| 1 | \section{Bremsstrahlung}\label{lowebrems}
|
|---|
| 2 |
|
|---|
| 3 | The class G4LowEnergyBremsstrahlung calculates the continuous energy loss due to low energy gamma emission and
|
|---|
| 4 | simulates the gamma production by electrons.
|
|---|
| 5 | The gamma production threshold for a given material $\omega_c$ is used to separate the continuous and the
|
|---|
| 6 | discrete parts of the process. The energy loss of an electron with the incident energy $T$ are expressed
|
|---|
| 7 | via the integrand over energy of the gammas:
|
|---|
| 8 |
|
|---|
| 9 | \begin{equation}
|
|---|
| 10 | {dE\over dx}=\sigma(T){{\int^{\omega_c}_{0.1eV}t{d\sigma\over d\omega}d\omega} \over{\int^{T}_{0.1eV}
|
|---|
| 11 | {d\sigma\over d\omega}d\omega}},
|
|---|
| 12 | \end{equation}
|
|---|
| 13 |
|
|---|
| 14 | where $\sigma(T)$ is the total cross-section at a given incident kinetic energy, $T$, $0.1eV$ is the low energy limit
|
|---|
| 15 | of the EEDL data. The production cross-section is a complimentary function:
|
|---|
| 16 |
|
|---|
| 17 | \begin{equation}
|
|---|
| 18 | \sigma=\sigma(T){{\int^{T}_{\omega_c}{d\sigma\over d\omega}d\omega}\over {\int^{T}_{0.1eV}{d\sigma\over d\omega}d\omega}}.
|
|---|
| 19 | \end{equation}
|
|---|
| 20 |
|
|---|
| 21 | The total cross-section, $\sigma_s$, is obtained from an interpolation of the evaluated cross-section data in the EEDL
|
|---|
| 22 | library~\cite{io-EEDL}, according to the formula (\ref{eqloglog}) in Section~\ref{subsubsigmatot}.
|
|---|
| 23 |
|
|---|
| 24 | The EEDL data~\cite{br-leg4} of total cross-sections are parametrised~\cite{br-EEDL} according to (\ref{eqloglog}).
|
|---|
| 25 | The probability of the emission of a photon with energy, $\omega$, considering an electron of incident kinetic energy,
|
|---|
| 26 | $T$, is generated according to the formula:
|
|---|
| 27 |
|
|---|
| 28 | \begin{equation}
|
|---|
| 29 | \label{eqbrem}
|
|---|
| 30 | {d\sigma \over d\omega} = {F(x) \over x}, \;\; \mbox{with} x = {\omega \over T}.
|
|---|
| 31 | \end{equation}
|
|---|
| 32 |
|
|---|
| 33 | The function, $F(x)$, describing energy spectra of the outcoming photons is taken from the EEDL library. For each
|
|---|
| 34 | element 15 points in $x$ from 0.01 to 1 are used for the linear interpolation of this function. The function $F$ is
|
|---|
| 35 | normalised by the condition $F(0.01) = 1$. The energy distributions of the emitted photons available in the EEDL
|
|---|
| 36 | library are for only a few incident electron energies (about 10 energy points between 10 eV and 100 GeV). For other
|
|---|
| 37 | energies a logarithmic interpolation formula (\ref{eqloglog}) is used to obtain values for the function, $F(x)$.
|
|---|
| 38 | For high energies, the spectral function is very close to:
|
|---|
| 39 |
|
|---|
| 40 | \begin{equation}
|
|---|
| 41 | F(x) = 1 - x + 0.75x^2.
|
|---|
| 42 | \end{equation}
|
|---|
| 43 |
|
|---|
| 44 | \subsection{Bremsstrahlung angular distributions}
|
|---|
| 45 |
|
|---|
| 46 | The angular distribution of the emitted photons with respect to the incident
|
|---|
| 47 | electron can be sampled according to three alternative generators described below.
|
|---|
| 48 | The direction of the outcoming electron is determined from the energy-momentum balance.
|
|---|
| 49 | This generators are currently implemented in G4ModifiedTsai, G4Generator2BS and
|
|---|
| 50 | G4Generator2BN classes.
|
|---|
| 51 |
|
|---|
| 52 | \subsubsection*{G4ModifiedTsai}
|
|---|
| 53 |
|
|---|
| 54 | \noindent
|
|---|
| 55 | The angular distribution of the emitted photons is obtained from a
|
|---|
| 56 | simplified \cite{br-g3} formula based on the Tsai cross-section \cite{br-tsai},
|
|---|
| 57 | which is expected to become isotropic in the low energy limit.
