source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/penelope.tex @ 1344

Last change on this file since 1344 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 40.9 KB
Line 
1\section{Penelope physics}
2
3\subsection{Introduction}
4A new set of physics processes for photons, electrons and positrons is
5implemented in Geant4: it includes Compton scattering, photoelectric
6effect, Rayleigh scattering, gamma conversion, bremsstrahlung, ionization
7(to be released) and positron annihilation (to be released).  These processes
8are the Geant4 implementation of the physics models developed
9for the PENELOPE code (PENetration and Energy LOss of Positrons and
10Electrons), version 2001, that are described in detail in Ref. \cite{uno}.
11The Penelope models have been specifically developed for Monte Carlo
12simulation and great care was given to the low energy description
13(i.e. atomic effects, etc.).  Hence, these implementations provide reliable
14results for energies down to a few hundred eV and can be used up to
15$\sim$1 GeV \cite{uno,due}.  For this reason, they may be used in Geant4 as
16an alternative to the Low Energy processes.  For the same physics processes,
17the user now has more alternative descriptions from which to choose, including
18the cross section calculation and the final state sampling.
19
20\subsection{Compton scattering}
21\subsubsection{Total cross section}
22The total cross section of the Compton scattering process is determined from
23an analytical parameterization.  For $\gamma$ energy $E$ greater than 5 MeV,
24the usual Klein-Nishina formula is used for $\sigma(E)$. For \mbox{$E<5$ MeV} 
25a more accurate parameterization is used, which takes into account atomic
26binding effects and Doppler broadening \cite{tre}:
27\begin{eqnarray}
28\sigma(E) \ = \ 2 \pi \int_{-1}^{1} \frac{r_{e}^{2}}{2} \frac{E_{C}^{2}}
29{E^{2}} (\frac{E_{C}}{E} + \frac{E}{E_{C}} - \sin^{2} \theta) \cdot 
30\nonumber \\
31\sum_{shells} 
32f_{i} \Theta(E-U_{i})n_{i}(p_{z}^{max}) \ d(\cos \theta) \label{equno}
33\end{eqnarray}
34where: \\
35$r_{e}$ = classical radius of the electron; \\ 
36$m_{e}$ = mass of the electron; \\
37$\theta$ = scattering angle; \\
38$E_{C}$ = Compton energy \\
39\begin{displaymath}
40= \ \frac{E}{1+\frac{E}{m_{e}c^{2}}(1-\cos\theta)}
41\end{displaymath} \\
42$f_{i}$ = number of electrons in the i-th atomic shell; \\
43$U_{i}$ = ionisation energy of the i-th atomic shell; \\
44$\Theta$ = Heaviside step function; \\
45$p_{z}^{max}$ = highest possible value of $p_{z}$ (projection of the initial
46momentum of the electron in the direction of the scattering angle) \\
47\begin{displaymath}
48= \ \frac{E(E-U_{i})(1-\cos\theta)-m_{e}c^{2}U_{i}}{c \sqrt{2E(E-U_{i})(1-
49\cos\theta)+U_{i}^{2}}}.
50\end{displaymath} 
51Finally,
52\begin{equation}
53\begin{array}{rlll}
54n_{i}(x) = & & & \\
55 & \frac{1}{2} e^{[ \frac{1}{2}-( \frac{1}{2} - \sqrt{2} J_{i0}x )^{2}]}  & 
56   \mbox{if} & x < 0 \\ 
57 & 1-\frac{1}{2} e^{[\frac{1}{2}-(\frac{1}{2}+\sqrt{2}J_{i0}x)^{2}]}  & 
58   \mbox{if} & x > 0 \\
59% \begin{cases}
60% \frac{1}{2} e^{[ \frac{1}{2}-( \frac{1}{2} - \sqrt{2} J_{i0}x )^{2}]}  &
61% \textrm{if} \quad x<0\\
62% 1-\frac{1}{2} e^{[\frac{1}{2}-(\frac{1}{2}+\sqrt{2}J_{i0}x)^{2}]}  &
63% \textrm{if} \quad x>0\\
64% \end{cases}
65\end{array}
66\end{equation} 
67where $J_{i0}$ is the value of the $p_{z}$-distribution profile
68$J_{i}(p_{z})$ for the i-th atomic shell calculated in $p_{z}=0$. The values
69of $J_{i0}$ for the different shells of the different elements are
70tabulated from the Hartree-Fock atomic orbitals
71of Ref. \cite{quattro}.\\
72The integration of Eq.(\ref{equno}) is performed numerically using the
7320-point Gaussian method.  For this reason, the initialization of the
74Penelope Compton process is somewhat slower than the Low Energy process.
75
76\subsubsection{Sampling of the final state}
77The polar deflection $\cos\theta$ is sampled from the probability density
78function
79\begin{equation}
80P(\cos\theta) \ = \frac{r_{e}^{2}}{2} \frac{E_{C}^{2}}
81{E^{2}} \Big( \frac{E_{C}}{E} + \frac{E}{E_{C}} - \sin^{2} \theta
82\Big) \sum_{shells} 
83f_{i} \Theta(E-U_{i})n_{i}(p_{z}^{max}\label{eqdue}
84\end{equation}
85(see Ref. \cite{uno} for details on the sampling algorithm). Once the
86direction of the emerging photon has been set, the active electron shell $i$
87is selected with relative probability equal to $Z_{i}
88\Theta(E-U_{i})n_{i}[p_{z}^{max}(E,\theta)]$. A random value of
89$p_{z}$ is generated from the analytical Compton profile \cite{quattro}. The
90energy of the emerging photon is
91\begin{equation}
92E' \  = \ \frac{E \tau}{1-\tau t} \  \Big[ (1-\tau t \cos\theta) +
93\frac{p_{z}}{|p_{z}|} \sqrt{(1-\tau t \cos\theta)^{2}-(1-t \tau^{2})(1-t)} 
94\Big],
95\end{equation}
96where
97\begin{equation}
98t \ = \ \Big( \frac{p_{z}}{m_{e}c} \Big)^{2} \quad \textrm{and} \quad
99\tau \ = \ \frac{E_{C}}{E}.
100\end{equation}
101The azimuthal scattering angle $\phi$ of the photon is sampled uniformly in
102the interval (0,2$\pi$).  It is assumed that the Compton electron is emitted
103with energy $E_{e} = E-E'-U_{i}$,
104with polar angle $\theta_{e}$ and azimuthal angle $\phi_{e} = 
105\phi + \pi $, relative to the direction of the incident photon.
106In this case $\cos\theta_{e}$ is given by
107\begin{equation}
108\cos\theta_{e} \ = \ \frac{E-E'\cos\theta}{\sqrt{E^{2}+E^{'2}-
1092EE' \cos\theta}}.
