 843 | <bridgehead renderas='sect4'>
|
|---|
| 844 | Design and interfaces
|
|---|
| 845 | </bridgehead>
|
|---|
| 846 |
|
|---|
| 847 | <para>
|
|---|
| 848 | A base class for fragmentation functions,
|
|---|
| 849 | <literal>G4VFragmentation-Function}</literal>, is
|
|---|
| 850 | provided. It declares the <literal>GetLightConeZ()</literal> interface.
|
|---|
| 851 | </para>
|
|---|
| 852 |
|
|---|
| 853 | <!-- ******* Bridgehead ******* -->
|
|---|
| 854 | <bridgehead renderas='sect4'>
|
|---|
| 855 | Framework functionality
|
|---|
| 856 | </bridgehead>
|
|---|
| 857 |
|
|---|
| 858 | <para>
|
|---|
| 859 | The design is a basic Strategy. The class diagram is shown in
|
|---|
| 860 | <xref linkend="fig.ExtdFuncHadPhys_8" />.
|
|---|
| 861 | At this point in time, the usage of the
|
|---|
| 862 | <literal>G4VFragmentation-Function</literal> is not enforced by design,
|
|---|
| 863 | but made available from the
|
|---|
| 864 | <literal>G4VString-Fragmentation</literal> to an implementer of a concrete string
|
|---|
| 865 | decay. <literal>G4VString-Fragmentation</literal> provides a registering
|
|---|
| 866 | mechanism for the
|
|---|
| 867 | concrete fragmentation function. It delegates the calculation of
|
|---|
| 868 | z<subscript>f</subscript> of the
|
|---|
| 869 | hadron to split of the string to the concrete implementation. Standardisation
|
|---|
| 870 | in this area is expected.
|
|---|
| 871 | </para>
|
|---|
| 872 |
|
|---|
| 873 | </sect2>
|
|---|
| 874 | </sect1> |
|---|