|
|---|
| 58 |
|
|---|
| 59 | \subsubsection*{G4Generator2BS}
|
|---|
| 60 |
|
|---|
| 61 | In G4Generator2BS generator, the angular distribution of the emitted photons is obtained
|
|---|
| 62 | from the 2BS Koch and Motz bremsstrahlung double differential cross-section \cite{br-KandM}:
|
|---|
| 63 |
|
|---|
| 64 | \begin{eqnarray*}
|
|---|
| 65 | d\sigma_k,_\theta & = & \frac{4Z^2 r_0^2}{137} \frac{dk}{k} ydy \left\{
|
|---|
| 66 | \frac{16y^2E}{(y^2+1)^4E_0}-\right.{} \nonumber \\
|
|---|
| 67 | & & \left.\frac{(E_0+E)^2}{(y^2+1)^2E_0^2} +
|
|---|
| 68 | \left[ \frac{E_0^2+E^2}{(y^2+1)^2E_0^2}- \frac{4y^2E}{(y^2+1)^4E_0}\right]ln M(y)\right\}
|
|---|
| 69 | \end{eqnarray*}
|
|---|
| 70 |
|
|---|
| 71 | \noindent
|
|---|
| 72 | where $k$ the photon energy, $\theta$ the emission angle, $E_0$ and $E$ are the
|
|---|
| 73 | initial and final electron energy in units of $m_e c^2$, $r_0$ is the classical
|
|---|
| 74 | electron radius and $Z$ the atomic number of the material. $y$ and $M(y)$ are
|
|---|
| 75 | defined as:
|
|---|
| 76 | \begin{eqnarray*}
|
|---|
| 77 | y&=&E_0\theta \nonumber \\
|
|---|
| 78 | \frac{1}{M(y)}&=&\left(\frac{k}{2E_0E}\right)^2+\left(\frac{Z^{1/3}}{111(y^2+1)}\right)^2
|
|---|
| 79 | \end{eqnarray*}
|
|---|
| 80 |
|
|---|
| 81 | The adopted sampling algorithm is based on the sampling scheme developed by
|
|---|
| 82 | A. F. Bielajew et al. \cite{br-pirs}, and latter implemented in EGS4. In this sampling algorithm
|
|---|
| 83 | only the angular part of 2BS is used, with the emitted photon energy, $k$, determined by
|
|---|
| 84 | GEANT4 $\left(\frac{d\sigma}{dk}\right)$ differential cross-section.
|
|---|
| 85 |
|
|---|
| 86 |
|
|---|
| 87 | \subsubsection*{G4Generator2BN}
|
|---|
| 88 |
|
|---|
| 89 | \noindent
|
|---|
| 90 | The angular distribution of the emitted photons is obtained from the 2BN Koch and Motz bremsstrahlung
|
|---|
| 91 | double differential cross-section \cite{br-KandM} that can be written as:
|
|---|
| 92 |
|
|---|
| 93 | \begin{eqnarray*}
|
|---|
| 94 | d\sigma_k,_\theta & = & \frac{Z^2 r_0^2}{8\pi 137}\frac{dk}{k} \frac{p}{p_0} d\Omega_k
|
|---|
| 95 | \left \{ \frac{8\sin^2\theta (2E_0^2-1)}{p_0^2\Delta_0^4}- \right.{} \nonumber \\
|
|---|
| 96 | & & \left.\frac{2(5E_0^2+2EE_0+3)}{p_0^2\Delta_0^2}
|
|---|
| 97 | - \frac{2(p_0^2-k^2)}{Q^2\Delta_0}+\frac{4E}{p_2^2\Delta_0}+\frac{L}{pp_0} \right.{} \nonumber \\
|
|---|
| 98 | & & \left. \left[ \frac{4E_0\sin^2\theta(3k-p_0^2E)}{p_0^2\Delta^4} + \frac{4E_0^2(E_0^2+E^2)}
|
|---|
| 99 | {p_0^2\Delta_0^2}+ \right.\right.{} \nonumber \\
|
|---|
| 100 | & & \left.\left. \frac{2-2(E_0^2-3EE_0+E^2)}{p_0^2\Delta_0^2}+\frac{2k(E_0^2+EE_0-1)}
|
|---|
| 101 | {p_0^2\Delta_0}\right] \right.{} \nonumber \\
|
|---|
| 102 | & & \left. -\left(\frac{4\epsilon}{p\Delta0}\right) + \left(\frac{\epsilon^Q}{pQ}\right)
|
|---|
| 103 | \left[\frac{4}{\Delta^2_0}-\frac{6k}{\Delta_0}-\frac{2k(p_0^2-k^2)}{Q^2\Delta_0}\right]\right \}
|
|---|
| 104 | \end{eqnarray*}
|
|---|
| 105 | \noindent in which:
|
|---|
| 106 | \begin{eqnarray*}
|
|---|