110\end{equation}
111Since the active electron shell is known, characteristic x-rays and
112electrons emitted in the de-excitation of the ionized atom can also be
113followed.  The de-excitation is simulated as described in
114section~\ref{relax}. For further details see \cite{uno}.\\
115
116\subsection{Rayleigh scattering}
117\subsubsection{Total cross section} 
118The total cross section of the Rayleigh scattering process is determined from
119an analytical parameterization.  The atomic cross section for coherent
120scattering is given approximately by \cite{cinque}
121\begin{equation}
122\sigma(E) \ = \ \pi r_{e}^{2} \int_{-1}^{1} \frac{1+\cos^{2}\theta}{2}
123[F(q,Z)]^{2} \ d \cos\theta, \label{eqtre}
124\end{equation}
125where $F(q,Z)$ is the atomic form factor, $Z$ is the atomic number and $q$
126is the magnitude of the momentum transfer, i.e.
127\begin{equation}
128q \ = \ 2 \ \frac{E}{c} \ \sin \Big( \frac{\theta}{2} \Big).
129\end{equation}
130In the numerical calculation the following analytical approximations are
131used for the form factor:
132\begin{equation}
133\begin{array}{rlll}
134F(q,Z) = f(x,Z) = & & & \\
135 & Z \ \frac{1+a_{1}x^{2}+a_{2}x^{3}+a_{3}x^{4}}{(1+a_{4}x^{2}+a_{5}x^{4})^{2}}
136 & \mbox{or} &  \\
137 & \max[f(x,Z),F_{K}(x,Z)] & \mbox{if} \ Z>10  \ \mbox{and} \ f(x,Z) < 2 & \\ 
138% \begin{cases}
139% f(x,Z) = Z \ \frac{1+a_{1}x^{2}+a_{2}x^{3}+a_{3}x^{4}}{(1+a_{4}x^{2}+a_{5}
140% x^{4})^{2}} &   \\
141% \max[f(x,Z),F_{K}(x,Z)] & \textrm{if} \ Z>10 \ \textrm{and} \
142% f(x,Z)<2\\
143% \end{cases}
144\end{array}
145\end{equation}
146where
147\begin{equation}
148F_{K}(x,Z) \ = \ \frac{\sin(2b \arctan Q)}{bQ(1+Q^{2})^{b}},
149\end{equation}
150with
151\begin{equation}
152x = 20.6074 \frac{q}{m_{e}c}, \quad Q = \frac{q}{2m_{e}ca}, \quad
153b = \sqrt{1-a^{2}}, \quad a = \alpha \Big( Z-\frac{5}{16} \Big ),
154\end{equation}
155where $\alpha$ is the fine-structure constant. The function $F_{K}(x,Z)$ is
156the contribution to the atomic form factor due to the two K-shell electrons
157(see \cite{sei}). The parameters of expression $f(x,Z)$ have
158been determined in Ref. \cite{sei} for Z=1 to 92 by numerically fitting
159the atomic form factors tabulated in Ref. \cite{sette}.
160The integration of Eq.(\ref{eqtre}) is performed numerically using the
16120-point Gaussian method.  For this reason the initialization of the
162Penelope Rayleigh process is somewhat slower than the Low Energy process.
163
164\subsubsection{Sampling of the final state}
165The angular deflection $\cos\theta$ of the scattered photon is sampled from
166the probability distribution function
167\begin{equation}
168P(\cos\theta) \ = \ \frac{1+\cos^{2}\theta}{2} [F(q,Z)]^{2}.
169\end{equation}
170For details on the sampling algorithm (which is quite heavy from the
171computational point of view) see Ref. \cite{uno}. The azimuthal scattering
172angle $\phi$ of the photon is sampled uniformly in the interval (0,2$\pi$).
173%
174\subsection{Gamma conversion}
175\subsubsection{Total cross section} 
176The total cross section of the $\gamma$ conversion process is determined from
177the data \cite{otto}, as described in section~\ref{subsubsigmatot}.
178
179\subsubsection{Sampling of the final state}
180The energies $E_{-}$ and $E_{+}$ of the secondary electron and positron are
181sampled using the Bethe-Heitler cross section with the Coulomb correction,
182using the semiempirical model of Ref. \cite{sei}. If
183\begin{equation}
184\epsilon \ = \ \frac{E_{-}+m_{e}c^{2}}{E}
185\end{equation} 
186is the fraction of the $\gamma$ energy $E$ which is taken away from the
187electron,
188\begin{equation}
189\kappa \ = \ \frac{E}{m_{e}c^{2}} \quad \textrm{and} \quad a = \alpha Z,
190\end{equation}
191the differential cross section, which includes a low-energy correction and a
192high-energy radiative correction, is
193\begin{equation}
194\frac{d\sigma}{d\epsilon} \ = \ r_{e}^{2} a (Z+\eta) C_{r} \frac{2}{3}
195\Big[ 2 \Big( \frac{1}{2} - \epsilon \Big)^{2}\phi_{1}(\epsilon)+
196\phi_{2}(\epsilon) \Big],
197\label{eqquattro}
198\end{equation}
199where:
200\begin{eqnarray}
201\phi_{1}(\epsilon) \ = \ \frac{7}{3} - 2 \ln (1+b^{2})
202-6b\arctan (b^{-1}
203\nonumber \\
204-b^{2}[4-4b \arctan(b^{-1})-3 \ln(1+b^{-2})]  \nonumber \\
205+ 4\ln (R m_{e} c/\hbar) - 4f_{C}(Z) + F_{0}(\kappa,Z)
206\end{eqnarray}
207and
208\begin{eqnarray}
209\phi_{2}(\epsilon) \ = \ \frac{11}{6} - 2 \ln (1+b^{2})
210-3b\arctan (b^{-1})
211\nonumber \\
212+\frac{1}{2}b^{2}[4-4b \arctan(b^{-1})-3 \ln(1+b^{-2})]  \nonumber \\
213+ 4\ln (R m_{e} c/\hbar) - 4f_{C}(Z) + F_{0}(\kappa,Z),
214\end{eqnarray}
215with
216\begin{equation}
217b \ = \ \frac{Rm_{e}c}{\hbar} \frac{1}{2\kappa} \frac{1}{\epsilon(1-\epsilon)}.
218\end{equation}
219In this case  $R$ is the screening radius for the atom $Z$ (tabulated in
220\cite{dieci} for Z=1 to 92) and $\eta$ is the contribution of pair
221production in the electron field (rather than in the nuclear field). The
222parameter $\eta$ is approximated as
223\begin{equation}
224\eta \  = \ \eta_{\infty}(1-e^{-v}),
225\end{equation}
226where
227\begin{eqnarray}
228v \ = \ (0.2840-0.1909a)\ln(4/\kappa)+(0.1095+0.2206a)\ln^{2}(4/\kappa)
229\nonumber \\
230+ (0.02888 - 0.04269a)\ln^{3}(4/\kappa) \nonumber \\
231+(0.002527+0.002623)\ln^{4}(4/\kappa)
232\end{eqnarray}
233and $\eta_{\infty}$ is the contribution for the atom $Z$ in the high-energy
234limit and is tabulated for Z=1 to 92 in Ref. \cite{dieci}.
