source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/hadrons.tex @ 1222

Last change on this file since 1222 was 1222, checked in by garnier, 15 years ago

CVS update

File size: 36.8 KB
Line 
1\section{Hadron and Ion Ionisation} \label{le_had_ion}
2 
3
4 The class {\tt G4hLowEnergyIonisation} calculates the continuous energy loss
5due to ionisation and simulates the $\delta$-ray production by charged hadrons
6or ions.  This represents an extension of the Geant4 physics models down to
7low energy \cite{hlei.prepHadr,hlei.prepIon}.
8
9\subsection{Delta-ray production}
10
11In Geant4, $\delta$-rays are generated generally only above a threshold
12energy, $T_c$, the value of which depends on atomic parameters and the cut
13value, $T_{cut}$, calculated from the unique {\em cut in range} parameter
14for all charged particles in all materials.  The total cross-section
15for the production of a $\delta$-ray electron of kinetic energy $T > T_c$ 
16by a particle of kinetic energy $E$ is:
17\begin{equation}
18\label{hlei.a}
19\sigma (E,T_{c}) = \int_{T_{c}}^{T_{max}} \frac{d \sigma (E,T)}{dT} dT
20\hspace{5mm} \mbox{with } T_c = \min(\max(I,T_{cut}),T_{max})
21\end{equation}
22where $I$ is the mean excitation potential of the atom (the formulae of
23this charter are precise if $T \gg I$),
24$T_{max}$ is the maximum energy transferable to the free electron
25\begin{equation}
26\label{hlei.a1}
27T_{max} =\frac{2m_e c^2 (\gamma^2 -1)} {1+2\gamma (m_e/M) + (m_e/M)^2}
28\end{equation}
29with $m_e$ the electron mass, $M$ the mass of the incident particle, and
30$\gamma$ is the relativistic factor.
31For heavy charged particles the differential cross-section per atom
32can be written as \cite{hlei.pdg,hlei.rossi52}:
33\begin{eqnarray}
34\label{hlei.bbb}
35\mbox{for spin 0} &\frac {d\sigma }{dT} = & K Z \frac {Z^2_h}{\beta^2 T^2}
36\left[ 1- \beta^2 \frac{T} { T_{max} }\right] 
37\\ \nonumber 
38\mbox{for spin 1/2} &\frac{d \sigma} {dT} = & K Z \frac {Z^2_h} {\beta^2 T^2}
39\left[1- \beta^ 2 \frac{T}{T_{max} }+ \frac{T^2} {2E^2}
40 \right]
41\\  \nonumber 
42\mbox{for spin 1} &\frac{d \sigma} {dT}= & K Z \frac {Z^2_h}{\beta^2 T^2}
43\left[\left(1- \beta^ 2 \frac{T}{T_{max} }\right)
44\left(1 + \frac{T}{3Q_c} \right)
45+ \frac{T^2} {3E^2}\left(1+\frac{T}{2Q_c}\right)
46 \right]
47\end{eqnarray}
48where $Z$ is the atomic number,
49$Z_{h}$ is the effective charge of
50the incident particle in units
51of positron charge, $\beta$ is the relativistic velocity, and
52$Q_c=(M c^2)^2/m_e c^2$. The
53factor $K$ is expressed as
54$K = 2\pi r^2_e m_e c^2$,
55where $r_e$ is the classical electron
56radius.
57The integration of
58formula (\ref{hlei.a}) gives the total cross-section,
59which
60for particles with spin 0 and 1/2 are the following :
61\begin{eqnarray}
62\label{hlei.c}
63\mbox{for spin 0} &\sigma (Z,E,T_{c})  = &
64K Z  \frac{Z^2_h}{\beta^2} \left (
65   \frac{1-\tau+\beta^2 \tau\ln \tau}{T_{c}} \right )
66\\ \nonumber
67\mbox{for spin 1/2} &\sigma (Z,E,T_{c})  = &
68K Z  \frac{Z^2_h}{\beta^2} \left ( \frac{1-\tau+\beta^2 \tau\ln \tau}{T_{c}}
69+ \frac{T_{max}-T_{c}} {2E^2} \right )
70\end{eqnarray}
71where  $\tau = T_c/T_{max}$.
72
73\noindent 
74The average energy transfer $\Delta E_{\delta}$
75of a particle with spin 0
76to $\delta$-electrons with $T > T_c$
77can be expressed as: 
78\begin{equation}
79\Delta E_{\delta} =
80N_{el}\frac{Z^2_h}{\beta^2} \left (-
81\ln{\tau} -
82\beta^2(1-\tau) \right )
83\label{hlei.del}
84\end{equation}
85where  $N_{el}$ is the electron density of the medium.
86Using (\ref{hlei.bbb}) one finds that
87the correction to (\ref{hlei.del}) for particles with spin 1/2
88is $(T^2_{max}-T^2_c)/4E^2$.
89This value is very small for low energy and can be neglected.
90The same conclusion can be drawn for particles with spin 1.
91
92\noindent
93The mean free path of the particle
94is tabulated during initialisation
95as a function of the material and of the energy for
96all the charged hadrons and static ions. Note, that for
97low energy $T_c = T_{max}$, cross-section is zero and
98the mean free path is set to infinity, compatible with the
99machine precision.
100
101
102\subsection{Energy Loss of Fast Hadrons}
103
104
105The energy lost in soft
106ionising collisions producing $\delta$-rays below ${T_c}$
107are included in the continuous energy loss.
108 The mean value of the energy loss
109is given by the restricted Bethe-Bloch formula \cite{hlei.bethe,hlei.pdg} :
110\begin{eqnarray}
111\left.\frac{dE}{dx} \right]_{T<T_c} &=& K N_{el}\frac{Z^2_{h}}{\beta^2}L_0
112\\ \nonumber 
113&=& K N_{el}\frac{Z^2_{h}}{\beta^2} \left [
114\ln{\frac{2m_e c^2 \beta^2\gamma^2T_{max}}{I^2}} -
115\beta^2 \left ( 1 +\frac{T_c}{T_{max}} \right )
116 - \delta - \frac{2C_e}{Z} \right ]
117\label{hlei.d}
118\end{eqnarray}
119where  $N_{el}$ is the electron density of the medium,
120 $\delta$ is the density correction term, and $C_e/Z$ is the shell correction
121term.