| 107 | L&=&\ln\left[\frac{EE_0-1+pp_0}{EE_0-1-pp_0}\right] \nonumber \\
|
|---|
| 108 | \Delta_0&=&E_0-p_0\cos\theta \nonumber \\
|
|---|
| 109 | Q^2&=&p_0^2+k^2-2p_0k\cos\theta \nonumber \\
|
|---|
| 110 | \epsilon&=&\ln\left[\frac{E+p}{E-p}\right] \qquad \epsilon^Q=\ln\left[\frac{Q+p}{Q-p}\right]
|
|---|
| 111 | \end{eqnarray*}
|
|---|
| 112 |
|
|---|
| 113 | \noindent
|
|---|
| 114 | where $k$ is the photon energy, $\theta$ the emission angle and $(E_0,p_0)$ and $(E,p)$ are the total
|
|---|
| 115 | (energy, momentum) of the electron before and after the radiative emission, all in units of $m_e c^2$.\\
|
|---|
| 116 | Since the 2BN cross--section is a 2-dimensional non-factorized distribution an
|
|---|
| 117 | acceptance-rejection technique was the adopted. For the 2BN distribution, two functions
|
|---|
| 118 | $g_1(k)$ and $g_2(\theta)$ were defined:
|
|---|
| 119 |
|
|---|
| 120 | \begin{equation}
|
|---|
| 121 | g_1(k) = k^{-b} \qquad\qquad g_2(\theta)=\frac{\theta}{1+c\theta^2}
|
|---|
| 122 | \end{equation}
|
|---|
| 123 |
|
|---|
| 124 | \noindent
|
|---|
| 125 | such that:
|
|---|
| 126 |
|
|---|
| 127 | \begin{equation}
|
|---|
| 128 | Ag_1(k)g_2(\theta) \ge \frac{d\sigma}{dkd\theta}
|
|---|
| 129 | \end{equation}
|
|---|
| 130 |
|
|---|
| 131 | \noindent
|
|---|
| 132 | where A is a global constant to be completed. Both functions have an analytical
|
|---|
| 133 | integral $G$ and an analytical inverse $G^{-1}$. The $b$ parameter of $g_1(k)$ was
|
|---|
| 134 | empirically tuned and set to $1.2$. For positive $\theta$ values, $g_2(\theta)$ has a maximum
|
|---|
| 135 | at $\frac{1}{\sqrt(c)}$. $c$ parameter controls the function global shape and it was
|
|---|
| 136 | used to tune $g_2(\theta)$ according to the electron kinetic energy.\\
|
|---|
| 137 | To generate photon energy $k$ according to $g_1$ and $\theta$ according to $g_2$ the
|
|---|
| 138 | inverse-transform method was used. The integration of these functions gives
|
|---|
| 139 |
|
|---|
| 140 | \begin{equation}
|
|---|
| 141 | G_1 = C_1 \int_{k_{min}}^{k_{max}} k'^{-b}dk' = C_1 \frac{k^{1-b}-k^{1-b}_{min}}{1-b}
|
|---|
| 142 | \end{equation}
|
|---|
| 143 |
|
|---|
| 144 | \begin{equation}
|
|---|
| 145 | G_2 = C_2 \int_{0}^{\theta} \frac{\theta'}{1+c\theta'^2}d\theta'=C_2 \frac{\log(1+c\theta^2)}{2c}
|
|---|
| 146 | \end{equation}
|
|---|
| 147 |
|
|---|
| 148 | \noindent
|
|---|
| 149 | where $C_1$ and $C_2$ are two global constants chosen to normalize the integral in the overall range
|
|---|
| 150 | to the unit. The photon momentum $k$ will range from a minimum cut value $k_{min}$ (required to avoid
|
|---|
| 151 | infrared divergence) to a maximum value equal to the electron kinetic energy $E_k$, while the polar
|
|---|
| 152 | angle ranges from 0 to $\pi$, resulting for $C_1$ and $C_2$:
|
|---|
| 153 |
|
|---|
| 154 | \begin{equation}
|
|---|
| 155 | C_1 = \frac{1-b}{E_k^{1-b}} \qquad\qquad C_2 = \frac{2c}{\log(1+c\pi^2)}
|
|---|
| 156 | \end{equation}
|
|---|
| 157 |
|
|---|
| 158 | \noindent
|
|---|
| 159 | $k$ and $\theta$ are then sampled according to:
