source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/bremsstrahlung.tex @ 1211

Last change on this file since 1211 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 14.9 KB
Line 
1\section{Bremsstrahlung}\label{lowebrems}
2
3 The class G4LowEnergyBremsstrahlung calculates the continuous energy loss due to low energy gamma emission and
4simulates the gamma production by electrons.
5 The gamma production threshold for a given material $\omega_c$ is used to separate the continuous and the
6discrete parts of the process. The energy loss of an electron with the incident energy $T$ are expressed
7via the integrand over energy of the gammas:
8
9\begin{equation}
10{dE\over dx}=\sigma(T){{\int^{\omega_c}_{0.1eV}t{d\sigma\over d\omega}d\omega} \over{\int^{T}_{0.1eV}
11{d\sigma\over d\omega}d\omega}},
12\end{equation}
13
14 where $\sigma(T)$ is the total cross-section at a given incident kinetic energy, $T$, $0.1eV$ is the low energy limit
15of the EEDL data. The production cross-section is a complimentary function:
16
17\begin{equation}
18\sigma=\sigma(T){{\int^{T}_{\omega_c}{d\sigma\over d\omega}d\omega}\over {\int^{T}_{0.1eV}{d\sigma\over d\omega}d\omega}}.
19\end{equation}
20
21 The total cross-section, $\sigma_s$, is obtained from an interpolation of the evaluated cross-section data in the EEDL
22library~\cite{io-EEDL}, according to the formula (\ref{eqloglog}) in Section~\ref{subsubsigmatot}.
23
24 The EEDL data~\cite{br-leg4} of total cross-sections are parametrised~\cite{br-EEDL}  according to (\ref{eqloglog}).
25The probability of the emission of a photon with energy, $\omega$, considering an electron of incident kinetic energy,
26$T$, is generated according to the formula:
27
28\begin{equation}
29\label{eqbrem}
30{d\sigma \over d\omega} = {F(x) \over x}, \;\; \mbox{with} x = {\omega \over T}.
31\end{equation}
32
33 The function, $F(x)$, describing energy spectra of the outcoming photons is taken from the EEDL library. For each
34element 15 points in $x$ from 0.01 to 1 are used for the linear interpolation of this function. The function $F$ is
35normalised by the condition $F(0.01) = 1$. The energy distributions of the emitted photons available in the EEDL
36library are for only a few incident electron energies (about 10 energy points between 10 eV and 100 GeV). For other
37energies a logarithmic interpolation formula (\ref{eqloglog}) is used to obtain values for the function, $F(x)$.
38For high energies, the spectral function is very close to:
39
40\begin{equation}
41  F(x) = 1 - x + 0.75x^2.
42\end{equation}
43
44\subsection{Bremsstrahlung angular distributions}
45
46 The angular distribution of the emitted photons with respect to the incident
47electron can be sampled according to three alternative generators described below.
48The direction of the outcoming electron is determined from the energy-momentum balance.
49This generators are currently implemented in G4ModifiedTsai, G4Generator2BS and
50G4Generator2BN classes.
51
52\subsubsection*{G4ModifiedTsai}
53
54\noindent
55 The angular distribution of the emitted photons is obtained from a
56simplified \cite{br-g3} formula based on the Tsai cross-section \cite{br-tsai},
57which is expected to become isotropic in the low energy limit.
58
59\subsubsection*{G4Generator2BS}
60
61 In G4Generator2BS generator, the angular distribution of the emitted photons is obtained
62from the 2BS Koch and Motz bremsstrahlung double differential cross-section \cite{br-KandM}:
63
64\begin{eqnarray*}
65d\sigma_k,_\theta & = & \frac{4Z^2 r_0^2}{137} \frac{dk}{k} ydy \left\{
66\frac{16y^2E}{(y^2+1)^4E_0}-\right.{} \nonumber \\ 
67& & \left.\frac{(E_0+E)^2}{(y^2+1)^2E_0^2} +
68\left[ \frac{E_0^2+E^2}{(y^2+1)^2E_0^2}- \frac{4y^2E}{(y^2+1)^4E_0}\right]ln M(y)\right\}
69\end{eqnarray*}
70
71\noindent
72where $k$ the photon energy, $\theta$ the emission angle, $E_0$ and $E$ are the
73initial and final electron energy in units of $m_e c^2$, $r_0$ is the classical
74electron radius and $Z$ the atomic number of the material. $y$ and $M(y)$ are
75defined as:
76\begin{eqnarray*}
77y&=&E_0\theta \nonumber \\
78\frac{1}{M(y)}&=&\left(\frac{k}{2E_0E}\right)^2+\left(\frac{Z^{1/3}}{111(y^2+1)}\right)^2
79\end{eqnarray*}
80
81 The adopted sampling algorithm is based on the sampling scheme developed by
82A. F. Bielajew et al. \cite{br-pirs}, and latter implemented in EGS4. In this sampling algorithm
83only the angular part of 2BS is used, with the emitted photon energy, $k$, determined by
84GEANT4 $\left(\frac{d\sigma}{dk}\right)$ differential cross-section.