122
123\noindent
124The density effect becomes important at high
125energies because of the long-range polarisation
126of the medium by a relativistic charged particle. The shell correction term
127takes into account the fact that, at low energies for light elements,
128and at all energies for heavy ones, the probability of
129hadron interaction with inner atomic shells becomes small.
130The accuracy of the Bethe-Bloch formula with the correction terms mentioned
131above is estimated as 1~\% for
132energies between 6~MeV and 6~GeV \cite{hlei.pdg}.
133Using (\ref{hlei.bbb}) one can find out that
134the correction to $L_0$ for particles with the spin 1/2
135is $T^2_c/4E^2$. This value is very small and can be neglected.
136
137\noindent
138There exists a variety of phenomenological approximations for
139parameters in the Bethe-Bloch formula.
140 In Geant4 the tabulation of
141the ionisation potential from Ref.\cite{hlei.ICRU37} 
142is implemented for all the
143elements. For the density
144effect the formulation of Sternheimer \cite{hlei.sternheimer}
145is used:
146\input{electromagnetic/utils/densityeffect}
147
148\noindent
149The semi-empirical formula due to Barkas, which is applicable to all
150materials, is used for the shell correction term\cite{hlei.bark62}:
151\begin{equation}
152C_e(I, \beta\gamma) = \frac{a(I)}{(\beta\gamma)^2}
153                     +\frac{b(I)}{(\beta\gamma)^4}
154                     +\frac{c(I)}{(\beta\gamma)^6}
155\end{equation}
156The functions a(I), b(I), c(I) can be found in the source code. \\
157This formula breaks down at low energies, and it only applies for $\beta 
158\gamma > 0.13$ (e.g. $T > 7.9$ MeV for a proton).
159For $\beta \gamma \leq 0.13$ the shell correction term is calculated as:
160$$
161\left . C_{e}(I,\beta \gamma) \rule{0mm}{5mm} \right |_{\beta \gamma \leq
1620.13} = C_{e}(I,\beta \gamma=0.13)\frac{\ln (T/T_{2l})}
163         {\ln (7.9 \mbox{ MeV}/T_{2l})}
164$$
165hence the correction becomes progressively smaller from $T=7.9$
166MeV to $T=T_{2l}=2 \mbox{ MeV}$.
167
168\noindent
169Since $M \gg m_e$,
170the ionisation loss does not depend on the hadron
171mass, but on its velocity.
172Therefore the energy loss of a charged hadron
173with kinetic energy, $T$, is the same as
174the energy loss of a proton with the same velocity. The corresponding
175kinetic energy of the proton $T_p$ is
176\begin{equation}
177T_{proton} = \frac{M_{proton}}{M} \ T.
178\label{hlei.e}
179\end{equation} 
180
181\noindent
182At initialisation stage of Geant4 the $dE/dx$ tables
183and range tables for all materials
184are calculated only for protons and antiprotons.
185During run time the energy loss and the range of any hadron or ion are
186recalculated using the scaling relation (\ref{hlei.e}).
187
188
189\subsection{Barkas and Bloch effects}
190
191
192The accuracy of
193the Bethe-Bloch stopping power formula
194(\ref{hlei.e}) can be improved
195if the higher order terms are taken into account:
196\begin{equation}
197-\frac{dE}{dx} = K \frac{Z^2_{h}}{\beta^2}(L_0 +Z_{h}L_1+Z^2_{h}L_2),
198\label{hlei.f}
199\end{equation}
200where $L_1$ is the Barkas term \cite{hlei.bark56},
201describing the difference
202between ionisation of positively and negatively charged particles, and
203$L_2$ is the Bloch term.
204
205The Barkas effect for kinetic energy of
206protons or antiprotons greater than $500 keV$ can be described as
207\cite{hlei.arb72}:
208\begin{equation}
209L_1=\frac{F\left ( b / \sqrt{x}\right ) }{\sqrt{Z x^3}}, \,\,\,
210x=\frac{\beta^2c^2}{Zv_0^2},\,\,\,
211b=0.8 Z^{\frac 16}\left( 1+6.02Z^{-1.19}\right),
212\label{hlei.g}
213\end{equation}
214where
215$v_0$ is the Bohr velocity (corresponding to proton energy $T_p=25 keV$), and
216the function $F$ is  tabulated according to \cite{hlei.arb72}.
217
218The Bloch term \cite{hlei.bloch}
219can be expressed in the following way:
220\begin{equation}
221Z^2_{h}L_2 = - y^2 \sum^{\inf}_{j=1} \frac{1}{j(j^2 + y^2)},\,\,\,
222y=\frac{Z_{h}}{137\beta}.
223\label{hlei.h}
224\end{equation}
225Note, that for $y \ll 1$ the simplified expression
226$Z^2_{h}L_2=-1.202y^2$ can be used.
227
228Both the Barkas and Bloch terms break scaling of ionisation losses
229if the absolute value of particle charge is different from unity,
230because the particle charge $Z_h$ is not factorised
231in the formula (\ref{hlei.f}).
232To take these terms into account correction is made at
233each step of the simulation for the value of $dE/dx$
234re-calculated from the proton or antiproton tables.
235There is the possibility to switch off the calculation
236of these terms.
237
238\subsection{Energy losses of slow positive hadrons}
239
240At low energies the total energy loss is usually described
241in terms of {\it electronic stopping power} $S_e = - dE/dx$.
242For charged hadron with velocity $\beta < 0.05$ (corresponding
243to 1~MeV for protons), formula (\ref{hlei.d}) becomes inaccurate.
244In this case the velocity of the incident
245hadron is comparable to the velocity
246of atomic electrons. At very low energies, when
247$\beta < 0.01$, the model of a free electron gas \cite{hlei.Lindhard}
248predicts the stopping power to be proportional to
249the hadron velocity,   
250but it is not as accurate as the Bethe-Bloch formalism.
