source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/ionisation2.tex @ 1344

Last change on this file since 1344 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 5.0 KB
Line 
1\section{Electron ionisation} \label{secioni2}
2
3   
4 The class G4LowEnergyIonisation calculates the continuous energy loss
5  due to electron ionisation and
6 simulates 
7 $\delta$-ray production by electrons.
8 The $delta$-electron
9production
10threshold for a given material, $T_c$, is used to separate
11the continuous and the discrete parts of the process. The energy loss
12of an electron with the incident energy, $T$, is expressed
13via the sum over all atomic shells, $s$, and the integral over the energy, $t$,
14of $delta$-electrons:
15\begin{equation}
16{dE\over dx}=\sum_{s}\left(\sigma_s(T){{\int^{T_c}_{0.1eV}t{d\sigma\over dt}dt} \over{\int^{T_{max}}_{0.1eV}{d\sigma\over dt}dt}}\right),
17\end{equation}
18where $T_{max} = 0.5T$ is the maximum energy transfered to a $\delta$-electron,
19$\sigma_s(T)$ is
20the total cross-section for the shell, $s$, at a given
21incident kinetic energy, $T$, and $0.1eV$ is the low energy limit
22of the EEDL data.
23The $\delta$-electron production cross-section is a complimentary
24function:
25\begin{equation}
26\sigma(T)=\sum_{s}\left(\sigma_s(T){{\int^{T_{max}}_{T_c}{d\sigma\over dt}dt}\over {\int^{T_{max}}_{0.1eV}{d\sigma\over dt}dt}}\right).
27\end{equation}
28 The partial sub-shell cross-sections, $\sigma_s$, are obtained
29from an interpolation of the evaluated cross-section data in the EEDL
30library~\cite{io-EEDL},
31according to the formula (\ref{eqloglog}) in Section~\ref{subsubsigmatot}.
32
33The probability of emission of a $\delta$-electron with kinetic energy,
34$t$, from a sub-shell, $s$, of binding energy, $B_s$, as the
35result of the interaction of
36an incoming electron with kinetic energy, $T$,
37is described by:
38\begin{equation}
39{d\sigma \over dt} = {P(x) \over x^2}, \;\; \mbox{with} x={t + B_s \over T + B_s},
40\end{equation}
41where the parameter $x$ is varied from $x_{min} = (0.1eV + B_s)/(T + B_s)$ to
420.5.  The function, $P(x)$,  is parametrised differently in 3 regions of $x$: from $x_{min}$
43to $x_1$ the linear interpolation with linear scale of 4 points is used; from $x_1$ to $x_2$
44the linear interpolation with logarithmic scale of 16 points is used; from $x_2$ to $0.5$
45the following interpolation is applied:
46\begin{equation}
47\label{io-ff}
48P(x) = 1 - gx +(1 - g)x^2 + {x^2 \over 1-x}({1 \over 1-x} - g) + A*(0.5 - x)/x,
49\end{equation}
50where $A$ is a fit coefficient, $g$ is expressed via the gamma factor
51of the incoming electron:
52\begin{equation}
53\label{ff}
54g = (2\gamma - 1) / \gamma^2.
55\end{equation}
56For the high energy case ($x >> 1$) the formula (\ref{io-ff}) is transformed
57to the M\"{o}ller electron-electron scattering formula \cite{io-g3,io-messel}.
58
59The value of the coefficient, $A$,  for each element is obtained as a result
60of the fit on the spectrum from the EEDL data for those
61energies which are available in the database.
62The values of $x_1$ and $x_2$ are chosen for each atomic shell
63according to the spectrum of $\delta$-electrons in this shell. Note that $x_1$
64corresponds to the maximum of the spectrum, if the maximum does not coincide
65with $x_{min}$.
66The dependence of all 24 parameters  on the incident energy, $T$,
67is evaluated from a logarithmic interpolation (\ref{eqloglog}).
68
69The sampling of the final state proceeds in three steps.
70First a shell is randomly selected, then the energy of the
71$delta$-electron is sampled, finally
72the angle of emission of the scattered electron and of the $\delta$-ray
73is determined by energy-momentum conservation taken into account
74electron motion on the atomic orbit.
75
76The interaction leaves the atom in an excited state.
77The deexcitation of the atom is simulated as
78described in section~\ref{relax}. Sampling of the excitations is carried out
79for both the continuous and the discrete parts
80of the process.
81
82\subsection{Status of the document}
83
84\noindent
8530.09.1999 created by Alessandra Forti\\
8607.02.2000 modified by V\'eronique Lef\'ebure\\
8708.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
8805.12.2001 modified by Vladimir Ivanchenko \\
8913.05.2002 modified by Vladimir Ivanchenko
90
91\begin{latexonly}
92
93\begin{thebibliography}{99}
94\bibitem{io-EEDL} 
95  %http://reddog1.llnl.gov/homepage.red/Electron.htm
96  ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
97  the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
98  S.T.Perkins, D.E.Cullen, S.M.Seltzer,
99  UCRL-50400 Vol.31
100\bibitem{io-g3}
101  G\textsc{eant3} manual ,CERN Program Library Long Writeup W5013 (October 1994).
102\bibitem{io-messel}
103  H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.
104\end{thebibliography}
105
106\end{latexonly}
107
108\begin{htmlonly}
109
110\subsection{Bibliography}
111
112\begin{enumerate}
113\item 
114  %http://reddog1.llnl.gov/homepage.red/Electron.htm
115  ``Tables and Graphs of Electron-Interaction Cross-Sections from 10~eV to 100~GeV Derived from
116  the LLNL Evaluated Electron Data Library (EEDL), Z=1-100"
117  S.T.Perkins, D.E.Cullen, S.M.Seltzer,
118  UCRL-50400 Vol.31
119\item
120  G\textsc{eant3} manual ,CERN Program Library Long Writeup W5013 (October 1994).
121\item
122  H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.
123\end{enumerate}
124
125\end{htmlonly}
126
Note: See TracBrowser for help on using the repository browser.