source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/decay/decay.tex @ 1358

Last change on this file since 1358 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 8.3 KB
Line 
1\chapter{Decay}
2\noindent
3The decay of particles in flight and at rest is simulated by the
4{\it G4Decay} class.
5
6\section{Mean Free Path for Decay in Flight}
7\noindent
8The mean free path $\lambda$ is calculated for each step using
9\begin{eqnarray*}
10\lambda = \gamma \beta c \tau
11\end{eqnarray*}
12where $\tau$ is the lifetime of the particle and
13\begin{eqnarray*}
14\gamma = \frac{1}{\sqrt{1 - \beta^2}}.
15\end{eqnarray*}
16$\beta$ and $\gamma$ are calculated using the momentum at the beginning of
17the step.  The decay time in the rest frame of the particle (proper time)
18is then sampled and converted to a decay length using $\beta$.
19
20\section{Branching Ratios and Decay Channels}
21\noindent 
22{\it G4Decay} selects a decay mode for the particle according to branching
23ratios defined in the {\it G4DecayTable} class, which is a member of the
24{\it G4ParticleDefinition} class.  Each mode is implemented as a class
25derived from {\it G4VDecayChannel} and is responsible for generating
26the secondaries and the kinematics of the decay.  In a given decay channel
27the daughter particle momenta are calculated in the rest frame of the parent
28and then boosted into the laboratory frame.  Polarization is not currently
29taken into account for either the parent or its daughters.
30
31A large number of specific decay channels may be required to simulate an
32experiment, ranging from two-body to many-body decays and $V-A$ to
33semi-leptonic decays.  Most of these are covered by the five decay channel
34classes provided by Geant4:\\
35\begin{tabular}[t]{ll}
36 G4PhaseSpaceDecayChannel    & : phase space decay \\
37 G4DalitzDecayChannel        & : dalitz decay \\
38 G4MuonDecayChannel          & : muon decay \\
39 G4TauLeptonicDecayChannel   & : tau leptonic decay \\
40 G4KL3DecayChannel           & : semi-leptonic decays of kaon .\\
41             & \\
42\end{tabular}
43\\
44
45\subsection{G4PhaseSpaceDecayChannel}
46\noindent
47The majority of decays in Geant4 are implemented using the 
48{\it G4PhaseSpaceDecayChannel} class.  It simulates phase space decays with
49isotropic angular distributions in the center-of-mass system.  Three private
50methods of {\it G4PhaseSpaceDecayChannel} are provided to handle two-, three-
51and N-body decays:\\
52\begin{tabular}[t]{ll}
53 TwoBodyDecayIt()  & \\
54 ThreeBodyDecayIt() & \\
55 ManyBodyDecayIt() & \\
56\end{tabular}
57
58\noindent 
59Some examples of decays handled by this class are:
60\begin{eqnarray*}
61  \pi^{0} \rightarrow \gamma \gamma ,
62\end{eqnarray*}
63\begin{eqnarray*}
64  \Lambda \rightarrow p \pi^-
65\end{eqnarray*}
66\noindent
67and
68\begin{eqnarray*}
69  {K^0}_L \rightarrow  \pi^0 \pi^+ \pi^- .
70\end{eqnarray*}
71
72
73\subsection{G4DalitzDecayChannel}
74\noindent
75The Dalitz decay
76\begin{eqnarray*}
77  \pi^{0} \rightarrow \gamma + e^{+} + e^{-} 
78\end{eqnarray*}
79and other Dalitz-like decays, such as
80\begin{eqnarray*}
81  {K^0}_L \rightarrow \gamma + e^{+} + e^{-}
82\end{eqnarray*}
83and 
84\begin{eqnarray*}
85  {K^0}_L \rightarrow \gamma + \mu^{+} + \mu^{-} 
86\end{eqnarray*}
87are simulated by the {\it G4DalitzDecayChannel} class.  In general, it handles
88any decay of the form
89
90\begin{eqnarray*}
91 P^{0} \rightarrow {\gamma} + l^{+} + l^{-} ,
92\end{eqnarray*}
93
94\noindent 
95where $P^{0}$ is a spin-0 meson of mass $M$ and $l^{\pm}$ are leptons of
96mass $m$.  The angular distribution of the $\gamma$ is isotropic in the
97center-of-mass system of the parent particle and the leptons are generated
98isotropically and back-to-back in their center-of-mass frame.  The magnitude
99of the leptons' momentum is sampled from the distribution function
100
101\begin{eqnarray*}
102 f(t) = {(1-\frac{t}{M^2})}^3(1+\frac{2m^2}{t})\sqrt{1-\frac{4m^2}{t}} ,
103\end{eqnarray*}
104
105\noindent where $t$ is the square of the sum of the leptons' energy in their
106center-of-mass frame.
107
108
109\subsection{Muon Decay}
110\noindent
111{\it G4MuonDecayChannel} simulates muon decay according to $V-A$ theory.
112Neglecting the electron mass, the electron energy is sampled from the
113following distribution:
114\begin{eqnarray*}
115  d\Gamma = \frac{{G_F}^2{m_{\mu}}^5}{192\pi^3}2\epsilon^2(3 - 2\epsilon)\,
116\end{eqnarray*}
117where: \quad
118\begin{tabular}[t]{ll}
119 $\Gamma$    & : decay rate \\
120 $\epsilon$  & : $= E_e / E_{max} $\\
121 $E_e$       & : electron energy \\
122 $E_{max}$   & : maximum electron energy $ = m_{\mu}/2$\\
123             & \\
124\end{tabular}
125\\
126
127\noindent
128The momenta of the two neutrinos are not sampled from their $V-A$ 
129distributions.  Instead they are generated back-to-back and isotropically in
130the neutrinos' center-of-mass frame, with the magnitude of the neutrino
131momentum chosen to conserve energy in the decay.  The two neutrinos are then
132boosted opposite to the momentum of the decay electron.  This approximation is
133sufficient for most simulations because the neutrino is usually not observed
134in any detector.