251The intermediate region $0.01 < \beta < 0.05$ is not covered
252by precise theories. In this energy
253interval the Bragg peak of ionisation loss occurs.
254
255To simulate slow proton energy loss
256the  following
257parametrisation from the review  \cite{hlei.Ziegler771} was implemented:
258\begin{eqnarray}
259S_e & = &  A_1E^{1/2}, \; \; \; \; \; \; \; \; \hspace{46mm}
260 1~keV < T_p < 10~keV, \nonumber \\
261S_e & = & \frac{S_{low}S_{high}}{S_{low}+S_{high}}, \hspace{46mm}
262                       10~keV < T_p < 1~MeV, \nonumber \\
263S_{low}  & = & A_2E^{0.45}\nonumber\\
264S_{high} & = & \frac{A_3}{E}\ln{\left(1 + \frac{A_4}{E} + A_5E \right)}
265             \nonumber \\
266S_e & =  & \frac{A_6}{\beta^2} \left [\ln{\frac{A_7\beta^2}{1-\beta^2}}
267-\beta^2 - \sum^{4}_{i=0} A_{i+8}(\ln{E})^i \right ], 
268                      \;   1~MeV < T_p < 100~MeV, \nonumber \\
269\label{hlei.i}
270\end{eqnarray} 
271where $S_e$ is the stopping power
272in $[eV/10^{15}atoms/cm^2]$, $E=T_p/M_p [keV/amu]$, $A_i$ are twelve
273fitting parameters found individually for each atom for
274atomic numbers from 1 to 92.
275This parametrisation is used
276in the interval of proton kinetic energy:
277\begin{equation}
278T_1 < T_p < T_2,
279\label{hlei.j}
280\end{equation} 
281where $T_1 = 1~keV$ is the minimal kinetic energy of protons
282in the tables of Ref.\cite{hlei.Ziegler771},
283 $T_2$ is an arbitrary value
284between 2~MeV and 100~MeV, since in this range
285 both the  parametrisation (\ref{hlei.i})
286and the Bethe-Bloch formula (\ref{hlei.e})
287have practically the same accuracy and
288are close to each other.
289Currently the value  $T_2 = 2~MeV$ is chosen.
290
291
292To avoid problems in computation and
293to provide a continuous $dE/dx$ function, the factor
294\begin{equation}
295F = \left (1 + B\frac{T_2}{T_p} \right )
296\label{hlei.r}
297\end{equation} 
298is multiplied by the value of  $dE/dx$ for $T_p > T_{2}$.
299The parameter $B$ is determined for each element of the material
300in order to
301provide continuity at $T_p=T_2$. The value of $B$ for all
302atoms is less than 0.01. For the
303simulation of the stopping power of very slow protons the model of a
304free electron gas \cite{hlei.Lindhard} is used:
305\begin{equation}
306S_e = A \sqrt{T_p}, \; \; T_p < T_{1}.
307\label{hlei.k}
308\end{equation} 
309The parameter $A$ is defined for each atom
310by requiring the stopping power to be continuous
311  at $T_p=T_{1}$. Currently the value used is $T_1=1~keV$.
312
313Note that
314if the cut kinetic energy is small ($T_c < T_{max}$), then the average
315energy deposit giving
316rise to $\delta$-electron production  (\ref{hlei.del})
317is subtracted from the
318value of the stopping power $S_e$, which is calculated by formula
319(\ref{hlei.i}).
320
321
322Alternative parametrisations of proton energy loss
323are also available within Geant4 (Table \ref{hlei.tab0}).
324The parameterisation formulae
325in Ref.\cite{hlei.ICRU49} are the same
326as in Ref.(\cite{hlei.Ziegler771})
327for the kinetic
328energy of protons $T_p < 1~MeV$, but
329the values of the parameters are different.
330The type of parameterisation is optional and
331can be chosen by the user separately for each particle
332at the initialisation stage of Geant4.
333
334
335\begin{table*}
336\caption{The list of parameterisations available.}
337%\vspace {2pt}
338\label{hlei.tab0}
339\begin{center}
340\begin{tabular}{|l|l|l|}
341\hline
342Name  & Particle & Source \\ 
343\hline
344{\bf Ziegler1977p} & proton & J.F.~Ziegler parameterisation
345    \cite{hlei.Ziegler771} \\
346{\bf Ziegler1977He} & $He^4$ & J.F.~Ziegler parameterisation
347    \cite{hlei.Ziegler774}\\
348{\bf Ziegler1985p} & proton & TRIM'85 parameterisation \cite{hlei.Ziegler85} \\
349{\bf ICRU\_R49p} & proton & ICRU parameterisation \cite{hlei.ICRU49} \\
350{\bf ICRU\_R49He} & $He^4$ & ICRU parameterisation \cite{hlei.ICRU49} \\
351\hline
352\end{tabular} 
353\end{center}
354\end{table*}
355
356
357\subsection{Energy loss of alpha particles}
358
359The accuracy of the data for the ionisation losses of $\alpha$-particles
360in all elements \cite{hlei.ICRU49,hlei.Ziegler774} 
361is comparable to the accuracy
362of the data for proton energy loss \cite{hlei.Ziegler771,hlei.ICRU49}.
363In the GEANT4 energy loss model for $\alpha$-particles 
364the Bethe-Bloch formula is used for kinetic energy
365$T > T_2$, where $T_2$ is the arbitrary parameter, currently set to $8~MeV$.
366For lower energies a parameterisation is performed.
367In the energy range of the Bragg peak,
368$1~keV < T < 10~MeV$, the
369parameterisation is: 
370\begin{eqnarray}
371S_e & = & \frac{S_{low}S_{high}}{S_{low}+S_{high}}\nonumber \\
372S_{low}  & = & A_1T^{A_2}\nonumber\\
373S_{high} & = & \frac{A_3}{T}\ln{\left(1 + \frac{A_4}{T} + A_5T \right)}
374             \nonumber \\
375\label{hlei.l}
376\end{eqnarray} 
377where $S_e$ is the electronic stopping power
378in $[eV/10^{15}atoms/cm^2]$, $T$ is the kinetic energy of $\alpha$-particles in
379$MeV$,
380$A_i$ are the five fitting
381parameters fitted individually for each atom for
382atomic numbers from 1 to 92.