|
|---|
| 160 |
|
|---|
| 161 | \begin{equation}
|
|---|
| 162 | k = \left[ \frac{1-b}{C_1}\xi_1 + k_{min}^{1-b} \right] \qquad\qquad \theta = \sqrt{\frac{\exp\left(\frac{2c\xi_2}{C_1}\right)}{2c}}
|
|---|
| 163 | \end{equation}
|
|---|
| 164 |
|
|---|
| 165 | \noindent
|
|---|
| 166 | where $\xi_1$ and $\xi_2$ are uniformly sampled in the interval (0,1). The event is accepted if:
|
|---|
| 167 |
|
|---|
| 168 | \begin{equation}
|
|---|
| 169 | uAg_1(k)g_2(\theta) \le \frac{d\sigma}{dkd\theta}
|
|---|
| 170 | \end{equation}
|
|---|
| 171 |
|
|---|
| 172 | \noindent
|
|---|
| 173 | where $u$ is a random number with uniform distribution in (0,1). The $A$ and $c$ parameters were computed
|
|---|
| 174 | in a logarithmic grid, ranging from 1 keV to 1.5 MeV with 100 points per decade.
|
|---|
| 175 | Since the $g_2(\theta)$ function has a maximum at $\theta = \frac{1}{\sqrt{c}}$,
|
|---|
| 176 | the $c$ parameter was computed using the relation $c=\frac{1}{\theta_{max}}$. At the point ($k_{min},\theta_{max}$)
|
|---|
| 177 | where $k_{min}$ is the $k$ cut value, the double differential cross-section has its maximum value, since it is
|
|---|
| 178 | monotonically decreasing in $k$ and thus the global normalization parameter $A$ is estimated from the relation:
|
|---|
| 179 |
|
|---|
| 180 | \begin{equation}
|
|---|
| 181 | A g_1(k_{min})g_2({\theta_{max}})= \left(\frac{d^2\sigma}{dkd\theta}\right)_{max}
|
|---|
| 182 | \end{equation}
|
|---|
| 183 |
|
|---|
| 184 | \noindent
|
|---|
| 185 | where $g_1(k_{min})g_2({\theta_{max}}) = \frac{k_{min}^{-b}}{2\sqrt{c}}$.
|
|---|
| 186 | Since $A$ and $c$ can only be retrieved for a fixed number of electron kinetic energies there exists the possibility that
|
|---|
| 187 | $A g_1(k_{min})g_2({\theta_{max}})\le\left(\frac{d^2\sigma}{dkd\theta}\right)_{max}$ for a given $E_k$. This is a small
|
|---|
| 188 | violation that can be corrected introducing an additional multiplicative factor to the $A$ parameter, which was
|
|---|
| 189 | empirically determined to be 1.04 for the entire energy range.\\
|
|---|
| 190 |
|
|---|
| 191 | \subsubsection*{Comparisons between Tsai, 2BS and 2BN generators}
|
|---|
| 192 |
|
|---|
| 193 | The currently available generators can be used according to the user required
|
|---|
| 194 | precision and timing requirements. Regarding the energy range, validation results
|
|---|
| 195 | indicate that for lower energies ($\le$ 100 keV) there is a significant
|
|---|
| 196 | deviation on the most probable emission angle between Tsai/2BS generators
|
|---|
| 197 | and the 2BN generator - Figure \ref{br-dist}. The 2BN generator maintains however a good agreement
|
|---|
| 198 | with Kissel data \cite{Kissel}, derived from the work of Tseng and co-workers \cite{Pratt},
|
|---|
| 199 | and it should be used for energies between 1 keV and 100 keV \cite{IEEE}.
|
|---|
| 200 | As the electron kinetic energy increases, the different distributions tend to overlap
|
|---|
| 201 | and all generators present a good agreement with Kissel data.
