| 1 | \chapter{Decay}
|
|---|
| 2 | \noindent
|
|---|
| 3 | The decay of particles in flight and at rest is simulated by the
|
|---|
| 4 | {\it G4Decay} class.
|
|---|
| 5 |
|
|---|
| 6 | \section{Mean Free Path for Decay in Flight}
|
|---|
| 7 | \noindent
|
|---|
| 8 | The mean free path $\lambda$ is calculated for each step using
|
|---|
| 9 | \begin{eqnarray*}
|
|---|
| 10 | \lambda = \gamma \beta c \tau
|
|---|
| 11 | \end{eqnarray*}
|
|---|
| 12 | where $\tau$ is the lifetime of the particle and
|
|---|
| 13 | \begin{eqnarray*}
|
|---|
| 14 | \gamma = \frac{1}{\sqrt{1 - \beta^2}}.
|
|---|
| 15 | \end{eqnarray*}
|
|---|
| 16 | $\beta$ and $\gamma$ are calculated using the momentum at the beginning of
|
|---|
| 17 | the step. The decay time in the rest frame of the particle (proper time)
|
|---|
| 18 | is then sampled and converted to a decay length using $\beta$.
|
|---|
| 19 |
|
|---|
| 20 | \section{Branching Ratios and Decay Channels}
|
|---|
| 21 | \noindent
|
|---|
| 22 | {\it G4Decay} selects a decay mode for the particle according to branching
|
|---|
| 23 | ratios defined in the {\it G4DecayTable} class, which is a member of the
|
|---|
| 24 | {\it G4ParticleDefinition} class. Each mode is implemented as a class
|
|---|
| 25 | derived from {\it G4VDecayChannel} and is responsible for generating
|
|---|
| 26 | the secondaries and the kinematics of the decay. In a given decay channel
|
|---|
| 27 | the daughter particle momenta are calculated in the rest frame of the parent
|
|---|
| 28 | and then boosted into the laboratory frame. Polarization is not currently
|
|---|
| 29 | taken into account for either the parent or its daughters.
|
|---|
| 30 |
|
|---|
| 31 | A large number of specific decay channels may be required to simulate an
|
|---|
| 32 | experiment, ranging from two-body to many-body decays and $V-A$ to
|
|---|
| 33 | semi-leptonic decays. Most of these are covered by the five decay channel
|
|---|
| 34 | classes provided by Geant4:\\
|
|---|
| 35 | \begin{tabular}[t]{ll}
|
|---|
| 36 | G4PhaseSpaceDecayChannel & : phase space decay \\
|
|---|
| 37 | G4DalitzDecayChannel & : dalitz decay \\
|
|---|
| 38 | G4MuonDecayChannel & : muon decay \\
|
|---|
| 39 | G4TauLeptonicDecayChannel & : tau leptonic decay \\
|
|---|
| 40 | G4KL3DecayChannel & : semi-leptonic decays of kaon .\\
|
|---|
| 41 | & \\
|
|---|
| 42 | \end{tabular}
|
|---|
| 43 | \\
|
|---|
| 44 |
|
|---|
| 45 | \subsection{G4PhaseSpaceDecayChannel}
|
|---|
| 46 | \noindent
|
|---|
| 47 | The majority of decays in Geant4 are implemented using the
|
|---|
| 48 | {\it G4PhaseSpaceDecayChannel} class. It simulates phase space decays with
|
|---|
| 49 | isotropic angular distributions in the center-of-mass system. Three private
|
|---|
| 50 | methods of {\it G4PhaseSpaceDecayChannel} are provided to handle two-, three-
|
|---|
| 51 | and N-body decays:\\
|
|---|
| 52 | \begin{tabular}[t]{ll}
|
|---|
| 53 | TwoBodyDecayIt() & \\
|
|---|
| 54 | ThreeBodyDecayIt() & \\
|
|---|
| 55 | ManyBodyDecayIt() & \\
|
|---|
| 56 | \end{tabular}
|
|---|
| 57 |
|
|---|
| 58 | \noindent
|
|---|
| 59 | Some examples of decays handled by this class are:
|
|---|
| 60 | \begin{eqnarray*}
|
|---|
| 61 | \pi^{0} \rightarrow \gamma \gamma ,
|
|---|
| 62 | \end{eqnarray*}
|
|---|
| 63 | \begin{eqnarray*}
|
|---|
| 64 | \Lambda \rightarrow p \pi^-
|
|---|
| 65 | \end{eqnarray*}
|
|---|
| 66 | \noindent
|
|---|
| 67 | and
|
|---|
| 68 | \begin{eqnarray*}
|
|---|
| 69 | {K^0}_L \rightarrow \pi^0 \pi^+ \pi^- .