85
86
87\subsubsection*{G4Generator2BN}
88
89\noindent
90The angular distribution of the emitted photons is obtained from the 2BN Koch and Motz bremsstrahlung
91double differential cross-section \cite{br-KandM} that can be written as:
92
93\begin{eqnarray*}
94d\sigma_k,_\theta & = & \frac{Z^2 r_0^2}{8\pi 137}\frac{dk}{k} \frac{p}{p_0} d\Omega_k
95\left \{ \frac{8\sin^2\theta (2E_0^2-1)}{p_0^2\Delta_0^4}- \right.{} \nonumber \\ 
96& & \left.\frac{2(5E_0^2+2EE_0+3)}{p_0^2\Delta_0^2}
97- \frac{2(p_0^2-k^2)}{Q^2\Delta_0}+\frac{4E}{p_2^2\Delta_0}+\frac{L}{pp_0} \right.{} \nonumber \\ 
98& & \left. \left[ \frac{4E_0\sin^2\theta(3k-p_0^2E)}{p_0^2\Delta^4} + \frac{4E_0^2(E_0^2+E^2)}
99{p_0^2\Delta_0^2}+ \right.\right.{} \nonumber \\ 
100& & \left.\left. \frac{2-2(E_0^2-3EE_0+E^2)}{p_0^2\Delta_0^2}+\frac{2k(E_0^2+EE_0-1)}
101{p_0^2\Delta_0}\right] \right.{} \nonumber \\ 
102& & \left. -\left(\frac{4\epsilon}{p\Delta0}\right) + \left(\frac{\epsilon^Q}{pQ}\right)
103\left[\frac{4}{\Delta^2_0}-\frac{6k}{\Delta_0}-\frac{2k(p_0^2-k^2)}{Q^2\Delta_0}\right]\right \}
104\end{eqnarray*}
105\noindent in which:
106\begin{eqnarray*}
107L&=&\ln\left[\frac{EE_0-1+pp_0}{EE_0-1-pp_0}\right] \nonumber \\
108\Delta_0&=&E_0-p_0\cos\theta                       \nonumber \\
109Q^2&=&p_0^2+k^2-2p_0k\cos\theta                    \nonumber \\
110\epsilon&=&\ln\left[\frac{E+p}{E-p}\right]  \qquad  \epsilon^Q=\ln\left[\frac{Q+p}{Q-p}\right]
111\end{eqnarray*}
112
113\noindent
114where $k$ is the photon energy, $\theta$ the emission angle and $(E_0,p_0)$ and $(E,p)$ are the total
115(energy, momentum) of the electron before and after the radiative emission, all in units of $m_e c^2$.\\
116 Since the 2BN cross--section is a 2-dimensional  non-factorized  distribution an
117acceptance-rejection technique was the adopted. For the 2BN distribution, two functions
118$g_1(k)$ and $g_2(\theta)$ were defined:
119
120\begin{equation}
121g_1(k) = k^{-b} \qquad\qquad g_2(\theta)=\frac{\theta}{1+c\theta^2}
122\end{equation}
123
124\noindent
125such that:
126
127\begin{equation}
128Ag_1(k)g_2(\theta) \ge \frac{d\sigma}{dkd\theta}
129\end{equation}
130
131\noindent
132where A is a global constant to be completed. Both functions have an analytical
133integral $G$ and an analytical inverse $G^{-1}$. The $b$ parameter of $g_1(k)$ was
134empirically tuned and set to $1.2$. For positive $\theta$ values, $g_2(\theta)$ has a maximum 
135at $\frac{1}{\sqrt(c)}$. $c$ parameter controls the function global shape and it was
136used to tune $g_2(\theta)$ according to the electron kinetic energy.\\
137To generate photon energy $k$ according to $g_1$ and $\theta$ according to $g_2$ the
138inverse-transform method was used. The integration of these functions gives
139
140\begin{equation}
141G_1 = C_1 \int_{k_{min}}^{k_{max}} k'^{-b}dk' = C_1 \frac{k^{1-b}-k^{1-b}_{min}}{1-b}
142\end{equation}
143
144\begin{equation}
145G_2 = C_2 \int_{0}^{\theta} \frac{\theta'}{1+c\theta'^2}d\theta'=C_2 \frac{\log(1+c\theta^2)}{2c}
146\end{equation}
147
148\noindent
149where $C_1$ and $C_2$ are two global constants chosen to normalize the integral in the overall range
150to the unit. The  photon momentum $k$ will range from a minimum cut value $k_{min}$ (required to avoid
151infrared divergence) to a maximum value equal to the  electron  kinetic energy  $E_k$, while the polar
152angle ranges from 0 to $\pi$, resulting for $C_1$ and $C_2$:
153
154\begin{equation}
155C_1 = \frac{1-b}{E_k^{1-b}} \qquad\qquad C_2 = \frac{2c}{\log(1+c\pi^2)}
156\end{equation}
157
158\noindent