235In the Eq.(\ref{eqquattro}), the function $f_{C}(Z)$ is the high-energy
236Coulomb correction of Ref. \cite{nove}, given by
237\begin{eqnarray}
238f_{C}(Z) \ = \ a^{2}[(1+a^{2})^{-1}+0.202059-0.03693a^{2}+0.00835a^{4} 
239\nonumber \\
240-0.00201a^{6}+0.00049a^{8}-0.00012a^{10}+0.00003a^{12}];
241\end{eqnarray}
242$C_{r} = 1.0093$ is the high-energy limit of Mork and Olsen's radiative
243correction (see Ref. \cite{dieci}); $F_{0}(\kappa,Z)$ is a Coulomb-like
244correction function, which has been analytically approximated as \cite{uno}
245\begin{eqnarray}
246F_{0}(\kappa,Z) \ = \ (-0.1774 - 12.10a + 11.18a^{2})(2/\kappa)^{1/2} 
247\nonumber \\
248+ (8.523 + 73.26a - 44.41a^{2})(2/\kappa) \nonumber \\
249- (13.52 + 121.1a - 96.41a^{2})(2/\kappa)^{3/2} \nonumber \\
250+ (8.946 + 62.05a - 63.41a^{2})(2/\kappa)^{2}.
251\end{eqnarray}
252The kinetic energy $E_{+}$ of the secondary positron is obtained as
253\begin{equation}
254E_{+} \ = \ E - E_{-} - 2m_{e}c^{2}.
255\end{equation}
256The polar angles $\theta_{-}$ and $\theta_{+}$ of the directions of
257movement of the electron and the positron, relative to the direction of the
258incident photon, are sampled from the leading term of the expression
259obtained from high-energy theory (see Ref. \cite{undici})
260\begin{equation}
261p(\cos\theta_{\pm}) \ = \ a(1-\beta_{\pm}\cos\theta_{\pm})^{-2},
262\end{equation} 
263where $a$ is the a normalization constant and $\beta_{\pm}$ is the particle
264velocity in units of the speed of light.  As the directions of the produced
265particles and of the incident photon are not necessarily coplanar, the
266azimuthal angles $\phi_{-}$ and $\phi_{+}$ of the electron and of the
267positron are sampled independently and uniformly in the interval (0,2$\pi$).
268%
269\subsection{Photoelectric effect}
270\subsubsection{Total cross section} 
271The total photoelectric cross section at a given photon energy $E$ is
272calculated from the data \cite{dodici}, as described in
273section~\ref{subsubsigmatot}.
274
275\subsubsection{Sampling of the final state}
276The incident photon is absorbed and one electron is emitted.  The direction
277of the electron is sampled according to the Sauter
278distribution \cite{dodicibis}.
279Introducing the variable $\nu = 1 - \cos\theta_{e}$, the angular distribution
280can be expressed as
281\begin{equation}
282p(\nu) \ = \ (2-\nu) \Big[ \frac{1}{A+\nu} + \frac{1}{2} \beta \gamma 
283(\gamma - 1)(\gamma -2) \Big] \frac{\nu}{(A+\nu)^{3}},
284\end{equation} 
285where
286\begin{equation}
287\gamma = 1 + \frac{E_{e}}{m_{e}c^{2}}, \quad A = \frac{1}{\beta} - 1,
288\end{equation}
289$E_{e}$ is the electron energy, $m_{e}$ its rest mass and $\beta$ its velocity
290in units of the speed of light $c$.
291Though the Sauter distribution, strictly speaking, is adequate only for
292ionisation of the K-shell by high-energy photons, in many practical
293simulations it does not introduce appreciable errors in the description of any
294photoionisation event, irrespective of the atomic shell or of the photon
295energy.\\
296%in the same
297%direction as the primary photon.
298The subshell from which the electron is emitted is randomly selected
299according to the relative cross sections of subshells, determined at the
300energy $E$ by interpolation of the data of Ref. \cite{undici}. The electron
301kinetic energy is the difference between the incident photon energy and
302the binding energy of the electron before the interaction in the sampled
303shell. The interaction leaves the atom in an excited state; the subsequent
304de-excitation is simulated as described in section~\ref{relax}.\\
305
306\subsection{Bremsstrahlung}
307\subsubsection{Introduction} 
308The class {\tt G4PenelopeBremsstrahlung} calculates the continuous energy loss
309due to soft $\gamma$ emission and simulates the photon production by
310electrons and positrons.  As usual, the gamma production threshold $T_{c}$ for
311a given material is used to separate the continuous and the discrete parts of
312the process.
313
314\subsubsection{Electrons}
315The total cross sections are calculated from the data \cite{quattordici}, as
316described in sections~\ref{subsubsigmatot} and \ref{lowebrems}.\\
317The energy distribution $\frac{d\sigma}{dW}(E)$, i.e. the probability of the
318emission of a photon with energy $W$ given an incident electron of
319kinetic energy $E$, is generated according to the formula
320\begin{equation}
321\frac{d\sigma}{dW}(E) \ = \ \frac{F(\kappa)}{\kappa}, \quad 
322\kappa \ = \ \frac{W}{E}.
323\end{equation} 
324The functions $F(\kappa)$ describing the energy spectra of the outgoing
325photons are taken from Ref. \cite{tredici}.  For each element $Z$ from 1 to 92,
32632 points in $\kappa$, ranging from $10^{-12}$ to 1, are used for the linear
327interpolation of this function.  $F(\kappa)$ is normalized using the condition
328$F(10^{-12})=1$.  The energy distribution of the emitted photons is available
329in the library \cite{tredici} for 57 energies of the incident electron
330between 1 keV and 100 GeV.  For other primary energies, logarithmic
331interpolation is used to obtain the values of the function $F(\kappa)$.\\
332The direction of the emitted bremsstrahlung photon is determined by the polar
333angle $\theta$ and the azimuthal angle $\phi$.  For isotropic media, with
334randomly oriented atoms, the bremsstrahlung differential cross section is
335independent of $\phi$ and can be expressed as
336\begin{equation}
337\frac{d^{2} \sigma}{dW d\cos\theta} \ = \ \frac{d\sigma}{dW} p(Z,E,\kappa;
338\cos\theta).