383
384For higher energies $T > 10~MeV$, another
385 parametrisation \cite{hlei.Ziegler774} is applied
386\begin{equation}
387S_e= exp \left(A_6+A_7E+A_8E^2+A_9E^3 \right ), \; E=ln(1/T).
388\label{hlei.m}
389\end{equation} 
390To ensure a continuous $dE/dx$ function from the energy range of the
391Bethe-Bloch formula to the energy range of the parameterisation, the factor
392\begin{equation}
393F = \left (1 + B\frac{T_2}{T} \right )
394\label{hlei.n}
395\end{equation} 
396is multiplied by the value of  $S_e$ as predicted by the Bethe-Bloch formula
397for $T > T_{2}$.
398The parameter $B$ is determined for each element of the material in order to
399ensure continuity at $T_p=T_2$. The value of $B$ for different atoms is
400usually less than 0.01.
401
402For kinetic energies of $\alpha$-particles $T < 1~keV$ the model
403of free electron gas  \cite{hlei.Lindhard} is used
404\begin{equation}
405S_e = A \sqrt{T},
406\label{hlei.o}
407\end{equation} 
408The parameter $A$ is defined for each atom by requiring the stopping power to be
409continuous at $T=1~keV$.
410
411
412\subsection{Effective charge of ions}
413
414For hadrons or ions
415the scaling relation can be written as
416\begin{equation}
417S_{ei}(T) = Z_{eff}^2\cdot S_{ep}(T_p),
418\label{hlei.sei}
419\end{equation} 
420where $S_{ei}$ is the ion stopping power,
421 $S_{ep}$ is the proton stopping power at the energy scaled
422according (\ref{hlei.e}), and 
423$Z_{eff}$ is effective charge of the particle, which has to be used in
424all expressions in place of $Z_h$.
425For fast particles it is equal to the particle charge $Z_h$,
426but for slow ions it differs significantly because 
427 a slow ion
428picks up electrons from the medium.
429The ion effective charge is expressed via
430the ion charge $Z_h$ and the
431fractional effective charge of ion $\gamma_i$:
432\begin{equation}
433Z_{eff} = \gamma_i Z_h.
434\label{hlei.pp}
435\end{equation} 
436
437For helium ions
438fractional effective charge
439is parameterised for all
440elements with good accuracy \cite{hlei.Ziegler85} according to:
441\begin{eqnarray}
442(\gamma_{He})^2 & = &\left (1-\exp\left [-\sum_{j=0}^5{C_jQ^j}\right ]\right)
443\left ( 1  + \frac{ 7 + 0.05  Z }{1000} \exp( -(7.6-Q)^2 ) \right )^2,
444\nonumber \\
445 Q & = & \max ( 0, \ln T_p) , 
446\label{hlei.q} 
447\end{eqnarray} 
448where the coefficients $C_j$ are the same for all elements, and the
449helium ion kinetic energy is in $keV/amu$.
450
451
452The following expression is used for heavy ions \cite{hlei.BK}
453\begin{equation}
454\gamma_i = \left ( q + \frac{1-q}{2} \left (\frac{v_0}{v_F} \right )^2
455\ln {\left ( 1 + \Lambda^2 \right )} \right )
456\left ( 1 + \frac{(0.18+0.0015Z)\exp(-(7.6-Q)^2)}{Z_i^2} \right ),
457\label{hlei.s}
458\end{equation} 
459where $q$ is
460the fractional average charge of the ion,
461$v_0$ is the Bohr velocity,
462$v_F$ is the Fermi velocity of 
463the electrons in the target medium, and $\Lambda$ is
464the term taking into account the screening effect. In Ref.~\cite{hlei.BK},
465$\Lambda$ is estimated to be:
466\begin{equation}
467\Lambda = 10 \frac{v_F}{v_0} \frac{(1-q)^{2/3}}{Z_i^{1/3}(6+q)}.
468\label{hlei.t}
469\end{equation} 
470The Fermi velocity of the medium is of the same order as the Bohr velocity, and
471its exact value depends on the detailed electronic structure of the medium.
472Experimental data on the Fermi velocity are taken from
473Ref.\cite{hlei.Ziegler85}.
474The expression for the fractional average charge of the ion is the following:
475\begin{equation}
476q = [1 -\exp(0.803y^{0.3}-1.3167y^{0.6}-0.38157y-0.008983y^2)],
477\label{hlei.u}
478\end{equation} 
479where $y$ is a parameter that depends on the ion velocity $v_i$
480\begin{equation}
481y = \frac{v_i}{v_0Z^{2/3}} \left ( 1 +\frac {v_F^2}{5v_i^2} \right ).
482\label{hlei.v}
483\end{equation} 
484
485The parametrisation described in this chapter is only valid
486if the reduced kinetic energy of the ion is higher than the lower limit
487of the energy:
488\begin{equation}
489T_p > \max \left ( 3.25~keV, \frac{25~keV}{Z^{2/3}} \right ).
490\label{hlei.x}
491\end{equation} 
492If the ion energy is lower, then the free electron gas model (\ref{hlei.o})
493is used  to calculate the stopping power.
494
495
496\subsection{Energy losses of slow negative particles}
497
498At low energies, e.g. below a few MeV for protons/antiprotons, the
499Bethe-Bloch formula is no longer accurate in describing the energy
500loss of charged hadrons and higher $Z$ terms should be taken in
501account.
502Odd terms in $Z$ lead to a significant difference between energy
503loss of positively and negatively charged particles.
504The energy loss of negative hadrons is scaled from that
505of antiprotons.
506The antiproton energy loss is calculated in the following way:
507\begin{itemize}
508\item 
509if the material is elemental, the quantum harmonic oscillator model is used, as
510described in \cite{hlei.sigmund} and references therein.
511The lower limit of applicability of the model is chosen for all
512materials at $50~keV$. Below this value stopping power is set to constant
513equal to the $dE/dx$ at $50~keV$.
514\item 
515if the material is not elemental, the energy loss is calculated
516down to $500~keV$ using the Barkas correction (\ref{hlei.n})
517 and at lower energies fitting the
518proton energy loss curve.