159$k$ and $\theta$ are then sampled according to:
160
161\begin{equation}
162k = \left[ \frac{1-b}{C_1}\xi_1 + k_{min}^{1-b} \right] \qquad\qquad \theta = \sqrt{\frac{\exp\left(\frac{2c\xi_2}{C_1}\right)}{2c}}
163\end{equation}
164
165\noindent
166where $\xi_1$ and $\xi_2$ are uniformly sampled in the interval (0,1). The event is accepted if:
167
168\begin{equation}
169uAg_1(k)g_2(\theta) \le \frac{d\sigma}{dkd\theta}
170\end{equation}
171
172\noindent
173where $u$ is a random number with uniform distribution in (0,1). The $A$ and $c$ parameters were computed
174in a logarithmic grid, ranging  from 1 keV to 1.5 MeV with 100 points per decade.
175Since the $g_2(\theta)$ function has a maximum at $\theta = \frac{1}{\sqrt{c}}$,
176the $c$ parameter was  computed  using  the  relation $c=\frac{1}{\theta_{max}}$. At the point ($k_{min},\theta_{max}$)
177where $k_{min}$ is the $k$ cut value, the double differential cross-section has its maximum value, since it is
178monotonically decreasing in $k$ and thus the global normalization parameter $A$ is estimated from the relation:
179
180\begin{equation}
181A g_1(k_{min})g_2({\theta_{max}})= \left(\frac{d^2\sigma}{dkd\theta}\right)_{max}
182\end{equation}
183
184\noindent
185where $g_1(k_{min})g_2({\theta_{max}}) =  \frac{k_{min}^{-b}}{2\sqrt{c}}$.
186Since $A$ and $c$ can only be retrieved for a fixed number of electron kinetic energies there exists the possibility that
187$A g_1(k_{min})g_2({\theta_{max}})\le\left(\frac{d^2\sigma}{dkd\theta}\right)_{max}$ for a given $E_k$. This is a small
188violation that can be corrected introducing an additional multiplicative factor to the $A$ parameter, which was
189empirically determined to be 1.04 for the entire energy range.\\ 
190
191\subsubsection*{Comparisons between Tsai, 2BS and 2BN generators}
192
193The currently available generators can be used according to the user required
194precision and timing requirements. Regarding the energy range, validation results
195indicate that for lower energies ($\le$ 100 keV) there is a significant
196deviation on the most probable emission angle between Tsai/2BS generators
197and the 2BN generator - Figure \ref{br-dist}. The 2BN generator maintains however a good agreement
198with Kissel data \cite{Kissel}, derived from the work of Tseng and co-workers \cite{Pratt},
199and it should be used for energies between 1 keV and 100 keV \cite{IEEE}.
200As the electron kinetic energy increases, the different distributions tend to overlap
201and all generators present a good agreement with Kissel data.
202
203\begin{figure}[hbtp]
204\begin{center}
205\setlength{\unitlength}{0.0105in}%
206\includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-10kev.eps}%
207\includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-100kev.eps}%
208\includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-500kev.eps}%
209\end{center}
210\caption{Comparison of polar angle distribution of bremsstrahlung photons ($k/T=0.5$) for
21110 keV ({\em left}) and 100 keV ({\em middle}) and 500 keV ({\em right}) electrons in silver,
212obtained with Tsai, 2BS and 2BN generator}
213\label{br-dist}
214\end{figure}
215
216\noindent
217In figure \ref{br-eff} the sampling efficiency for the different generators are presented.
218The sampling generation efficiency was defined as the ratio between the
219number of generated events and the total number of trials. As energies increases the sampling efficiency
220of the 2BN algorithm decreases from 0.65 at 1 keV electron kinetic energy down to almost 0.35 at 1 MeV.