|
|---|
| 70 | \end{eqnarray*}
|
|---|
| 71 |
|
|---|
| 72 |
|
|---|
| 73 | \subsection{G4DalitzDecayChannel}
|
|---|
| 74 | \noindent
|
|---|
| 75 | The Dalitz decay
|
|---|
| 76 | \begin{eqnarray*}
|
|---|
| 77 | \pi^{0} \rightarrow \gamma + e^{+} + e^{-}
|
|---|
| 78 | \end{eqnarray*}
|
|---|
| 79 | and other Dalitz-like decays, such as
|
|---|
| 80 | \begin{eqnarray*}
|
|---|
| 81 | {K^0}_L \rightarrow \gamma + e^{+} + e^{-}
|
|---|
| 82 | \end{eqnarray*}
|
|---|
| 83 | and
|
|---|
| 84 | \begin{eqnarray*}
|
|---|
| 85 | {K^0}_L \rightarrow \gamma + \mu^{+} + \mu^{-}
|
|---|
| 86 | \end{eqnarray*}
|
|---|
| 87 | are simulated by the {\it G4DalitzDecayChannel} class. In general, it handles
|
|---|
| 88 | any decay of the form
|
|---|
| 89 |
|
|---|
| 90 | \begin{eqnarray*}
|
|---|
| 91 | P^{0} \rightarrow {\gamma} + l^{+} + l^{-} ,
|
|---|
| 92 | \end{eqnarray*}
|
|---|
| 93 |
|
|---|
| 94 | \noindent
|
|---|
| 95 | where $P^{0}$ is a spin-0 meson of mass $M$ and $l^{\pm}$ are leptons of
|
|---|
| 96 | mass $m$. The angular distribution of the $\gamma$ is isotropic in the
|
|---|
| 97 | center-of-mass system of the parent particle and the leptons are generated
|
|---|
| 98 | isotropically and back-to-back in their center-of-mass frame. The magnitude
|
|---|
| 99 | of the leptons' momentum is sampled from the distribution function
|
|---|
| 100 |
|
|---|
| 101 | \begin{eqnarray*}
|
|---|
| 102 | f(t) = {(1-\frac{t}{M^2})}^3(1+\frac{2m^2}{t})\sqrt{1-\frac{4m^2}{t}} ,
|
|---|
| 103 | \end{eqnarray*}
|
|---|
| 104 |
|
|---|
| 105 | \noindent where $t$ is the square of the sum of the leptons' energy in their
|
|---|
| 106 | center-of-mass frame.
|
|---|
| 107 |
|
|---|
| 108 |
|
|---|
| 109 | \subsection{Muon Decay}
|
|---|
| 110 | \noindent
|
|---|
| 111 | {\it G4MuonDecayChannel} simulates muon decay according to $V-A$ theory.
|
|---|
| 112 | Neglecting the electron mass, the electron energy is sampled from the
|
|---|
| 113 | following distribution:
|
|---|
| 114 | \begin{eqnarray*}
|
|---|
| 115 | d\Gamma = \frac{{G_F}^2{m_{\mu}}^5}{192\pi^3}2\epsilon^2(3 - 2\epsilon)\,
|
|---|
| 116 | \end{eqnarray*}
|
|---|
| 117 | where: \quad
|
|---|
| 118 | \begin{tabular}[t]{ll}
|
|---|
| 119 | $\Gamma$ & : decay rate \\
|
|---|
| 120 | $\epsilon$ & : $= E_e / E_{max} $\\
|
|---|
| 121 | $E_e$ & : electron energy \\
|
|---|
| 122 | $E_{max}$ & : maximum electron energy $ = m_{\mu}/2$\\
|
|---|
| 123 | & \\
|
|---|
| 124 | \end{tabular}
|
|---|
| 125 | \\
|
|---|
| 126 |
|
|---|
| 127 | \noindent
|
|---|
| 128 | The momenta of the two neutrinos are not sampled from their $V-A$
|
|---|
| 129 | distributions. Instead they are generated back-to-back and isotropically in
|
|---|
| 130 | the neutrinos' center-of-mass frame, with the magnitude of the neutrino
|
|---|
| 131 | momentum chosen to conserve energy in the decay. The two neutrinos are then
|
|---|
| 132 | boosted opposite to the momentum of the decay electron. This approximation is
|
|---|
| 133 | sufficient for most simulations because the neutrino is usually not observed
|
|---|
| 134 | in any detector.