519\end{itemize}
520
521
522
523   
524\subsection{Energy losses of hadrons in compounds}
525
526To obtain energy losses in
527a mixture or compound,
528the absorber can be thought of as made up of thin
529layers of pure elements with weights proportional to the electron
530density of the element in the absorber (Bragg's rule):
531\begin{equation}
532\frac{dE}{dx}=\sum_i{\left (\frac{dE}{dx} \right )_i},
533\label{hlei.y}
534\end{equation} 
535where the sum is taken over all elements of the absorber, $i$ is
536the number of the element,
537$(\frac{dE}{dx})_i$ is energy loss in the pure $i$-th element.
538
539Bragg's rule is very accurate for relativistic particles
540when the interaction of electrons with a nucleus is negligible.
541But at low energies the accuracy of Bragg's rule is limited
542because the energy loss to the electrons in any material
543depends on the detailed orbital
544and excitation structure of the material.
545In the description of Geant4 materials there is a special
546attribute: the chemical formula.
547It is used in the
548following way:
549\begin{itemize}
550\item
551if the data on the stopping power for a compound
552as a function of the proton kinetic energy
553  is available (Table \ref{hlei.tab1}), then the
554direct parametrisation of the data for this material is performed;
555\item
556if the data on the stopping power for a compound
557  is available for only one incident
558energy (Table \ref{hlei.tab2}), then
559the computation is
560performed based on Bragg's rule and the chemical
561factor for the compound is taken into account;
562\item
563if there are no data for the compound, the computation is
564performed based on Bragg's rule.
565\end{itemize}
566\noindent
567In the review \cite{hlei.Ziegler88} the parametrisation stopping
568power data are presented as
569\begin{equation}
570S_e(T_p)= S_{Bragg}(T_p)\left [1 + \frac{f(T_p)}{f(125~keV)}
571\left (\frac{S_{exp}(125~keV)}{S_{Bragg}(125~keV)}-1 \right ) \right ],
572\label{hlei.z}
573\end{equation} 
574where $S_{exp}(125~keV)$ is the experimental value of the energy loss
575for the compound
576for $125~keV$ protons or  the
577reduced experimental value for He ions, $S_{Bragg}(T_p)$ is
578a value of energy loss calculated according to Bragg's
579rule, and $f(T_p)$ is a universal function, which describes
580the disappearance of deviations from Bragg's rule
581for higher kinetic energies according to:
582\begin{equation}
583f(T_p)=\frac{1}{1+\exp \left [1.48(\frac{\beta(T_p)}
584{\beta(25~keV)}-7.0) \right ]},
585\label{hlei.fun}
586\end{equation} 
587where $\beta(T_p)$ is the relative velocity of the proton with
588kinetic energy $T_p$
589
590
591\begin{table*}
592\caption{The list of chemical formulae of compounds for which
593 parametrisation of stopping power as a function
594of kinetic energy is in Ref.\cite{hlei.ICRU49}.}
595%\vspace {2pt}
596\label{hlei.tab1}
597\begin{center}
598\begin{tabular}{|l|l|}
599\hline
600Number & Chemical formula \\ 
601\hline
6021.     &  AlO  \\
6032.     &  C\_2O \\
6043.     &  CH\_\\
6054.     &  (C\_2H\_4)\_N-Polyethylene \\
6065.     &  (C\_2H\_4)\_N-Polypropylene \\
6076.     &  (C\_8H\_8)\_N \\ 
6087.     &  C\_3H\_8 \\
6098.     &  SiO\_2 \\
6109.     &  H\_2O \\
61110.    &  H\_2O-Gas \\
61211.    &  Graphite \\
613\hline
614\end{tabular} 
615\end{center}
616\end{table*}
617
618\begin{table*}
619\caption{The list of chemical formulae of compounds for which
620the {\it chemical factor} is calculated from the data
621 of Ref.\cite{hlei.Ziegler88}.}
622%\vspace {2pt}
623\label{hlei.tab2}
624\begin{center}
625\begin{tabular}{|l|l|l|l|}
626\hline
627Number & Chemical formula & Number & Chemical formula \\ 
628\hline
6291.   &   H\_2O    & 28. & C\_2H\_6 \\
6302.   &   C\_2H\_4O    & 29. & C\_2F\_6 \\
6313.   &   C\_3H\_6O    & 30.   & C\_2H\_6O \\
6324.   &   C\_2H\_2    & 31.   & C\_3H\_6O \\
6335.   &   C\_H\_3OH    & 32. & C\_4H\_10O \\
6346.   &   C\_2H\_5OH    & 33. & C\_2H\_4 \\
6357.   &   C\_3H\_7OH       & 34. & C\_2H\_4O \\
6368.   &   C\_3H\_4    & 35.      & C\_2H\_4S \\
6379.   &   NH\_3                 & 36.   & SH\_2 \\
63810. & C\_14H\_10    & 37.   & CH\_4 \\
63911.   & C\_6H\_6      & 38.    & CCLF\_3 \\
64012. & C\_4H\_10     & 39. & CCl\_2F\_2 \\
64113.  & C\_4H\_6    & 40.       & CHCl\_2F \\
64214.  & C\_4H\_8O       & 41.   & (CH\_3)\_2S \\
64315.        & CCl\_4    & 42. & N\_2O \\
64416.   & CF\_4      & 43.    & C\_5H\_10O \\
64517.   & C\_6H\_8      & 44. & C\_8H\_6 \\
64618.   & C\_6H\_12    & 45.         & (CH\_2)\_N \\
64719.   & C\_6H\_10O     & 46.   & (C\_3H\_6)\_N \\
64820.    & C\_6H\_10    & 47. & (C\_8H\_8)\_N \\
64921.   & C\_8H\_16     & 48. & C\_3H\_8 \\
65022. & C\_5H\_10     & 49.  & C\_3H\_6-Propylene \\
65123.  & C\_5H\_8    & 50. & C\_3H\_6O \\
65224.  & C\_3H\_6-Cyclopropane    & 51.   & C\_3H\_6S \\
65325.  & C\_2H\_4F\_2    & 52. & C\_4H\_4S \\
65426.   & C\_2H\_2F\_2    & 53.  & C\_7H\_8 \\
65527. & C\_4H\_8O\_2     & & \\
656\hline
657\end{tabular} 
658\end{center}
659\end{table*}
660
661
662\subsection{Nuclear stopping powers}
663
664Low energy ions transfer their energy not only to electrons of a medium
665but also to the nuclei of the medium  due to the elastic Coulomb
666collisions.