221For energies up to 10 keV the 2BN sampling efficiency is superior or equivalent to the one of the
2222BS generator. These results are an indication that precision simulation of low energy bremsstrahlung
223can be obtained with little performance degradation. For energies above 500 keV, Tsai generator can be
224used, retaining a good physics accuracy and a sampling efficiency superior to the 2BS generator.
225%
226\begin{figure}[hbtp]
227\begin{center}
228\setlength{\unitlength}{0.0105in}%
229\includegraphics[width=8cm]{electromagnetic/lowenergy/br-eff.eps}
230\end{center}
231\caption{Sampling efficiency for Tsai generator, 2BS and 2BN Koch and Motz generators.}
232\label{br-eff}
233\end{figure} 
234
235\subsection{Status of the document}
236
237\noindent
23830.09.1999 created by Alessandra Forti\\
23907.02.2000 modified by V\'eronique Lef\'ebure\\
24008.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
24105.12.2001 modified by Vladimir Ivanchenko\\
24213.05.2002 modified by Vladimir Ivanchenko\\
24324.11.2003 modified by Andreia Trindade, Pedro Rodrigues and Luis Peralta\\
244
245\begin{latexonly}
246
247\begin{thebibliography}{99}
248\bibitem{br-leg4}
249  ``Geant4 Low Energy Electromagnetic Models for Electrons and Photons",
250   J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-99/18(1999)
251\bibitem{br-EEDL} 
252  %http://reddog1.llnl.gov/homepage.red/Electron.htm
253  ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
254  the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
255  S.T.Perkins, D.E.Cullen, S.M.Seltzer,
256  UCRL-50400 Vol.31
257\bibitem{br-g3}
258  ``GEANT, Detector Description and Simulation Tool",
259  CERN Application Software Group, CERN Program Library Long Writeup W5013
260\bibitem{br-tsai}   
261  ``Pair production and bremsstrahlung of charged leptons",
262  Y. Tsai, Rev. Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)
263\bibitem{br-KandM}
264   ``Bremsstrahlung Cross-Section Formulas and Related Data",
265  H. W. Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)
266\bibitem{br-pirs} 
267   ``Improved bremsstrahlung photon angular sampling in the EGS4 code system'',
268   A. F. Bielajew, R. Mohan and C.-S. Chui, Report NRCC/PIRS-0203 (1989)
269\bibitem{Kissel} 
270  ``Bremsstrahlung from electron collisions with neutral atoms'',
271   L. Kissel, C. A. Quarls and R. H. Pratt, At. Data  Nucl. Data Tables, Vol. 28, 382(1983)
272\bibitem{Pratt} 
273  ``Electron bremsstrahlung angular distributions in the 1-500 keV energy range'',
274   H. K. Tseng,  R. H. Pratt  and  C. M. Lee , Phys. Rev. A, Vol. 19, 187(1979)
275\bibitem{IEEE}
276   ``GEANT4 Applications and Developments for Medical Physics Experiments'',
277   P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record
278\end{thebibliography}
279
280\end{latexonly}
281
282\begin{htmlonly}
283
284\subsection{Bibliography}
285
286\begin{enumerate}
287\item
288  ``Geant4 Low Energy Electromagnetic Models for Electrons and Photons",
289   J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-99/18(1999)
290\item 
291  %http://reddog1.llnl.gov/homepage.red/Electron.htm
292  ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
293  the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
294  S.T.Perkins, D.E.Cullen, S.M.Seltzer,
295  UCRL-50400 Vol.31
296\item
297  ``GEANT, Detector Description and Simulation Tool",
298  CERN Application Software Group, CERN Program Library Long Writeup W5013
299\item   
300  ``Pair production and bremsstrahlung of charged leptons",
301  Y. Tsai, Rev. Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)
302\item
303   ``Bremsstrahlung Cross-Section Formulas and Related Data",
304  H. W. Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)
305\item 
306   ``Improved bremsstrahlung photon angular sampling in the EGS4 code system'',
307   A. F. Bielajew, R. Mohan and C.-S. Chui, Report NRCC/PIRS-0203 (1989)
308\item 
309  ``Bremsstrahlung from electron collisions with neutral atoms'',
310   L. Kissel, C. A. Quarls and R. H. Pratt, At. Data  Nucl. Data Tables, Vol. 28, 382(1983)
311\item 
312  ``Electron bremsstrahlung angular distributions in the 1-500 keV energy range'',
313   H. K. Tseng,  R. H. Pratt  and  C. M. Lee , Phys. Rev. A, Vol. 19, 187(1979)
314\item
315   ``GEANT4 Applications and Developments for Medical Physics Experiments'',
316   P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record
317\end{enumerate}
318
319\end{htmlonly}
320
321
Note: See TracBrowser for help on using the repository browser.