|
|---|
| 202 |
|
|---|
| 203 | \begin{figure}[hbtp]
|
|---|
| 204 | \begin{center}
|
|---|
| 205 | \setlength{\unitlength}{0.0105in}%
|
|---|
| 206 | \includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-10kev.eps}%
|
|---|
| 207 | \includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-100kev.eps}%
|
|---|
| 208 | \includegraphics[width=4.7cm]{electromagnetic/lowenergy/br-500kev.eps}%
|
|---|
| 209 | \end{center}
|
|---|
| 210 | \caption{Comparison of polar angle distribution of bremsstrahlung photons ($k/T=0.5$) for
|
|---|
| 211 | 10 keV ({\em left}) and 100 keV ({\em middle}) and 500 keV ({\em right}) electrons in silver,
|
|---|
| 212 | obtained with Tsai, 2BS and 2BN generator}
|
|---|
| 213 | \label{br-dist}
|
|---|
| 214 | \end{figure}
|
|---|
| 215 |
|
|---|
| 216 | \noindent
|
|---|
| 217 | In figure \ref{br-eff} the sampling efficiency for the different generators are presented.
|
|---|
| 218 | The sampling generation efficiency was defined as the ratio between the
|
|---|
| 219 | number of generated events and the total number of trials. As energies increases the sampling efficiency
|
|---|
| 220 | of the 2BN algorithm decreases from 0.65 at 1 keV electron kinetic energy down to almost 0.35 at 1 MeV.
|
|---|
| 221 | For energies up to 10 keV the 2BN sampling efficiency is superior or equivalent to the one of the
|
|---|
| 222 | 2BS generator. These results are an indication that precision simulation of low energy bremsstrahlung
|
|---|
| 223 | can be obtained with little performance degradation. For energies above 500 keV, Tsai generator can be
|
|---|
| 224 | used, retaining a good physics accuracy and a sampling efficiency superior to the 2BS generator.
|
|---|
| 225 | %
|
|---|
| 226 | \begin{figure}[hbtp]
|
|---|
| 227 | \begin{center}
|
|---|
| 228 | \setlength{\unitlength}{0.0105in}%
|
|---|
| 229 | \includegraphics[width=8cm]{electromagnetic/lowenergy/br-eff.eps}
|
|---|
| 230 | \end{center}
|
|---|
| 231 | \caption{Sampling efficiency for Tsai generator, 2BS and 2BN Koch and Motz generators.}
|
|---|
| 232 | \label{br-eff}
|
|---|
| 233 | \end{figure}
|
|---|
| 234 |
|
|---|
| 235 | \subsection{Status of the document}
|
|---|
| 236 |
|
|---|
| 237 | \noindent
|
|---|
| 238 | 30.09.1999 created by Alessandra Forti\\
|
|---|
| 239 | 07.02.2000 modified by V\'eronique Lef\'ebure\\
|
|---|
| 240 | 08.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
|
|---|
| 241 | 05.12.2001 modified by Vladimir Ivanchenko\\
|
|---|
| 242 | 13.05.2002 modified by Vladimir Ivanchenko\\
|
|---|
| 243 | 24.11.2003 modified by Andreia Trindade, Pedro Rodrigues and Luis Peralta\\
|
|---|
| 244 |
|
|---|
| 245 | \begin{latexonly}
|
|---|
| 246 |
|
|---|
| 247 | \begin{thebibliography}{99}
|
|---|
| 248 | \bibitem{br-leg4}
|
|---|
| 249 | ``Geant4 Low Energy Electromagnetic Models for Electrons and Photons",
|
|---|
| 250 | J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-99/18(1999)
|
|---|
| 251 | \bibitem{br-EEDL}
|
|---|
| 252 | %http://reddog1.llnl.gov/homepage.red/Electron.htm
|
|---|
| 253 | ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
|
|---|
| 254 | the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
|
|---|
| 255 | S.T.Perkins, D.E.Cullen, S.M.Seltzer,
|
|---|
| 256 | UCRL-50400 Vol.31
|
|---|
| 257 | \bibitem{br-g3}
|
|---|
| 258 | ``GEANT, Detector Description and Simulation Tool",
|
|---|
| 259 | CERN Application Software Group, CERN Program Library Long Writeup W5013