339\end{equation}
340Numerical values of the ``shape function'' $p(Z,E,\kappa;\cos\theta)$,
341calculated by partial-wave methods, have been published in
342Ref. \cite{quindici} for the
343following benchmark cases: $Z$= 2, 8, 13, 47, 79 and 92; $E$= 1, 5, 10, 50,
344100 and 500 keV; $\kappa$= 0, 0.6, 0.8 and 0.95.  It was found in
345Ref. \cite{uno} that the benchmark partial-wave shape function of
346Ref. \cite{quindici} can be closely approximated by the analytical form
347(obtained in the Lorentz-dipole approximation)
348\begin{eqnarray}
349p(\cos\theta) = A \frac{3}{8} \Big[ 1+\Big( \frac{\cos\theta - \beta'}
350{1-\beta' \cos
351\theta} \Big)^{2} \Big] \frac{1-\beta^{'2}}{(1-\beta'\cos\theta)^{2}} 
352\nonumber \\
353+ (1-A) \frac{3}{4} \Big[ 1- \Big( \frac{\cos\theta - \beta'}{1-\beta' \cos
354\theta}m \Big)^{2} \Big] \frac{1-\beta^{'2}}{(1-\beta'\cos\theta)^{2}},
355\end{eqnarray}
356with $\beta' = \beta (1+B)$, if one considers $A$ and $B$ as adjustable
357parameters.  The parameters $A$ and $B$ have been determined, by least squares
358fitting, for the 144 combinations of atomic numbers, electron energies and
359reduced photon energies corresponding to the benchmark shape functions
360tabulated in \cite{quindici}.  The quantities $\ln(AZ\beta)$ and $B\beta$ vary
361smoothly with Z, $\beta$ and $\kappa$ and can be obtained by cubic spline
362interpolation of their values for the benchmark cases.  This permits the fast
363evaluation of the shape function 
364$p(Z,E,\kappa;\cos\theta)$ for any combination of $Z$, $\beta$ and $\kappa$. \\
365The stopping power $\frac{dE}{dx}$ due to soft bremsstrahlung is
366calculated by interpolating in $E$ and $\kappa$ the numerical data of scaled
367cross sections of Ref. \cite{sedici}.  The energy and the direction of the
368outgoing electron are determined by using energy-momentum balance.
369
370\subsubsection{Positrons} 
371The radiative differential cross section $\frac{d\sigma^{+}}{dW} (E)$ 
372for positrons reduces to that for electrons in the high-energy limit, but is
373smaller for intermediate and low energies. Owing to the lack of more accurate
374calculations, the differential cross section for positrons is obtained by
375multiplying the electron differential cross section
376$\frac{d\sigma^{-}}{dW} (E)$
377by a $\kappa -$indendent factor, i.e.
378\begin{equation}
379\frac{d\sigma^{+}}{dW} \ = \ F_{p}(Z,E) \frac{d\sigma^{-}}{dW}.
380\end{equation}
381The factor $F_{p}(Z,E)$ is set equal to the ratio of the radiative stopping
382powers for positrons and electrons, which has been calculated in Ref.
383\cite{diciassette}.  For the actual calculation, the following analytical
384approximation is used:
385\begin{eqnarray}
386F_{p}(Z,E) \ = \ 1-\exp(-1.2359 \cdot 10^{-1} t + 6.1274 \cdot 10^{-2} t^{2}
387- 3.1516  \cdot 10^{-2} t^{3} \nonumber \\
388+ 7.7446  \cdot 10^{-3} t^{4} - 1.0595  \cdot 10^{-3} t^{5} + 7.0568
389 \cdot 10^{-5} t^{6} \nonumber \\
390-1.8080 \cdot 10^{-6} t^{7}), 
391\end{eqnarray}
392where
393\begin{equation}
394t \ = \ \ln \Big( 1+ \frac{10^{6}}{Z^{2}} \frac{E}{m_{e}c^{2}} \Big).
395\end{equation}
396Because the factor $F_{p}(Z,E)$ is independent on $\kappa$, the energy
397distribution of the secondary $\gamma$'s has the same shape as electron
398bremsstrahlung.  Similarly, owing to the lack of numerical data for positrons,
399it is assumed that the shape of the angular distribution
400$p(Z,E,\kappa;\cos\theta)$ of the bremsstrahlung photons for positrons is the
401same as for the electrons.\\
402The energy and direction of the outgoing positron are determined from
403energy-momentum balance.
404%
405\subsection{Ionisation}
406
407The {\tt G4PenelopeIonisation} class calculates the continuous energy loss due
408to electron and positron ionisation and simulates the $\delta$-ray production
409by electrons and positrons. The electron production threshold $T_{c}$ for a
410given material is used to separate the continuous and the discrete parts of the
411process.\\
412The simulation of inelastic collisions of electrons and positrons is
413performed on the basis of a Generalized Oscillation Strength (GOS) model
414(see Ref. \cite{uno} for a complete description). It is assumed that GOS
415splits into contributions from the different atomic electron shells. 
416%
417\subsubsection{Electrons} \label{ionelect}
418The total cross section $\sigma^{-} (E)$ for the inelastic collision of
419electrons of energy $E$ is calculated analytically. It can be split into
420contributions from distant longitudinal, distant transverse and close
421interactions,
422\begin{equation}
423\sigma^{-} (E) \ = \ \sigma_{dis,l} + \sigma_{dis,t} + \sigma^{-}_{clo}.
424\end{equation}
425The contributions from distant longitudinal and transverse interactions are
426\begin{equation}
427\sigma_{dis,l} \ = \
428\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells} f_{k} \frac{1}{W_{k}} 
429\ln \Big( \frac{W_{k}}{Q^{min}_{k}} \
430\frac{Q^{min}_{k}+2m_{e}c^{2}}{W_{k}+2m_{e}c^{2}} \Big\Theta (E-W_{k})
431\label{dist1} 
432\end{equation}
433and
434\begin{equation}
435\sigma_{dis,t} \ = \
436\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells} f_{k} \frac{1}{W_{k}} 
437\Big[ \ln \Big( \frac{1}{1-\beta^{2}} \Big) - \beta^{2}-\delta_{F} \Big] 
438\Theta (E-W_{k}) \label{dist2} 
439\end{equation}
440respectively, where: \\
441$m_{e}$ = mass of the electron; \\
442$v$ = velocity of the electron; \\
443$\beta$ = velocity of the electron in units of $c$; \\
444$f_{k}$ = number of electrons in the $k$-th atomic shell; \\
445$\Theta$ = Heaviside step function; \\
446$W_{k}$ = resonance energy of the $k$-th atomic shell oscillator;\\
447$Q^{min}_{k}$ = minimum kinematically allowed recoil energy for energy transfer $W_{k}$
448 \\
449\begin{displaymath}
450= \ \sqrt{\Big[ \sqrt{E(E+2m_{e}c^{2})}-\sqrt{(E-W_{k})(E-W_{k}+
4512m_{e}c^{2})} \Big]^{2}+m_{e}^{2}c^{4}}-m_{e}c^{2};
452\end{displaymath} \\
453$\delta_{F}$ = Fermi density effect correction, computed as described in Ref.
454\cite{diciotto}.
