| 1 | \section{Photoelectric effect}\label{secphoto}
|
|---|
| 2 |
|
|---|
| 3 | \subsection{Total cross-section}
|
|---|
| 4 |
|
|---|
| 5 | The total photoelectric cross-section at a given energy, E, is calculated as
|
|---|
| 6 | described in section~\ref{subsubsigmatot}. Note that for this process the
|
|---|
| 7 | {\it MeanFreePathTable} is not built, since the cross-section is not a
|
|---|
| 8 | smooth function of the energy, therefore in all calculations the
|
|---|
| 9 | cross-section is used directly.
|
|---|
| 10 |
|
|---|
| 11 | \subsection{Sampling of the final state}
|
|---|
| 12 |
|
|---|
| 13 | The incident photon is absorbed and an electron is emitted.
|
|---|
| 14 |
|
|---|
| 15 | The electron kinetic energy is the difference between the incident photon
|
|---|
| 16 | energy and the binding energy of the electron before the interaction.
|
|---|
| 17 | The sub-shell, from which the electron is emitted, is randomly selected
|
|---|
| 18 | according to the relative cross-sections of all subshells,
|
|---|
| 19 | determined at the given energy, $T$, by interpolating the evaluated
|
|---|
| 20 | cross-section data from the EPDL97 data bank~\cite{pe-EPDL97}.
|
|---|
| 21 |
|
|---|
| 22 | The interaction leaves the atom in an excited state.
|
|---|
| 23 | The deexcitation of the atom is simulated as described in section~\ref{relax}.
|
|---|
| 24 |
|
|---|
| 25 | \subsection{Angular distribution of the emmited photoelectron}
|
|---|
| 26 |
|
|---|
| 27 | Three models are available to describe the direction of the emmited photoelectron:
|
|---|
| 28 | G4\-Photo\-Electric\-Angular\-Generator\-Simple, G4\-Photo\-Electric\-Angular\-Generator\-Sauter\-Gavrila and
|
|---|
| 29 | G4PhotoElectricAngularGeneratorPolarized.
|
|---|
| 30 |
|
|---|
| 31 | \subsubsection{G4PhotoElectricAngularGeneratorSimple}
|
|---|
| 32 |
|
|---|
| 33 | The default model assumes that the photoelectron direction is emmited in the same
|
|---|
| 34 | direction as the incident photon.
|
|---|
| 35 |
|
|---|
| 36 | \subsubsection{G4PhotoElectricAngularGeneratorSauterGavrila}
|
|---|
| 37 |
|
|---|
| 38 | This model implements the Sauter--Gavrilla distribution has
|
|---|
| 39 | presented in the Standard Photoelectric effect.
|
|---|
| 40 |
|
|---|
| 41 | \subsubsection{G4PhotoElectricAngularGeneratorPolarized}
|
|---|
| 42 |
|
|---|
| 43 | This model models the double differential cross section (for angles $\theta$ and $\phi$) and
|
|---|
| 44 | thus it is capable of account for polarization of the incident photon. The developed
|
|---|
| 45 | generator was based in the research of Sauter in 1931\cite{Sauter:1931}. The Sauter's formula was recalculated by Gavrila in
|
|---|
| 46 | 1959 for the K-shell~\cite{Gavrila:1959} and in 1961 for the L-shells~\cite{Gavrila:1961}. These new double differential formulas have some limitations, $\alpha$Z$<<$1 and have a range between 0.1$<\beta<$0.99 c.