135
136Currently, neither the polarization of the muon or the electron is considered
137in this class.
138
139
140\subsection{Leptonic Tau Decay}
141\noindent
142{\it G4TauLeptonicDecayChannel} simulates leptonic tau decays according to
143$V-A$ theory.  This class is valid for both
144\begin{eqnarray*}
145 {\tau}^{\pm} \rightarrow  e^{\pm} + {\nu}_{\tau} + {\nu}_e
146\end{eqnarray*}
147 and
148\begin{eqnarray*}
149 {\tau}^{\pm} \rightarrow  {\mu}^{\pm} + {\nu}_{\tau} + {\nu}_{\mu}
150\end{eqnarray*}
151modes.
152
153The energy spectrum is calculated without neglecting lepton mass as follows:
154\begin{eqnarray*}
155  d\Gamma = \frac{{G_F}^2{m_{\tau}}^3}{24\pi^3}{p_l}{E_l}(3E_l{m_{\tau}}^2 - 4{E_l}^2{m_{\tau}} - 2{
156m_{\tau}}{m_l}^2)
157\end{eqnarray*}
158where: \quad
159\begin{tabular}[t]{ll}
160 $\Gamma$    & : decay rate \\
161 $E_l$       & : daughter lepton energy (total energy) \\
162 $p_l$       & : daughter lepton momentum \\
163 $m_l$       & : daughter lepton mass \\
164             & \\
165\end{tabular}
166\\
167\noindent
168As in the case of muon decay, the energies of the two neutrinos are not
169sampled from their $V-A$ spectra, but are calculated so that energy and
170momentum are conserved.  Polarization of the ${\tau}$ and final state leptons
171is not taken into account in this class.
172
173
174\subsection{Kaon Decay}
175The class {\it G4KL3DecayChannel} simulates the following four semi-leptonic
176decay modes of the kaon:\\ 
177
178\begin{tabular}[t]{ll}
179 ${K^{\pm}}_{e3}$    & : $ K^{\pm} \rightarrow {\pi}^0 + e^{\pm} + {\nu} $ \\ 
180 ${K^{\pm}}_{{\mu}3}$  & : $ K^{\pm} \rightarrow {\pi}^0 + {\mu}^{\pm} + {\nu} $ \\
181 ${K^0}_{e3}$    & : $ K^0_L \rightarrow \pi^{\pm} + e^{\mp} + {\nu} $ \\ 
182 ${K^0}_{{\mu}3}$  & : $ K^0_L \rightarrow \pi^{\pm} + {\mu}^{\mp} + {\nu} $\\ 
183             & \\
184\end{tabular}
185\\
186\noindent
187Assuming that only the vector current contributes to
188$K \rightarrow l{\pi}{\nu}$ decays, the matrix element can be described by
189using two dimensionless form factors, $f_+$ and $f_-$, which depend only on
190the momentum transfer $t = ( P_K - P_\pi )^2$.\\
191The Dalitz plot density used in this class is as follows \cite{Chounet72}:\\
192\begin{eqnarray*}
193  \rho\,(E_\pi , E_\mu ) \propto f^2_+\,(t) [ A + B \xi\,(t) + C{\xi\,(t)}^2 ]
194\end{eqnarray*}
195where: \quad
196\begin{tabular}[t]{ll}
197 $ A = m_K (2E_\mu E_\nu - m_K E'_\pi) 
198       + {m_{\mu}}^2 ( \frac{1}{4} E'_\pi - E_\nu) $\\
199 $ B = {m_{\mu}}^2 (E_\nu- \frac{1}{2} E'_\pi ) $\\
200 $ C =  \frac{1}{4}  {m_{\mu}}^2 E'_\pi$\\
201 $ E'_\pi =  {E_\pi}^{max} -  E_\pi $\\
202            & \\
203\end{tabular}
204\\
205Here $\xi\,(t)$ is the ratio of the two form factors \\
206\begin{eqnarray*}
207  \xi\,(t) = f_-\,(t) / f_+\,(t) .
208\end{eqnarray*}
209$f_+\,(t)$ is assumed to depend linearly on t, i.e.
210\begin{eqnarray*}
211  f_+\,(t)  = f_+\,(0) [ 1 + \lambda_+ (t/{m_\pi}^2) ]
212\end{eqnarray*}
213and $f_-\,(t)$ is assumed to be constant due to time reversal invariance.\\
214\\
215Two parameters, $\lambda_+$ and $\xi\,(0)$ are then used for describing the
216Dalitz plot density in this class.  The values of these parameters are taken
217to be the world average values given by the Particle Data Group \cite{PDG}.
218
219\section{Status of this document}
220 10.04.02   re-written by D.H. Wright \\
221 02.04.02   editing by Hisaya Kurashige \\
222 14.11.01   editing by Hisaya Kurashige \\
223
224\begin{latexonly}
225
226\begin{thebibliography}{99}
227\bibitem{Chounet72} L.M. Chounet, J.M. Gaillard, and M.K. Gaillard,
228   Phys. Reports 4C, 199 (1972).
229\bibitem{PDG} 
230   {\em Review of Particle Physics}
231   The European Physical Journal C, 15 (2000).
232\end{thebibliography}
233
234\end{latexonly}
235
236\begin{htmlonly}
237
238\section{Bibliography}
239
240\begin{enumerate}
241\item L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Reports 4C, 199 (1972).
242\item {\em Review of Particle Physics} The European Physical Journal C, 15 (2000).
243\end{enumerate}
244
245\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.