455%
456
457The value of $W_{k}$ is calculated from the ionisation energy $U_{k}$ of
458the $k$-th shell as \mbox{$W_{k}=1.65 \ U_{k}$}. This relation is derived from
459the hydrogenic model, which is valid for the innermost shells. In this model,
460the shell ionisation cross sections are only roughly approximated; nevertheless
461the ionisation of inner shells is a low-probability process and the
462approximation has a weak effect on the global transport
463properties\footnote{In cases where inner-shell ionisation is directly observed,
464a more accurate description of the process should be used.}. \\
465The integrated cross section for close collisions is the M\o ller cross
466section
467\begin{equation}
468\sigma^{-}_{clo} \ = \
469\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells} f_{k} \int_{W_{k}}^{\frac{E}{2}} 
470\frac{1}{W^{2}} F^{-}(E,W) dW, \label{close}
471\end{equation} 
472where
473\begin{equation}
474F^{-}(E,W) \ = \ 1+ \Big( \frac{W}{E-W} \Big)^{2} - \frac{W}{E-W}
475+ \Big( \frac{E}{E+m_{e}c^{2}} \Big)^{2} \Big( \frac{W}{E-W} +
476\frac{W^{2}}{E^{2}} \Big).
477\end{equation}
478The integral of Eq.(\ref{close}) can be evaluated analytically. In the final
479state there are two indistinguishable free electrons and the fastest one
480is considered as the ``primary''; accordingly, the maximum allowed energy
481transfer in close collisions is $\frac{E}{2}$.\\
482The GOS model also allows evaluation of the spectrum 
483$\frac{d \sigma^{-}}{d W}$ of the energy $W$ lost by the primary electron
484as the sum of distant longitudinal, distant transverse and close interaction
485contributions,
486\begin{equation}
487\frac{d\sigma^{-}}{dW} \ = \ \frac{d\sigma^{-}_{clo}}{dW} +
488\frac{d\sigma_{dis,l}}{dW} + \frac{d\sigma_{dis,t}}{dW}. \label{aaa}
489\end{equation}
490In particular,
491\begin{equation}
492\frac{d\sigma_{dis,l}}{dW} \ = \
493\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells} f_{k} \frac{1}{W_{k}} 
494\ln \Big( \frac{W_{k}}{Q_{-}} \
495\frac{Q_{-}+2m_{e}c^{2}}{W_{k}+2m_{e}c^{2}} \Big) \delta(W-W_{k})
496\Theta (E-W_{k}), \label{ddist1} 
497\end{equation}
498where
499\begin{equation}
500Q_{-} \ = \ \sqrt{\Big[ \sqrt{E(E+2m_{e}c^{2})}-\sqrt{(E-W)(E-W+
5012m_{e}c^{2})} \Big]^{2}+m_{e}^{2}c^{4}}-m_{e}c^{2},
502\end{equation}
503\begin{eqnarray}
504\frac{d\sigma_{dis,t}}{dW} \ = \
505\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells} f_{k} \frac{1}{W_{k}} 
506\Big[ \ln \Big( \frac{1}{1-\beta^{2}} \Big) - \beta^{2}-\delta_{F} \Big] 
507\nonumber \\
508\Theta (E-W_{k}) \delta(W-W_{k}) \label{ddist2}
509\end{eqnarray}
510and
511\begin{equation}
512\frac{d \sigma^{-}_{clo}}{dW} \ = \
513\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells}
514 f_{k} \frac{1}{W^{2}} F^{-}(E,W) \Theta (W-W_{k}). \label{dclose}
515\end{equation}
516Eqs. (\ref{dist1}), (\ref{dist2}) and (\ref{close}) derive respectively
517from the integration in $dW$ of Eqs. (\ref{ddist1}), (\ref{ddist2}) and
518(\ref{dclose}) in the interval [0,$W_{max}$], where $W_{max}=E$ for distant
519interactions and $W_{max}=\frac{E}{2}$ for close. The analytical GOS model
520provides an accurate \emph{average} description of inelastic collisions.
521However, the continuous energy loss spectrum associated with single distant
522excitations of a given atomic shell is approximated as a single resonance
523(a $\delta$ distribution). As a consequence, the simulated energy loss spectra
524show unphysical narrow peaks at energy losses that are multiples of the
525resonance energies. These spurious peaks are automatically smoothed out after
526multiple inelastic collisions. \\
527The explicit expression of $\frac{d\sigma^{-}}{dW}$, Eq. (\ref{aaa}),
528allows the analytic calculation of the partial cross sections for soft and
529hard ionisation events, i.e.
530\begin{equation}
531\sigma^{-}_{soft}  \ = \ \int_{0}^{T_{c}} \frac{d\sigma^{-}}{dW} dW
532\quad \textrm{and} \quad 
533\sigma^{-}_{hard}  \ = \ \int_{T_{c}}^{W_{max}} \frac{d\sigma^{-}}{dW} dW.
534\end{equation}
535
536The first stage of the simulation is the selection of the active oscillator
537$k$ and the oscillator branch (distant or close). \\
538In distant interactions with the $k$-th oscillator, the energy loss $W$ of the
539primary electron corresponds to the excitation energy $W_{k}$, i.e.
540$W$=$W_{k}$. If the interaction is transverse, the angular deflection of the
541projectile is neglected, i.e. $\cos \theta$=1. For longitudinal collisions,
542the distribution of the recoil energy $Q$ is given by
543\begin{equation}
544\begin{array}{rlll}
545P_{k}(Q) = & & & \\
546 & \frac{1}{Q [1+Q/(2m_{e}c^{2})]}  & \textrm{if} \ Q_{-} < Q < W_{max} & \\
547 & 0 & \textrm{otherwise} & \\  \label{ele1}
548\end{array}
549%P_{k}(Q) =
550%\begin{cases}
551%\frac{1}{Q [1+Q/(2m_{e}c^{2})]}  &
552%\textrm{if} \quad Q_{-} < Q < W_{max} \\
553%0 & \textrm{otherwise} \label{ele1}
554%\end{cases}.
555\end{equation} 
556Once the energy loss $W$ and the recoil energy $Q$ have been sampled, the
557polar scattering angle is determined as
558\begin{equation}
559\cos \theta \ = \ \frac{E(E+2m_{e}c^{2})+(E-W)(E-W+2m_{e}c^{2})-
560Q(Q+2m_{e}c^{2})}{2\sqrt{E(E+2m_{e}c^{2})(E-W)(E-W+2m_{e}c^{2})}}. \label{ele2}
561\end{equation}
562The azimuthal scattering angle $\phi$ is sampled uniformly in the interval
563(0,2$\pi$). \\
564For close interactions, the distributions for the reduced energy loss
565$\kappa \equiv W/E$ for electrons are
566\begin{eqnarray}
567P^{-}_{k}(\kappa) \ = \ \Big[ \frac{1}{\kappa^{2}}+\frac{1}{(1-\kappa)^2} -
568\frac{1}{\kappa(1-\kappa)} + \Big( \frac{E}{E+m_{e}c^{2}} \Big)^{2} 
569\Big( 1+\frac{1}{\kappa(1-\kappa)} \Big) \Big] \nonumber \\
570 \Theta(\kappa-\kappa_{c})
571\Theta(\frac{1}{2}-\kappa) \label{closed}
572\end{eqnarray}
573with $\kappa_{c} = \max(W_{k},T_{c})/E$. The maximum allowed value of $\kappa$
574is 1/2, consistent with the indistinguishability of the electrons in the
575final state. After the sampling of the energy loss $W= \kappa E$, the polar
576scattering angle $\theta$ is obtained as
577\begin{equation}
578\cos^{2} \theta \ = \ \frac{E-W}{E} \ \frac{E+2m_{e}c^{2}}{E-W+2m_{e}c^{2}}.