|
|---|
| 135 |
|
|---|
| 136 | Currently, neither the polarization of the muon or the electron is considered
|
|---|
| 137 | in this class.
|
|---|
| 138 |
|
|---|
| 139 |
|
|---|
| 140 | \subsection{Leptonic Tau Decay}
|
|---|
| 141 | \noindent
|
|---|
| 142 | {\it G4TauLeptonicDecayChannel} simulates leptonic tau decays according to
|
|---|
| 143 | $V-A$ theory. This class is valid for both
|
|---|
| 144 | \begin{eqnarray*}
|
|---|
| 145 | {\tau}^{\pm} \rightarrow e^{\pm} + {\nu}_{\tau} + {\nu}_e
|
|---|
| 146 | \end{eqnarray*}
|
|---|
| 147 | and
|
|---|
| 148 | \begin{eqnarray*}
|
|---|
| 149 | {\tau}^{\pm} \rightarrow {\mu}^{\pm} + {\nu}_{\tau} + {\nu}_{\mu}
|
|---|
| 150 | \end{eqnarray*}
|
|---|
| 151 | modes.
|
|---|
| 152 |
|
|---|
| 153 | The energy spectrum is calculated without neglecting lepton mass as follows:
|
|---|
| 154 | \begin{eqnarray*}
|
|---|
| 155 | d\Gamma = \frac{{G_F}^2{m_{\tau}}^3}{24\pi^3}{p_l}{E_l}(3E_l{m_{\tau}}^2 - 4{E_l}^2{m_{\tau}} - 2{
|
|---|
| 156 | m_{\tau}}{m_l}^2)
|
|---|
| 157 | \end{eqnarray*}
|
|---|
| 158 | where: \quad
|
|---|
| 159 | \begin{tabular}[t]{ll}
|
|---|
| 160 | $\Gamma$ & : decay rate \\
|
|---|
| 161 | $E_l$ & : daughter lepton energy (total energy) \\
|
|---|
| 162 | $p_l$ & : daughter lepton momentum \\
|
|---|
| 163 | $m_l$ & : daughter lepton mass \\
|
|---|
| 164 | & \\
|
|---|
| 165 | \end{tabular}
|
|---|
| 166 | \\
|
|---|
| 167 | \noindent
|
|---|
| 168 | As in the case of muon decay, the energies of the two neutrinos are not
|
|---|
| 169 | sampled from their $V-A$ spectra, but are calculated so that energy and
|
|---|
| 170 | momentum are conserved. Polarization of the ${\tau}$ and final state leptons
|
|---|
| 171 | is not taken into account in this class.