667This contribution to the energy loss is called {\it
668nuclear stopping power}
669It is parametrised \cite{hlei.Ziegler774,hlei.Ziegler85,hlei.ICRU49}
670 using a universal parameterisation for  reduced
671ion energy, $\epsilon$, which depends on ion parameters and on
672the charge, $Z_t$, and the mass, $M_t$, of the target nucleus:
673\begin{equation}
674\epsilon = \frac{32.536TM_t}{Z_{eff}Z_t(M+M_t)
675\sqrt{Z_{eff}^{0.23}+Z_t^{0.23}}}.
676\label{hlei.ep}
677\end{equation}
678The universal reduced nuclear stopping power, $s_n$, is determined
679by J.~Moliere in the framework of Thomas-Fermi potential \cite{hlei.mol}.
680The corresponding tabulation from Ref.\cite{hlei.ICRU49}
681is implemented.
682To transform the value of
683nuclear stopping power from reduced units to
684 $[eV/10^{15}atoms/cm^2]$ the following formula is used:
685\begin{equation}
686S_n = s_n \frac{8.462Z_iZ_tM_i}{(M_i+M_t)\sqrt{Z_i^{0.23}+Z_t^{0.23}}}.
687\label{hlei.re}
688\end{equation}
689The effect of nuclear stopping power is very small at high energies, but
690it is of the same order of magnitude as electronic stopping power
691for very slow ions (e.g. for protons, $T_p < 1 keV$).
692
693\subsection{Fluctuations of energy losses of hadrons} 
694
695The total continuous energy loss of charged particles is a stochastic
696quantity with a distribution described in terms of a straggling function.
697The straggling is partially taken into account by the simulation
698of energy loss by the production of $\delta$-electrons with energy
699$T > T_c$. However, continuous energy loss also has fluctuations.  Hence
700in the current GEANT4 implementation two different models of fluctuations
701are applied depending on the value of the parameter $\kappa$ which is the
702lower limit of the number of interactions of the particle in the step.
703The default value chosen is $\kappa = 10$.  To select a model for thick
704absorbers the following boundary conditions are used:
705\begin{equation}
706\Delta E > T_c\kappa)\;\; or \;\; T_c < I\kappa,
707\label{le_cond}
708\end{equation}
709where $\Delta E$ is the mean continuous energy loss in a track segment of
710length $s$, $T_c$ is the cut kinetic energy of $\delta$-electrons, and $I$ 
711is the average ionisation potential of the atom.
712   
713For long path lengths the straggling function
714approaches the Gaussian distribution with Bohr's variance \cite{hlei.ICRU49}:
715\begin{equation}
716\Omega^2 = K N_{el}\frac{Z_h^2}{\beta^2} T_c s f
717\left(1 - \frac{\beta^2}{2} \right),
718\label{sig}
719\end{equation}
720where $f$ is a screening factor, which is equal to unity for fast particles,
721whereas for slow positively charged
722ions with $\beta^2 < 3Z (v_0/c)^2$
723$f = a + b/Z^2_{eff}$, where parameters $a$ and $b$
724are parametrised for all atoms \cite{hlei.Yang,hlei.Chu}.
725
726For short path lengths, when the condition \ref{le_cond} is not satisfied,
727the model described in the charter \ref{gen_fluctuations} is applied.
728
729\subsection{Sampling}
730
731At each step for a charged hadron or ion in an absorber,
732the step limit is calculated using range tables
733for protons or antiprotons depending on the particle charge.
734If the reduced particle energy $T_p < T_2$ the step limit is
735forced to be not longer than $\alpha R(T_2)$, where $R(T_2)$ 
736is the range of the particle with the reduced energy $T_2$,
737$\alpha$ is an arbitrary coefficient, which is currently set to 0.05
738in order to provide at least 20 steps for particles
739in the Bragg peak energy range.
740\noindent   
741In each step continuous energy loss of the particle
742is calculated using loss tables for protons or antiprotons
743for $T_p > T_2$. For lower energies, continuous energy loss
744is calculated using the effective charge approach, chemical
745factors, and nuclear stopping powers.
746\noindent
747If the step of the particle is limited by the ionisation process
748the sampling of $\delta$-electron production is performed.
749(A short overview of the method is given in Chapter \ref{secmessel}.) \\
750Apart from the normalisation, the cross-section
751(\ref{hlei.bbb}) can be written as :
752\begin{eqnarray}
753\frac{d\sigma}{dT} \sim f(T) \ g(T) &with& T \in [T_{c}, \ T_{max}]
754\end{eqnarray}
755with :
756\begin{eqnarray*}
757f(T) &=& \left(\frac{1}{T_{c}} -\frac{1}{T_{max}}\right)
758\frac{1}{T^2} \\
759g(T) &=& 1 - \beta^2\frac{T}{T_{max}} + S(T),
760\end{eqnarray*}
761where $S(T)$ is a spin dependent term (\ref{hlei.bbb}).
762For a spin-0 particle this term is zero, for
763a spin-$\frac{1}{2}$ particle $S(T)=T^2/2E^2$,
764whilst for spin-1 the expression is more complicated.
765\\
766The energy, $T$, is sampled by :
767\begin{enumerate}
768\item Sample $T$ from $f(T)$.
769\item Calculate the rejection function $g(T)$ and accept the
770sampled $T$ with a probability of $g(T)$.
771\end{enumerate}
772After the successful sampling of the energy, the polar angles of the
773emitted electron are generated with respect to the direction of the
774incident particle.  The azimuthal angle, $\phi$, is generated isotropically;
775the polar angle $\theta$ is calculated from the energy momentum conservation.