579\end{equation}
580The azimuthal scattering angle $\phi$ is sampled uniformly in the interval
581(0,2$\pi$). \\
582According to the GOS model, each oscillator $W_{k}$ corresponds to an atomic
583shell with $f_{k}$ electrons and ionisation energy $U_{k}$. In the case of
584ionisation of an inner shell $i$ (K or L), a secondary electron
585($\delta$-ray)
586is emitted with energy $E_{s}=W-U_{i}$ and the residual ion is left with
587a vacancy in the shell (which is then filled with the emission of fluorescence
588x-rays and/or Auger electrons). In the case of ionisation of outer shells,
589the simulated $\delta$-ray is emitted with kinetic energy $E_{s}=W$ and the
590target atom is assumed to remain in its ground state. The polar angle of
591emission of the secondary electron is calculated as
592\begin{equation}
593\cos^{2} \theta_{s} \ = \ \frac{W^{2}/\beta^{2}}{Q(Q+2m_{e}c^{2})} 
594\Big[ 1+ \frac{Q(Q+2m_{e}c^{2})-W^{2}}{2W(E+m_{e}c^{2})} \Big]^{2}
595\end{equation}
596(for close collisions $Q=W$), while the azimuthal angle is
597$\phi_{s} = \phi + \pi$. In this model, the Doppler effects on the angular
598distribution of the $\delta$ rays are neglected. \\
599The stopping power due to soft interactions of electrons, which is used
600for the computation of the continuous part of the process, is analytically
601calculated as
602\begin{equation}
603S^{-}_{in} \ = \ N \int_{0}^{T_{c}} W \frac{d\sigma^{-}}{dW} dW
604\end{equation}
605from the expression (\ref{aaa}), where $N$ is the number of scattering centers
606(atoms or molecules) per unit volume. \\
607%
608\subsubsection{Positrons}
609The total cross section $\sigma^{+} (E)$ for the inelastic collision of
610positrons of energy $E$ is calculated analytically. As in the case of
611electrons, it can be split into contributions from distant longitudinal,
612distant transverse and close interactions,
613\begin{equation}
614\sigma^{+} (E) \ = \ \sigma_{dis,l} + \sigma_{dis,t} + \sigma^{+}_{clo}.
615\end{equation}
616The contributions from distant longitudinal and transverse interactions are
617the same as for electrons, Eq. (\ref{dist1}) and (\ref{dist2}), while the
618integrated cross section for close collisions is the Bhabha cross
619section
620\begin{equation}
621\sigma^{+}_{clo} \ = \
622\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells} f_{k} \int_{W_{k}}^{E} 
623\frac{1}{W^{2}} F^{+}(E,W) dW, \label{closepos}
624\end{equation} 
625where
626\begin{equation}
627F^{+}(E,W) \ = 1- b_{1}\frac{W}{E} + b_{2} \frac{W^{2}}{E^{2}} -
628b_{3} \frac{W^{3}}{E^{3}} + b_{4} \frac{W^{4}}{E^{4}};
629\end{equation}
630the Bhabha factors are
631\begin{eqnarray}
632b_{1} = \Big( \frac{\gamma-1}{\gamma} \Big)^{2} \ \frac{2(\gamma+1)^{2}-1}
633{\gamma^{2}-1} & &
634b_{2} = \Big( \frac{\gamma-1}{\gamma} \Big)^{2} \ \frac{3(\gamma+1)^{2}+1}
635{(\gamma+1)^{2}}, \nonumber \\
636b_{3} = \Big( \frac{\gamma-1}{\gamma} \Big)^{2} \ \frac{2(\gamma-1)\gamma}
637{(\gamma+1)^{2}}, & &
638b_{4} = \Big( \frac{\gamma-1}{\gamma} \Big)^{2} \ \frac{(\gamma-1)^{2}}
639{(\gamma+1)^{2}}, \\
640\end{eqnarray}
641and $\gamma$ is the Lorentz factor of the positron. The integral of
642Eq. (\ref{closepos}) can be evaluated analytically.  The particles in the
643final state are not undistinguishable so the maximum energy transfer $W_{max}$ 
644in close collisions is $E$.\\ 
645As for electrons, the GOS model allows the evaluation of the spectrum 
646$\frac{d \sigma^{+}}{d W}$ of the energy $W$ lost by the primary positron
647as the sum of distant longitudinal, distant transverse and close interaction
648contributions,
649\begin{equation}
650\frac{d\sigma^{+}}{dW} \ = \ \frac{d\sigma^{+}_{clo}}{dW} +
651\frac{d\sigma_{dis,l}}{dW} + \frac{d\sigma_{dis,t}}{dW}, \label{bbb}
652\end{equation}
653where the distant terms $\frac{d\sigma_{dis,l}}{dW}$ and
654$\frac{d\sigma_{dis,t}}{dW}$ are those from Eqs. (\ref{ddist1}) and
655(\ref{ddist2}), while the close contribution is
656\begin{equation}
657\frac{d \sigma^{+}_{clo}}{dW} \ = \
658\frac{2 \pi e^{4}}{m_{e}v^{2}} \sum_{shells}
659 f_{k} \frac{1}{W^{2}} F^{+}(E,W) \Theta (W-W_{k}). \label{dclosepos}
660\end{equation}
661Also in this case, the explicit expression of $\frac{d\sigma^{+}}{dW}$,
662Eq. (\ref{bbb}), allows an analytic calculation of the partial cross
663sections for soft and hard ionisation events, i.e.
664\begin{equation}
665\sigma^{+}_{soft}  \ = \ \int_{0}^{T_{c}} \frac{d\sigma^{+}}{dW} dW
666\quad \textrm{and} \quad
667\sigma^{+}_{hard}  \ = \ \int_{T_{c}}^{E} \frac{d\sigma^{+}}{dW} dW.