|
|---|
| 260 | \bibitem{br-tsai}
|
|---|
| 261 | ``Pair production and bremsstrahlung of charged leptons",
|
|---|
| 262 | Y. Tsai, Rev. Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)
|
|---|
| 263 | \bibitem{br-KandM}
|
|---|
| 264 | ``Bremsstrahlung Cross-Section Formulas and Related Data",
|
|---|
| 265 | H. W. Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)
|
|---|
| 266 | \bibitem{br-pirs}
|
|---|
| 267 | ``Improved bremsstrahlung photon angular sampling in the EGS4 code system'',
|
|---|
| 268 | A. F. Bielajew, R. Mohan and C.-S. Chui, Report NRCC/PIRS-0203 (1989)
|
|---|
| 269 | \bibitem{Kissel}
|
|---|
| 270 | ``Bremsstrahlung from electron collisions with neutral atoms'',
|
|---|
| 271 | L. Kissel, C. A. Quarls and R. H. Pratt, At. Data Nucl. Data Tables, Vol. 28, 382(1983)
|
|---|
| 272 | \bibitem{Pratt}
|
|---|
| 273 | ``Electron bremsstrahlung angular distributions in the 1-500 keV energy range'',
|
|---|
| 274 | H. K. Tseng, R. H. Pratt and C. M. Lee , Phys. Rev. A, Vol. 19, 187(1979)
|
|---|
| 275 | \bibitem{IEEE}
|
|---|
| 276 | ``GEANT4 Applications and Developments for Medical Physics Experiments'',
|
|---|
| 277 | P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record
|
|---|
| 278 | \end{thebibliography}
|
|---|
| 279 |
|
|---|
| 280 | \end{latexonly}
|
|---|
| 281 |
|
|---|
| 282 | \begin{htmlonly}
|
|---|
| 283 |
|
|---|
| 284 | \subsection{Bibliography}
|
|---|
| 285 |
|
|---|
| 286 | \begin{enumerate}
|
|---|
| 287 | \item
|
|---|
| 288 | ``Geant4 Low Energy Electromagnetic Models for Electrons and Photons",
|
|---|
| 289 | J.Apostolakis et al., CERN-OPEN-99-034(1999), INFN/AE-99/18(1999)
|
|---|
| 290 | \item
|
|---|
| 291 | %http://reddog1.llnl.gov/homepage.red/Electron.htm
|
|---|
| 292 | ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
|
|---|
| 293 | the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
|
|---|
| 294 | S.T.Perkins, D.E.Cullen, S.M.Seltzer,
|
|---|
| 295 | UCRL-50400 Vol.31
|
|---|
| 296 | \item
|
|---|
| 297 | ``GEANT, Detector Description and Simulation Tool",
|
|---|
| 298 | CERN Application Software Group, CERN Program Library Long Writeup W5013
|
|---|
| 299 | \item
|
|---|
| 300 | ``Pair production and bremsstrahlung of charged leptons",
|
|---|
| 301 | Y. Tsai, Rev. Mod. Phys., Vol.46, 815(1974), Vol.49, 421(1977)
|
|---|
| 302 | \item
|
|---|
| 303 | ``Bremsstrahlung Cross-Section Formulas and Related Data",
|
|---|
| 304 | H. W. Koch and J. W. Motz, Rev. Mod. Phys., Vol.31, 920(1959)
|
|---|
| 305 | \item
|
|---|
| 306 | ``Improved bremsstrahlung photon angular sampling in the EGS4 code system'',
|
|---|
| 307 | A. F. Bielajew, R. Mohan and C.-S. Chui, Report NRCC/PIRS-0203 (1989)
|
|---|
| 308 | \item
|
|---|
| 309 | ``Bremsstrahlung from electron collisions with neutral atoms'',
|
|---|
| 310 | L. Kissel, C. A. Quarls and R. H. Pratt, At. Data Nucl. Data Tables, Vol. 28, 382(1983)
|
|---|
| 311 | \item
|
|---|
| 312 | ``Electron bremsstrahlung angular distributions in the 1-500 keV energy range'',
|
|---|
| 313 | H. K. Tseng, R. H. Pratt and C. M. Lee , Phys. Rev. A, Vol. 19, 187(1979)
|
|---|
| 314 | \item
|
|---|
| 315 | ``GEANT4 Applications and Developments for Medical Physics Experiments'',
|
|---|
| 316 | P. Rodrigues et al. IEEE 2003 NSS/MIC Conference Record
|
|---|
| 317 | \end{enumerate}
|
|---|
| 318 |
|
|---|
| 319 | \end{htmlonly}
|
|---|
| 320 |
|
|---|
| 321 |
|
|---|