776This information is used to calculate the energy and momentum of both
777particles and to transform them into the {\it global} coordinate system.
778
779\subsection{PIXE}
780PIXE is simulated by calculating cross-sections according to
781\cite{hlei.Gryzinski1} and \cite{hlei.Gryzinski2} to identify the primary
782ionised shell, and generating the subsequent atomic relaxation as described
783in \ref{relax}.  Sampling of excitations is carried out for both the
784continuous and the discrete parts of the process.
785
786
787\subsection{ICRU 73-based energy loss model}
788The ICRU 73 \cite{hlei.ICRU73} report contains stopping power tables
789for ions with atomic numbers 3--18 and 26, covering a range of different
790elemental and compound target materials. The stopping powers derive from
791calculations with the PASS code \cite{hlei.sigm02}, which implements the
792binary stopping theory described in \cite{hlei.sigm02,hlei.sigm00}.  Tables
793in ICRU 73 extend over an energy range up to 1 GeV/nucleon. All stopping
794powers were incorporated into Geant4 and are available through a
795parameterisation model ({\tt G4IonParametrisedLossModel}). For a few
796materials revised stopping powers were included (water, water vapor, nylon type
7976 and 6/6 from P. Sigmund et al \cite{hlei.sigm09a} and copper from P. Sigmund
798\cite{hlei.sigm09b}), which replace the corresponding tables of the original
799ICRU 73 report.
800
801To account for secondary electron production above $T_{c}$, the continuous
802energy loss per unit path length is calculated according to
803\begin{equation}
804\label{hlei.rstp}
805\frac{dE}{dx}\bigg|_{T<T_C} = \bigg(\frac{dE}{dx}\bigg)_{ICRU73} -
806\bigg(\frac{dE}{dx}\bigg)_{\delta}
807\end{equation}
808where $(dE/dx)_{ICRU73}$ refers to stopping powers obtained by interpolating
809ICRU 73 tables and $(dE/dx)_{\delta}$ is the mean energy transferred to
810$\delta$-electrons per path length given by
811\begin{equation}
812\bigg(\frac{dE}{dx}\bigg)_{\delta} = \sum_{i} n_{at,i} \int_{T_c}^{T_{max}} 
813\frac{d\sigma_i(T)}{dT} T dT
814\label{}
815\end{equation}
816where the index $i$ runs over all elements composing the material, $n_{at,i}$ 
817is the number of atoms of the element $i$ per volume, $T_{max}$ is the maximum
818energy transferable to an electron according to formula (\ref{hlei.a1}) and
819$d\sigma_i/dT$ specifies the differential cross section per atom for producing
820an $\delta$-electron following equation (\ref{hlei.bbb}).
821
822For compound targets not considered in the ICRU 73 report, the first term on
823the rightern side in equation (\ref{hlei.rstp}) is computed by applying Bragg's
824additivity rule \cite{hlei.ICRU49} if tables for all elemental components are
825available in ICRU 73.
826
827
828
829\subsection{Status of this document}
830
831\noindent
83221.11.2000 Created by V.Ivanchenko \\
83330.05.2001 Modified by V.Ivanchenko \\
83423.11.2001 Modified by M.G. Pia to add PIXE section. \\
83519.01.2002 Minor corrections (mma) \\
83613.05.2002 Minor corrections (V.Ivanchenko) \\
83728.08.2002 Minor corrections (V.Ivanchenko) \\
83811.12.2009 Modified by A. Lechner to add ICRU 73 section
839
840\begin{latexonly}
841
842\begin{thebibliography}{599}
843
844\bibitem{hlei.prepHadr}V.N.~Ivanchenko et al., GEANT4 Simulation
845of
846Energy Losses of Slow Hadrons, CERN-99-121, INFN/AE-99/20, (September 1999).
847\bibitem{hlei.prepIon}S.~Giani et al., GEANT4 Simulation
848of
849Energy Losses of Ions, CERN-99-300, INFN/AE-99/21, (November 1999).
850\bibitem{hlei.pdg} D.E.~Groom et al., Eur.
851Phys. Jour. C15 (2000) 1.
852\bibitem{hlei.rossi52} B.~Rossi, High Energy
853Particles, Pretice-Hall, Inc., Englewood Cliffs, NJ, 1952.
854\bibitem{hlei.bethe}H.~Bethe, Ann. Phys.  5 (1930) 325.
855\bibitem{hlei.ICRU37} (A.~Allisy et al),
856Stopping Powers for Electrons and Positrons,
857ICRU Report 37, 1984.
858\bibitem{hlei.sternheimer}
859  R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
860\bibitem{hlei.bark62}
861  W.H.~Barkas. Technical Report 10292,UCRL, August 1962.
862\bibitem{hlei.bark56}
863W.H.~Barkas, W.~Birnbaum, F.M.~Smith, Phys. Rev.
864101 (1956) 778.
865\bibitem{hlei.arb72} 
866J.C.~Ashley, R.H.~Ritchie and W.~Brandt,
867Phys. Rev. B5 (1972) 1.
868\bibitem{hlei.bloch}F.~Bloch, Ann. Phys. 16 (1933) 285.
869\bibitem{hlei.Lindhard}
870J.~Linhard and A.~Winther, Mat. Fys. Medd. Dan. Vid. Selsk.
871 34, No 10 (1963).
872\bibitem{hlei.Ziegler771}H.H.~Andersen and J.F.~Ziegler,
873The Stopping
874and Ranges of Ions in Matter. Vol.3, Pergamon Press, 1977.
875\bibitem{hlei.ICRU49}ICRU (A.~Allisy et al),
876Stopping Powers and Ranges for Protons and Alpha
877Particles,
878ICRU Report 49, 1993.
879\bibitem{hlei.Ziegler774}J.F.~Ziegler, The Stopping
880and Ranges of Ions in Matter. Vol.4, Pergamon Press, 1977.
881\bibitem{hlei.Ziegler85}J.F.~Ziegler, J.P.~Biersack, U
882.~Littmark, The Stopping
883and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
884\bibitem{hlei.BK}
885W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
886\bibitem{hlei.sigmund}
887P.~Sigmund, Nucl. Instr. and Meth.