668\end{equation}
669The sampling of the final state in the case of distant interactions
670(transverse or longitudinal) is performed in the same way as for
671primary electrons, see section~\ref{ionelect}. For close positron
672interactions with the $k$-th oscillator, the distribution for the reduced
673energy loss $\kappa \equiv W/E$ is
674\begin{eqnarray}
675P^{+}_{k}(\kappa) \ = \ \Big[\frac{1}{\kappa^{2}} - \frac{b_{1}}{\kappa}+b_{2} 
676-b_{3}\kappa + b_{4} \kappa^{2} \Big] \Theta(\kappa-\kappa_{c})
677\Theta(1-\kappa) \label{closedpos}
678\end{eqnarray}
679with $\kappa_{c} = \max(W_{k},T_{c})/E$. In this case, the maximum allowed
680reduced energy loss $\kappa$ is 1. After sampling the energy loss
681$W= \kappa E$, the polar angle $\theta$ and the azimuthal
682angle $\phi$ are obtained using the equations introduced for electrons
683in section~\ref{ionelect}. Similarly, the generation of $\delta$ rays is
684performed in the same way as for electrons.\\
685Finally, the stopping power due to soft interactions of positrons,
686which is used for the computation of the continuous part of the process,
687is analytically calculated as
688\begin{equation}
689S^{+}_{in} \ = \ N \int_{0}^{T_{c}} W \frac{d\sigma^{+}}{dW} dW
690\end{equation}
691from the expression (\ref{bbb}), where $N$ is the number of scattering centers
692per unit volume. \\
693%
694\subsection{Positron Annihilation}
695
696\subsubsection{Total Cross Section}
697The total cross section (per target electron) for the annihilation of
698a positron of energy $E$ into two photons is evaluated from the
699analytical formula \cite{diciannove,venti}
700\begin{eqnarray}
701\lefteqn{\sigma(E) \ = \
702\frac{\pi r_{e}^{2}}{(\gamma+1)(\gamma^{2}-1)} \quad \times}  \nonumber \\
703& & \Big{\{} (\gamma^{2}+4\gamma+1) \ln \Big[ \gamma +
704\sqrt{\gamma^{2}-1} \Big]
705-(3+\gamma)\sqrt{\gamma^{2}-1} \Big{\}}.
706\end{eqnarray} 
707where \\
708$r_{e}$ = classical radius of the electron, and  \\ 
709$\gamma$ = Lorentz factor of the positron. \\
710%
711\subsubsection{Sampling of the Final State}
712The target electrons are assumed to be free and at rest: binding effects,
713that enable one-photon annihilation \cite{diciannove}, are neglected.
714When the annihilation occurs in flight, the two photons may have different
715energies, say $E_{-}$ and $E_{+}$ (the photon
716with lower energy is denoted by the superscript ``$-$''),
717whose sum is $E+2m_{e}c^{2}$. Each annihilation event is completely
718characterized by the quantity
719\begin{equation}
720\zeta \ = \ \frac{E_{-}}{E+2m_{e}c^{2}},
721\end{equation}
722which is in the interval $\zeta_{min} \le \zeta \le \frac{1}{2}$, with
723\begin{equation}
724\zeta_{min} \ = \ \frac{1}{\gamma + 1 + \sqrt{\gamma^{2}-1}}.
725\end{equation}
726The parameter $\zeta$ is sampled from the differential distribution
727\begin{equation}
728P(\zeta) \ = \ \frac{\pi r_{e}^{2}}{(\gamma+1)(\gamma^{2}-1)} 
729[S(\zeta)+S(1-\zeta)],
730\end{equation}
731where $\gamma$ is the Lorentz factor and
732\begin{equation}
733S(\zeta) \ = \ -(\gamma+1)^{2}+(\gamma^{2}+4\gamma+1)
734\frac{1}{\zeta}-\frac{1}{\zeta^{2}}.
735\end{equation}
736From conservation of energy and momentum, it follows that the two photons
737are emitted in directions with polar angles
738\begin{equation}
739\cos \theta_{-} \ = \ \frac{1}{\sqrt{\gamma^{2}-1}}
740\Big( \gamma+1-\frac{1}{\zeta} \Big)
741\end{equation}
742and
743\begin{equation}
744\cos \theta_{+} \ = \ \frac{1}{\sqrt{\gamma^{2}-1}}
745\Big( \gamma+1-\frac{1}{1-\zeta} \Big)
746\end{equation}
747that are completely determined by $\zeta$; in particuar, when
748$\zeta=\zeta_{min}$, $\cos\theta_{-}=-1$.
749The azimuthal angles are $\phi_{-}$ and
750$\phi_{+} = \phi_{-} + \pi$; owing to the axial symmetry of the process,
751the angle $\phi_{-}$ is uniformly distributed in $(0,2\pi)$.   
752%
753
754\subsection{Status of the document}
75509.06.2003 created by L.~Pandola \\
75620.06.2003 spelling and grammar check by D.H.~Wright\\
75707.11.2003 Ionisation and Annihilation section added by L.~Pandola\\
75801.06.2005 Added text in the PhotoElectric effect section, L.~Pandola \\
759%
760
761\begin{latexonly}
762
763\begin{thebibliography}{99}
764\bibitem{uno} \emph{Penelope - A Code System for Monte Carlo Simulation of
765Electron and Photon Transport}, Workshop Proceedings Issy-les-Moulineaux,
766France, 5$-$7 November 2001, AEN-NEA;
767\bibitem{due} J.Sempau \emph{et al.}, \emph{Experimental benchmarks of the
768Monte Carlo code PENELOPE}, submitted to NIM B (2002);
769\bibitem{tre} D.Brusa \emph{et al.}, \emph{Fast sampling algorithm for the
770simulation of photon Compton scattering}, NIM A379,167 (1996);
771\bibitem{quattro} F.Biggs \emph{et al.}, \emph{Hartree-Fock Compton profiles
772for the elements}, At.Data Nucl.Data Tables 16,201 (1975);
773\bibitem{cinque} M.Born, \emph{Atomic physics}, Ed. Blackie and Sons (1969);
774\bibitem{sei} J.Bar\'o \emph{et al.}, \emph{Analytical cross sections
775for Monte Carlo simulation of photon transport}, Radiat.Phys.Chem. 44,531
776(1994);
777\bibitem{sette} J.H.Hubbel \emph{et al.}, \emph{Atomic form factors,
778incoherent scattering functions and photon scattering cross sections}, J.
779Phys.Chem.Ref.Data 4,471 (1975). Erratum: \emph{ibid.} 6,615 (1977);
780\bibitem{otto} M.J.Berger and J.H.Hubbel, \emph{XCOM: photom cross sections
781on a personal computer}, Report NBSIR 87-3597 (National Bureau of Standards)
782(1987);
783\bibitem{nove} H.Davies \emph{et al.}, \emph{Theory of bremsstrahlung and
784pair production. II.Integral cross section for pair production}, Phys.Rev.
