source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/miscellaneous/occurence.tex @ 1292

Last change on this file since 1292 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 5.4 KB
Line 
1\section{The Interaction Length or Mean Free Path} \label{mfp}
2\begin{itemize}
3\item[1)]
4         In a simple material the number of atoms per volume is:
5         \[= \frac{\mathcal{N}\rho}{A}\]
6         where:
7         \begin{eqnarray*}
8          \mathcal{N} &  & \mbox{Avogadro's number} \\
9          \rho        &  & \mbox{density of the medium} \\
10          A           &  & \mbox{mass of a mole} 
11         \end{eqnarray*}
12\item[2)]
13         In a compound material the number of atoms per volume of the
14         $i^{th}$ element is:
15         \[n_{i}  = \frac{\mathcal{N}\rho w_{i}}{A_{i}}\]
16         where:
17         \begin{eqnarray*}
18          \mathcal{N} &  & \mbox{Avogadro's number} \\
19          \rho        &  & \mbox{density of the medium} \\
20          w_{i}       &  & \mbox{proportion by mass of the $i^{th}$ element}\\
21          A_{i}       &  & \mbox{mass of a mole of the $i^{th}$ element} 
22         \end{eqnarray*} 
23\item[3)] 
24         The {\bf mean free path} of a process, $\lambda$, also called the
25         {\bf interaction length}, can be given in terms of the total cross
26         section :
27         $$
28           \lambda(E) =
29           \left( \sum_i \lbrack n_i \cdot \sigma(Z_i,E) \rbrack \right)^{-1}
30         $$
31         where $\sigma(Z,E)$ is the total cross section per atom of the
32         process and $\sum_{i}$ runs over all elements composing the material.
33         
34          $\sum\limits_{i}{\lbrack n_{i} \sigma(Z_{i},E)\rbrack}$ is also
35          called the {\it macroscopic cross section}. The mean free path is the
36          inverse of the macroscopic cross section.
37\end{itemize}
38
39\noindent
40Cross sections per atom and mean free path values are tabulated during
41initialisation.
42
43\section{Determination of the Interaction Point} \label{ip}
44The mean free path, $\lambda$, of a particle for a given process depends on the
45medium and cannot be used directly to sample the probability of an interaction
46in a heterogeneous detector. The number of mean free paths which a particle
47travels is:
48
49\begin{equation}
50\label{int.c}
51n_\lambda =\int_{x_1}^{x_2} \frac{dx}{\lambda(x)} ,
52\end{equation}
53which is independent of the material traversed. If $n_r$ is a random variable
54denoting the number of mean free paths from a given point to the point of
55interaction, it can be shown that $n_r$ has the distribution function:
56\begin{equation}
57\label{int.d}
58P( n_r < n_\lambda ) = 1-e^{-n_\lambda}
59\end{equation}
60The total number of mean free paths the particle travels before reaching
61the interaction point, $n_\lambda$, is sampled at the beginning of the
62trajectory as:
63\begin{equation} 
64\label{int.e}
65n_\lambda = -\log \left ( \eta \right )
66\end{equation}   
67where $\eta$ is a random number uniformly distributed in the range $(0,1)$.
68$n_\lambda$ is updated after each step $\Delta x$ according the formula:
69\begin{equation}
70\label{int.f}
71n'_\lambda=n_\lambda -\frac{\Delta x }{\lambda(x)}
72\end{equation}
73until the step originating from $s(x) = n_\lambda \cdot \lambda(x)$ is
74the shortest and this triggers the specific process.\\
75
76\noindent
77The short description given above is the {\em differential approach} to
78particle transport, which is used in most simulation
79codes (\cite{int.egs4},\cite{int.geant3}).
80In this approach besides the other ({\em discrete}) processes 
81 the continuous energy loss imposes a limit on the stepsize too, because the
82cross sections depend of the energy of the particle.
83Then it is assumed that the step is small enough so that the particle cross
84sections remain approximately constant during the step.
85In principle one must use very small steps in order to insure an accurate
86simulation, but computing time increases as the stepsize decreases. A good
87compromise is to limit the stepsize in Geant4 by not allowing the stopping
88range of the particle to decrease by more than 20 \% during the step. This
89condition works well for particles with kinetic energies $>$ 0.5 MeV, but for
90lower energies it can give very short step sizes.  To cure this problem a lower
91limit on the stepsize is also introduced.
92 
93\section{Updating the Particle Lifetime}
94
95The proper and laboratory times of a particle should be updated after each
96step.
97In the laboratory system:
98\begin{equation}
99\label{int.n}
100  \Delta t_{lab} = 0.5 \Delta x (\frac{1}{v_1} + \frac{1}{v_2}),
101\end{equation} 
102where $\Delta x$  is a step traveled by the particle, $v_1$  and $v_2$
103are particle velocities at the beginning and at the end of the step
104correspondingly.
105This expression is a good approximation if the velocity is not allowed to
106change too much during the step.
107
108
109\section{Status of this document}
110 09.10.98  created by L. Urb\'an. \\
111 27.07.01  minor revisions by M. Maire \\
112 01.12.03  integral method subsection added by V. Ivanchenko \\
113 12.08.04  splitted and partly moved in introduction by M. Maire  \\
114 25.12.06  minor revision by V. Ivanchenko \\
115 15.12.08  minor revision by J. Apostolakis \\
116
117\begin{latexonly}
118
119\begin{thebibliography}{99}
120\bibitem{int.egs4} W.R. Nelson et al.
121 the \textsc{egs4} Code System. SLAC-Report-265, December 1985.
122
123\bibitem{int.geant3}
124 G\textsc{eant3} manual, CERN Program Library Long Writeup W5013 (October 1994).
125
126\end{thebibliography}
127
128\end{latexonly}
129
130\begin{htmlonly}
131
132\section{Bibliography}
133
134\begin{enumerate}
135\item W.R. Nelson et al.
136 the \textsc{egs4} Code System. SLAC-Report-265, December 1985.
137
138\item G\textsc{eant3} manual, CERN Program Library Long Writeup W5013 (October 1994).
139
140
141\end{enumerate}
142
143\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.