888B85 (1994) 541.
889\bibitem{hlei.Ziegler88} J.F.~Ziegler and
890J.M.~Manoyan, Nucl. Instr. and Meth. 
891B35 (1988) 215.
892\bibitem{hlei.mol}G.~Moliere,
893Theorie der Streuung schneller geladener Teilchen I;
894 Einzelstreuungam abbgeschirmten Coulomb-Feld, Z. f. Naturforsch, A2
895 (1947) 133.
896\bibitem{hlei.GEANT3} GEANT3 manual,
897CERN Program Library Long Writeup
898W5013 (October 1994).
899\bibitem{hlei.Yang} Q.~Yang,
900D.J.~O'Connor, Z.~Wang, Nucl. Instr. and Meth. 
901B61 (1991) 149.
902\bibitem{hlei.Chu} W.K.~Chu, in: Ion Beam Handbook for
903Material Analysis, edt. J.W.~Mayer and E.~Rimini,
904Academic Press, NY, 1977.
905\bibitem{hlei.Gryzinski1} M. Gryzinski, Phys. Rev. A 135 (1965) 305.
906\bibitem{hlei.Gryzinski2} M. Gryzinski, Phys. Rev. A 138 (1965) 322.
907\bibitem{hlei.ICRU73}
908Stopping of Ions Heavier Than Helium,
909ICRU Report 73, Oxford University Press (2005).
910\bibitem{hlei.sigm02}
911P.~Sigmund and A.~Schinner,
912Nucl. Instr. Meth. in Phys. Res. B 195 (2002) 64.
913\bibitem{hlei.sigm00}
914P.~Sigmund and A.~Schinner,
915Eur. Phys. J. D 12  (2000) 425.
916\bibitem{hlei.sigm09a}
917P.~Sigmund, A.~Schinner and H.~Paul,
918Errata and Addenda for ICRU Report 73, Stopping of Ions Heavier
919than Helium (2009).
920\bibitem{hlei.sigm09b}
921Personal communication with P.~Sigmund (2009).
922\end{thebibliography}
923
924\end{latexonly}
925
926\begin{htmlonly}
927
928\subsection{Bibliography}
929
930\begin{enumerate}
931\item V.N.~Ivanchenko et al., GEANT4 Simulation of
932Energy Losses of Slow Hadrons, CERN-99-121, INFN/AE-99/20, (September 1999).
933\item S.~Giani et al., GEANT4 Simulation of
934Energy Losses of Ions, CERN-99-300, INFN/AE-99/21, (November 1999).
935\item D.E.~Groom et al., Eur.
936Phys. Jour. C15 (2000) 1.
937\item B.~Rossi, High Energy
938Particles, Pretice-Hall, Inc., Englewood Cliffs, NJ, 1952.
939\item H.~Bethe, Ann. Phys.  5 (1930) 325.
940\item (A.~Allisy et al),
941Stopping Powers for Electrons and Positrons,
942ICRU Report 37, 1984.
943\item
944  R.M.~Sternheimer. Phys.Rev. B3 (1971) 3681.
945\item
946  W.H.~Barkas. Technical Report 10292,UCRL, August 1962.
947\item
948W.H.~Barkas, W.~Birnbaum, F.M.~Smith, Phys. Rev.
949101 (1956) 778.
950\item 
951J.C.~Ashley, R.H.~Ritchie and W.~Brandt,
952Phys. Rev. B5 (1972) 1.
953\item F.~Bloch, Ann. Phys. 16 (1933) 285.
954\item
955J.~Linhard and A.~Winther, Mat. Fys. Medd. Dan. Vid. Selsk.
956 34, No 10 (1963).
957\item H.H.~Andersen and J.F.~Ziegler,
958The Stopping
959and Ranges of Ions in Matter. Vol.3, Pergamon Press, 1977.
960\item ICRU (A.~Allisy et al),
961Stopping Powers and Ranges for Protons and Alpha
962Particles,
963ICRU Report 49, 1993.
964\item J.F.~Ziegler, The Stopping
965and Ranges of Ions in Matter. Vol.4, Pergamon Press, 1977.
966\item J.F.~Ziegler, J.P.~Biersack, U
967.~Littmark, The Stopping
968and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
969\item
970W.~Brandt and M.~Kitagawa, Phys. Rev. B25 (1982) 5631.
971\item
972P.~Sigmund, Nucl. Instr. and Meth.
973B85 (1994) 541.
974\item J.F.~Ziegler and
975J.M.~Manoyan, Nucl. Instr. and Meth. 
976B35 (1988) 215.
977\item G.~Moliere,
978Theorie der Streuung schneller geladener Teilchen I;
979 Einzelstreuungam abbgeschirmten Coulomb-Feld, Z. f. Naturforsch, A2
980 (1947) 133.
981\item GEANT3 manual,
982CERN Program Library Long Writeup
983W5013 (October 1994).
984\item Q.~Yang,
985D.J.~O'Connor, Z.~Wang, Nucl. Instr. and Meth. 
986B61 (1991) 149.
987\item W.K.~Chu, in: Ion Beam Handbook for
988Material Analysis, edt. J.W.~Mayer and E.~Rimini,
989Academic Press, NY, 1977.
990\item M. Gryzinski, Phys. Rev. A 135 (1965) 305.
991\item M. Gryzinski, Phys. Rev. A 138 (1965) 322.
992\item
993Stopping of Ions Heavier Than Helium,
994ICRU Report 73, Oxford University Press (2005).
995\item
996P.~Sigmund and A.~Schinner,
997Nucl. Instr. Meth. in Phys. Res. B 195 (2002) 64.
998\item
999P.~Sigmund and A.~Schinner,
1000Eur. Phys. J. D 12  (2000) 425.
1001\item
1002P.~Sigmund, A.~Schinner and H.~Paul,
1003Errata and Addenda for ICRU Report 73, Stopping of Ions Heavier than Helium (2009).
1004\item
1005Personal communication with P.~Sigmund (2009).
1006
1007\end{enumerate}
1008
1009\end{htmlonly}
1010
1011
Note: See TracBrowser for help on using the repository browser.