78593,788 (1954);
786\bibitem{dieci} J.H.Hubbel \emph{et al.}, \emph{Pair, triplet and total
787atomic cross sections (and mass attenuation coefficients) for 1 MeV $-$ 100
788GeV photons in element Z=1 to 100}, J.Phys.Chem.Ref.Data 9,1023 (1980);
789\bibitem{undici} J.W.Motz \emph{et al.}, \emph{Pair production by
790photons}, Rev.Mod.Phys 41,581 (1969);
791\bibitem{dodici} D.E.Cullen \emph{et al.}, \emph{Tables and graphs of
792photon-interaction cross sections from 10 eV to 100 GeV derived from the
793LLNL evaluated photon data library (EPDL)}, Report UCRL-50400 (Lawrence
794Livermore National Laboratory) (1989);
795\bibitem{dodicibis}, F. Sauter, Ann. Phys. 11 (1931) 454
796\bibitem{tredici} S.M.Seltzer and M.J.Berger, \emph{Bremsstrahlung energy
797spectra from electrons with kinetic energy 1 keV - 100 GeV incident on
798screened nuclei and orbital electrons of neutral atoms with Z=1-100},
799At.Data Nucl.Data Tables 35,345 (1986);
800\bibitem{quattordici} D.E.Cullen \emph{et al.}, \emph{Tables and graphs of
801electron-interaction cross sections from 10 eV to 100 GeV derived from the
802LLNL evaluated photon data library (EEDL)}, Report UCRL-50400 (Lawrence
803Livermore National Laboratory) (1989);
804\bibitem{quindici} L.Kissel \emph{et al.}, \emph{Shape functions for
805atomic-field bremsstrahlung from electron of kinetic energy 1$-$500 keV on
806selected neutral atoms $1 \le Z \le 92$}, At.Data Nucl.Data.Tab. 28,381
807(1983);
808\bibitem{sedici} M.J.Berger and S.M.Seltzer, \emph{Stopping power of
809electrons and positrons}, Report NBSIR 82-2550 (National Bureau of
810Standards) (1982);
811\bibitem{diciassette} L.Kim \emph{et al.}, \emph{Ratio of positron to electron
812bremsstrahlung energy loss: an approximate scaling law}, Phys.Rev.A 33,3002
813(1986);
814\bibitem{diciotto} U.Fano, \emph{Penetration of protons, alpha particles
815and mesons}, Ann.Rev.Nucl.Sci. 13,1 (1963);
816\bibitem{diciannove} W.Heitler, \emph{The quantum theory of radiation},
817Oxford University Press, London (1954);
818\bibitem{venti} W.R.Nelson \emph{et al.}, \emph{The EGS4 code system},
819Report SLAC-265 (1985).
820\end{thebibliography}
821
822\end{latexonly}
823
824\begin{htmlonly}
825
826\subsection{Bibliography}
827
828\begin{enumerate}
829\item \emph{Penelope - A Code System for Monte Carlo Simulation of
830Electron and Photon Transport}, Workshop Proceedings Issy-les-Moulineaux,
831France, 5$-$7 November 2001, AEN-NEA;
832\item J.Sempau \emph{et al.}, \emph{Experimental benchmarks of the
833Monte Carlo code PENELOPE}, submitted to NIM B (2002);
834\item D.Brusa \emph{et al.}, \emph{Fast sampling algorithm for the
835simulation of photon Compton scattering}, NIM A379,167 (1996);
836\item F.Biggs \emph{et al.}, \emph{Hartree-Fock Compton profiles
837for the elements}, At.Data Nucl.Data Tables 16,201 (1975);
838\item M.Born, \emph{Atomic physics}, Ed. Blackie and Sons (1969);
839\item J.Bar\'o \emph{et al.}, \emph{Analytical cross sections
840for Monte Carlo simulation of photon transport}, Radiat.Phys.Chem. 44,531
841(1994);
842\item J.H.Hubbel \emph{et al.}, \emph{Atomic form factors,
843incoherent scattering functions and photon scattering cross sections}, J.
844Phys.Chem.Ref.Data 4,471 (1975). Erratum: \emph{ibid.} 6,615 (1977);
845\item M.J.Berger and J.H.Hubbel, \emph{XCOM: photom cross sections
846on a personal computer}, Report NBSIR 87-3597 (National Bureau of Standards)
847(1987);
848\item H.Davies \emph{et al.}, \emph{Theory of bremsstrahlung and
849pair production. II.Integral cross section for pair production}, Phys.Rev.
85093,788 (1954);
851\item J.H.Hubbel \emph{et al.}, \emph{Pair, triplet and total
852atomic cross sections (and mass attenuation coefficients) for 1 MeV $-$ 100
853GeV photons in element Z=1 to 100}, J.Phys.Chem.Ref.Data 9,1023 (1980);
854\item J.W.Motz \emph{et al.}, \emph{Pair production by
855photons}, Rev.Mod.Phys 41,581 (1969);
856\item D.E.Cullen \emph{et al.}, \emph{Tables and graphs of
857photon-interaction cross sections from 10 eV to 100 GeV derived from the
858LLNL evaluated photon data library (EPDL)}, Report UCRL-50400 (Lawrence
859Livermore National Laboratory) (1989);
860\item S.M.Seltzer and M.J.Berger, \emph{Bremsstrahlung energy
861spectra from electrons with kinetic energy 1 keV - 100 GeV incident on
862screened nuclei and orbital electrons of neutral atoms with Z=1-100},
863At.Data Nucl.Data Tables 35,345 (1986);
864\item D.E.Cullen \emph{et al.}, \emph{Tables and graphs of
865electron-interaction cross sections from 10 eV to 100 GeV derived from the
866LLNL evaluated photon data library (EEDL)}, Report UCRL-50400 (Lawrence
867Livermore National Laboratory) (1989);
868\item L.Kissel \emph{et al.}, \emph{Shape functions for
869atomic-field bremsstrahlung from electron of kinetic energy 1$-$500 keV on
870selected neutral atoms $1 \le Z \le 92$}, At.Data Nucl.Data.Tab. 28,381
871(1983);
872\item M.J.Berger and S.M.Seltzer, \emph{Stopping power of
873electrons and positrons}, Report NBSIR 82-2550 (National Bureau of
874Standards) (1982);
875\item L.Kim \emph{et al.}, \emph{Ratio of positron to electron
876bremsstrahlung energy loss: an approximate scaling law}, Phys.Rev.A 33,3002
877(1986);
878\item U.Fano, \emph{Penetration of protons, alpha particles
879and mesons}, Ann.Rev.Nucl.Sci. 13,1 (1963);
880\item W.Heitler, \emph{The quantum theory of radiation},
881Oxford University Press, London (1954);
882\item W.R.Nelson \emph{et al.}, \emph{The EGS4 code system},
883Report SLAC-265 (1985).
884\end{enumerate}
885
886\end{htmlonly}
887
Note: See TracBrowser for help on using the repository browser.