|
|---|
| 47 |
|
|---|
| 48 | \subsubsection*{K--shell}
|
|---|
| 49 |
|
|---|
| 50 | The double differential photoeffect for K--shell can be written as~\cite{Gavrila:1959}:
|
|---|
| 51 | \begin{equation}
|
|---|
| 52 | \frac{d\sigma}{d \omega}(\theta,\phi) = \frac{4}{m^2}{\alpha^6}{Z^5}\frac{\beta^3(1-\beta^2)^3}{\left[1-(1-\beta^2)^{1/2}\right]}
|
|---|
| 53 | \left(F\left(1-\frac{\pi\alpha Z}{\beta}\right)+ \pi\alpha Z G\right)
|
|---|
| 54 | \end{equation}
|
|---|
| 55 | where
|
|---|
| 56 | \begin{eqnarray*}
|
|---|
| 57 | F &=& \frac{\sin^2 \theta \cos^2 \phi}{(1-\beta \cos \theta)^4} - \frac{1-(1-\beta^2)^{1/2}}{2(1-\beta^2)}\frac{\sin^2\theta\cos^2\phi}{(1-\beta\cos\theta)^3} \nonumber \\ &+&\frac{\left[1-(1-\beta^2)^{1/2}\right]^2}{4(1-\beta^2)^{3/2}}\frac{\sin^2\theta}{(1-\beta\cos\theta)^3}
|
|---|
| 58 | \end{eqnarray*}
|
|---|
| 59 | \begin{eqnarray*}
|
|---|
| 60 | G &=& \frac{[1-(1-\beta^2)^{1/2}]^{1/2}}{2^{7/2} \beta^2 (1-\beta \cos \theta)^{5/2}}\left[\frac{4\beta^2}{(1-\beta^2)^{1/2}} \frac{\sin^2 \theta \cos^2 \phi}{1-\beta\cos\theta} + \frac{4\beta}{1-\beta^2}\cos \theta \cos^2 \phi - \right.{} \nonumber \\
|
|---|
| 61 | &-&4 \left.\frac{1-(1-\beta^2)^{1/2}}{1-\beta^2}(1-\cos^2\phi)-\beta^2\ \frac{1-(1-\beta^2)^{1/2}}{1-\beta^2} \frac{\sin^2 \theta}{1-\beta \cos \theta} - \right.{} \nonumber \\
|
|---|
| 62 | &+& \left.4\beta^2\frac{1-(1-\beta^2)^{1/2}}{(1-\beta^2)^{3/2}} - 4\beta \frac{\left[ 1-(1-\beta^2)^{1/2}\right]^2}{(1-\beta^2)^{3/2}}\right] \nonumber \\
|
|---|
| 63 | &+&\frac{1-(1-\beta^2)^{1/2}}{4\beta^2(1-\beta\cos\theta)^2}\left[\frac{\beta}{1-\beta^2}-\frac{2}{1-\beta^2}\cos\theta\cos^2\phi + \frac{1-(1-\beta^2)^{1/2}}{(1-\beta^2)^{3/2}}\cos\theta \right.{} \nonumber \\
|
|---|
| 64 | &-& \left.\beta \frac{1-(1-\beta^2)^{1/2}}{(1-\beta^2)^{3/2}}\right]
|
|---|
| 65 | \end{eqnarray*}
|
|---|
| 66 | where $\beta$ is the electron velocity, $\alpha$ is the fine--structure constant, $Z$ is the atomic number of the material and $\theta$, $\phi$ are the emission angles with respect to the electron initial direction.
|
|---|
| 67 |
|
|---|
| 68 | \subsubsection*{L1--shell}
|
|---|
| 69 |
|
|---|
| 70 | The double differential photoeffect distribution for L1--shell is the same as
|
|---|
| 71 | for K--shell despising a constant~\cite{Gavrila:1961}:
|
|---|
| 72 | \begin{equation}
|
|---|
| 73 | B = \xi \frac{1}{8}
|
|---|
| 74 | \end{equation}
|
|---|
| 75 | where $\xi$ is equal to 1 when working with unscreened Coulomb wave functions as it is done in this development.
|
|---|
| 76 |
|
|---|
| 77 | \subsubsection*{The generation of the photoelectron distribution}
|
|---|
| 78 |
|
|---|
| 79 | Since the polarized Gavrila cross--section is a 2--dimensional non--factorized distribution an acceptance--rejection technique was the adopted~\cite{Peralta:2003}. For the Gravrila distribution, two functions
|
|---|
| 80 | were defined $g_1(\phi)$ and $g_2(\theta)$:
|
|---|
| 81 | \begin{eqnarray}
|
|---|
| 82 | g_1(\phi) &=& a \\
|
|---|
| 83 | g_2(\theta) &=& \frac{\theta}{1+c\theta^2}
|
|---|
| 84 | \end{eqnarray}
|
|---|
| 85 | such that:
|
|---|
| 86 | \begin{equation}
|
|---|
| 87 | A g_1(\phi)g_2(\theta) \ge \frac{d^2 \sigma}{d\phi d\theta}
|
|---|
| 88 | \end{equation}
|
|---|
| 89 | where A is a global constant. The method used to calculate the distribution is
|
|---|
| 90 | the same as the one used in Low Energy 2BN Bremsstrahlung Generator, being the
|
|---|
| 91 | difference $g_1(\phi) = a$.