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 | \subsection{Kaon Decay}
|
|---|
| 175 | The class {\it G4KL3DecayChannel} simulates the following four semi-leptonic
|
|---|
| 176 | decay modes of the kaon:\\
|
|---|
| 177 |
|
|---|
| 178 | \begin{tabular}[t]{ll}
|
|---|
| 179 | ${K^{\pm}}_{e3}$ & : $ K^{\pm} \rightarrow {\pi}^0 + e^{\pm} + {\nu} $ \\
|
|---|
| 180 | ${K^{\pm}}_{{\mu}3}$ & : $ K^{\pm} \rightarrow {\pi}^0 + {\mu}^{\pm} + {\nu} $ \\
|
|---|
| 181 | ${K^0}_{e3}$ & : $ K^0_L \rightarrow \pi^{\pm} + e^{\mp} + {\nu} $ \\
|
|---|
| 182 | ${K^0}_{{\mu}3}$ & : $ K^0_L \rightarrow \pi^{\pm} + {\mu}^{\mp} + {\nu} $\\
|
|---|
| 183 | & \\
|
|---|
| 184 | \end{tabular}
|
|---|
| 185 | \\
|
|---|
| 186 | \noindent
|
|---|
| 187 | Assuming that only the vector current contributes to
|
|---|
| 188 | $K \rightarrow l{\pi}{\nu}$ decays, the matrix element can be described by
|
|---|
| 189 | using two dimensionless form factors, $f_+$ and $f_-$, which depend only on
|
|---|
| 190 | the momentum transfer $t = ( P_K - P_\pi )^2$.\\
|
|---|
| 191 | The Dalitz plot density used in this class is as follows \cite{Chounet72}:\\
|
|---|
| 192 | \begin{eqnarray*}
|
|---|
| 193 | \rho\,(E_\pi , E_\mu ) \propto f^2_+\,(t) [ A + B \xi\,(t) + C{\xi\,(t)}^2 ]
|
|---|
| 194 | \end{eqnarray*}
|
|---|
| 195 | where: \quad
|
|---|
| 196 | \begin{tabular}[t]{ll}
|
|---|
| 197 | $ A = m_K (2E_\mu E_\nu - m_K E'_\pi)
|
|---|
| 198 | + {m_{\mu}}^2 ( \frac{1}{4} E'_\pi - E_\nu) $\\
|
|---|
| 199 | $ B = {m_{\mu}}^2 (E_\nu- \frac{1}{2} E'_\pi ) $\\
|
|---|
| 200 | $ C = \frac{1}{4} {m_{\mu}}^2 E'_\pi$\\
|
|---|
| 201 | $ E'_\pi = {E_\pi}^{max} - E_\pi $\\
|
|---|
| 202 | & \\
|
|---|
| 203 | \end{tabular}
|
|---|
| 204 | \\
|
|---|
| 205 | Here $\xi\,(t)$ is the ratio of the two form factors \\
|
|---|
| 206 | \begin{eqnarray*}
|
|---|
| 207 | \xi\,(t) = f_-\,(t) / f_+\,(t) .
|
|---|
| 208 | \end{eqnarray*}
|
|---|
| 209 | $f_+\,(t)$ is assumed to depend linearly on t, i.e.
|
|---|
| 210 | \begin{eqnarray*}
|
|---|
| 211 | f_+\,(t) = f_+\,(0) [ 1 + \lambda_+ (t/{m_\pi}^2) ]
|
|---|
| 212 | \end{eqnarray*}
|
|---|
| 213 | and $f_-\,(t)$ is assumed to be constant due to time reversal invariance.\\
|
|---|
| 214 | \\
|
|---|
| 215 | Two parameters, $\lambda_+$ and $\xi\,(0)$ are then used for describing the
|
|---|
| 216 | Dalitz plot density in this class. The values of these parameters are taken
|
|---|
| 217 | to be the world average values given by the Particle Data Group \cite{PDG}.
|
|---|
| 218 |
|
|---|
| 219 | \section{Status of this document}
|
|---|
| 220 | 10.04.02 re-written by D.H. Wright \\
|
|---|
| 221 | 02.04.02 editing by Hisaya Kurashige \\
|
|---|
| 222 | 14.11.01 editing by Hisaya Kurashige \\
|
|---|
| 223 |
|
|---|
| 224 | \begin{latexonly}
|
|---|
| 225 |
|
|---|
| 226 | \begin{thebibliography}{99}
|
|---|
| 227 | \bibitem{Chounet72} L.M. Chounet, J.M. Gaillard, and M.K. Gaillard,
|
|---|
| 228 | Phys. Reports 4C, 199 (1972).
|
|---|
| 229 | \bibitem{PDG}
|
|---|
| 230 | {\em Review of Particle Physics}
|
|---|
| 231 | The European Physical Journal C, 15 (2000).
|
|---|
| 232 | \end{thebibliography}
|
|---|
| 233 |
|
|---|
| 234 | \end{latexonly}
|
|---|
| 235 |
|
|---|
| 236 | \begin{htmlonly}
|
|---|
| 237 |
|
|---|
| 238 | \section{Bibliography}
|
|---|
| 239 |
|
|---|
| 240 | \begin{enumerate}
|
|---|
| 241 | \item L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Reports 4C, 199 (1972).
|
|---|
| 242 | \item {\em Review of Particle Physics} The European Physical Journal C, 15 (2000).
|
|---|
| 243 | \end{enumerate}
|
|---|
| 244 |
|
|---|
| 245 | \end{htmlonly}
|
|---|