|
|---|
| 92 |
|
|---|
| 93 | \subsection{Status of the document}
|
|---|
| 94 |
|
|---|
| 95 | \noindent
|
|---|
| 96 | 30.09.1999 created by Alessandra Forti\\
|
|---|
| 97 | 07.02.2000 modified by V\'eronique Lef\'ebure\\
|
|---|
| 98 | 08.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
|
|---|
| 99 | 13.05.2002 modified by Vladimir Ivanchenko
|
|---|
| 100 | 01.05.2006 modified by Ana Farinha, Andreia Trindade, Lu\'{\i}s Peralta and Pedro Rodrigues\\
|
|---|
| 101 |
|
|---|
| 102 | \begin{latexonly}
|
|---|
| 103 |
|
|---|
| 104 | \begin{thebibliography}{99}
|
|---|
| 105 | \bibitem{pe-EPDL97}
|
|---|
| 106 | %http://reddog1.llnl.gov/homepage.red/photon.htm
|
|---|
| 107 | ``EPDL97: the Evaluated Photon Data Library, '97 version",
|
|---|
| 108 | D.Cullen, J.H.Hubbell, L.Kissel,
|
|---|
| 109 | UCRL--50400, Vol.6, Rev.5
|
|---|
| 110 | \bibitem{Sauter:1931}
|
|---|
| 111 | ``K--Shell Photoelectric Cross Sections from 200 keV to 2 MeV", R H Pratt, R D Levee,
|
|---|
| 112 | R L Pexton and W Aron, Phys. Rev. 134 (1964) 4A
|
|---|
| 113 | \bibitem{Gavrila:1959}
|
|---|
| 114 | ``Relativistic K--Shell Photoeffect", M. Gavrila, Phys. Rev. 113 (1959) 2
|
|---|
| 115 | \bibitem{Gavrila:1961}
|
|---|
| 116 | ``Relativistic L--Shell Photoeffect", M. Gavrila, Phys. Rev. 124 (1961) 4
|
|---|
| 117 | \bibitem{Peralta:2003}
|
|---|
| 118 | ``Monte Carlo Generation of 2BNBremsstrahlung Distribution",
|
|---|
| 119 | L. Peralta, P. Rodrigues, A. Trindade
|
|---|
| 120 | CERN EXT--2004--039 (July, 2003)
|
|---|
| 121 | \end{thebibliography}
|
|---|
| 122 |
|
|---|
| 123 | \end{latexonly}
|
|---|
| 124 |
|
|---|
| 125 | \begin{htmlonly}
|
|---|
| 126 |
|
|---|
| 127 | \subsection{Bibliography}
|
|---|
| 128 |
|
|---|
| 129 | \begin{enumerate}
|
|---|
| 130 | \item
|
|---|
| 131 | %http://reddog1.llnl.gov/homepage.red/photon.htm
|
|---|
| 132 | ``EPDL97: the Evaluated Photon Data Library, '97 version",
|
|---|
| 133 | D.Cullen, J.H.Hubbell, L.Kissel,
|
|---|
| 134 | UCRL--50400, Vol.6, Rev.5
|
|---|
| 135 | \item
|
|---|
| 136 | ``K--Shell Photoelectric Cross Sections from 200 keV to 2 MeV", R H Pratt, R D Levee,
|
|---|
| 137 | R L Pexton and W Aron, Phys. Rev. 134 (1964) 4A
|
|---|
| 138 | \item
|
|---|
| 139 | ``Relativistic K--Shell Photoeffect", M. Gavrila, Phys. Rev. 113 (1959) 2
|
|---|
| 140 | \item
|
|---|
| 141 | ``Relativistic L--Shell Photoeffect", M. Gavrila, Phys. Rev. 124 (1961) 4
|
|---|
| 142 | \item
|
|---|
| 143 | ``Monte Carlo Generation of 2BNBremsstrahlung Distribution",
|
|---|
| 144 | L. Peralta, P. Rodrigues, A. Trindade
|
|---|
| 145 | CERN EXT--2004--039 (July, 2003)
|
|---|
| 146 | \end{enumerate}
|
|---|
| 147 |
|
|---|
| 148 | \end{htmlonly}
|
|---|