| 1 | \section{The Interaction Length or Mean Free Path} \label{mfp}
|
|---|
| 2 | \begin{itemize}
|
|---|
| 3 | \item[1)]
|
|---|
| 4 | In a simple material the number of atoms per volume is:
|
|---|
| 5 | \[n = \frac{\mathcal{N}\rho}{A}\]
|
|---|
| 6 | where:
|
|---|
| 7 | \begin{eqnarray*}
|
|---|
| 8 | \mathcal{N} & & \mbox{Avogadro's number} \\
|
|---|
| 9 | \rho & & \mbox{density of the medium} \\
|
|---|
| 10 | A & & \mbox{mass of a mole}
|
|---|
| 11 | \end{eqnarray*}
|
|---|
| 12 | \item[2)]
|
|---|
| 13 | In a compound material the number of atoms per volume of the
|
|---|
| 14 | $i^{th}$ element is:
|
|---|
| 15 | \[n_{i} = \frac{\mathcal{N}\rho w_{i}}{A_{i}}\]
|
|---|
| 16 | where:
|
|---|
| 17 | \begin{eqnarray*}
|
|---|
| 18 | \mathcal{N} & & \mbox{Avogadro's number} \\
|
|---|
| 19 | \rho & & \mbox{density of the medium} \\
|
|---|
| 20 | w_{i} & & \mbox{proportion by mass of the $i^{th}$ element}\\
|
|---|
| 21 | A_{i} & & \mbox{mass of a mole of the $i^{th}$ element}
|
|---|
| 22 | \end{eqnarray*}
|
|---|
| 23 | \item[3)]
|
|---|
| 24 | The {\bf mean free path} of a process, $\lambda$, also called the
|
|---|
| 25 | {\bf interaction length}, can be given in terms of the total cross
|
|---|
| 26 | section :
|
|---|
| 27 | $$
|
|---|
| 28 | \lambda(E) =
|
|---|
| 29 | \left( \sum_i \lbrack n_i \cdot \sigma(Z_i,E) \rbrack \right)^{-1}
|
|---|
| 30 | $$
|
|---|
| 31 | where $\sigma(Z,E)$ is the total cross section per atom of the
|
|---|
| 32 | process and $\sum_{i}$ runs over all elements composing the material.
|
|---|
| 33 |
|
|---|
| 34 | $\sum\limits_{i}{\lbrack n_{i} \sigma(Z_{i},E)\rbrack}$ is also
|
|---|
| 35 | called the {\it macroscopic cross section}. The mean free path is the
|
|---|
| 36 | inverse of the macroscopic cross section.
|
|---|
| 37 | \end{itemize}
|
|---|
| 38 |
|
|---|
| 39 | \noindent
|
|---|
| 40 | Cross sections per atom and mean free path values are tabulated during
|
|---|
| 41 | initialisation.
|
|---|
| 42 |
|
|---|
| 43 | \section{Determination of the Interaction Point} \label{ip}
|
|---|
| 44 | The mean free path, $\lambda$, of a particle for a given process depends on the
|
|---|
| 45 | medium and cannot be used directly to sample the probability of an interaction
|
|---|
| 46 | in a heterogeneous detector. The number of mean free paths which a particle
|
|---|
| 47 | travels is:
|
|---|
| 48 |
|
|---|
| 49 | \begin{equation}
|
|---|
| 50 | \label{int.c}
|
|---|
| 51 | n_\lambda =\int_{x_1}^{x_2} \frac{dx}{\lambda(x)} ,
|
|---|
| 52 | \end{equation}
|
|---|
| 53 | which is independent of the material traversed. If $n_r$ is a random variable
|
|---|
| 54 | denoting the number of mean free paths from a given point to the point of
|
|---|
| 55 | interaction, it can be shown that $n_r$ has the distribution function:
|
|---|
| 56 | \begin{equation}
|
|---|
| 57 | \label{int.d}
|
|---|
| 58 | P( n_r < n_\lambda ) = 1-e^{-n_\lambda}
|
|---|
| 59 | \end{equation}
|
|---|
| 60 | The total number of mean free paths the particle travels before reaching
|
|---|
| 61 | the interaction point, $n_\lambda$, is sampled at the beginning of the
|
|---|
| 62 | trajectory as:
|
|---|
| 63 | \begin{equation}
|
|---|
| 64 | \label{int.e}
|
|---|
| 65 | n_\lambda = -\log \left ( \eta \right )
|
|---|
| 66 | \end{equation}
|
|---|
| 67 | where $\eta$ is a random number uniformly distributed in the range $(0,1)$.
|
|---|
| 68 | $n_\lambda$ is updated after each step $\Delta x$ according the formula:
|
|---|
| 69 | \begin{equation}
|
|---|
| 70 | \label{int.f}
|
|---|
| 71 | n'_\lambda=n_\lambda -\frac{\Delta x }{\lambda(x)}
|
|---|
| 72 | \end{equation}
|
|---|
| 73 | until the step originating from $s(x) = n_\lambda \cdot \lambda(x)$ is
|
|---|
| 74 | the shortest and this triggers the specific process.\\
|
|---|
| 75 |
|
|---|
| 76 | \noindent
|
|---|
| 77 | The short description given above is the {\em differential approach} to
|
|---|
| 78 | particle transport, which is used in most simulation
|
|---|
| 79 | codes (\cite{int.egs4},\cite{int.geant3}).
|
|---|
| 80 | In this approach besides the other ({\em discrete}) processes
|
|---|
| 81 | the continuous energy loss imposes a limit on the stepsize too, because the
|
|---|
| 82 | cross sections depend of the energy of the particle.
|
|---|
| 83 | Then it is assumed that the step is small enough so that the particle cross
|
|---|
| 84 | sections remain approximately constant during the step.
|
|---|
| 85 | In principle one must use very small steps in order to insure an accurate
|
|---|
| 86 | simulation, but computing time increases as the stepsize decreases. A good
|
|---|
| 87 | compromise is to limit the stepsize in Geant4 by not allowing the stopping
|
|---|
| 88 | range of the particle to decrease by more than 20 \% during the step. This
|
|---|
| 89 | condition works well for particles with kinetic energies $>$ 0.5 MeV, but for
|
|---|
| 90 | lower energies it can give very short step sizes. To cure this problem a lower
|
|---|
| 91 | limit on the stepsize is also introduced.
|
|---|
| 92 |
|
|---|
| 93 | \section{Updating the Particle Lifetime}
|
|---|
| 94 |
|
|---|
| 95 | The proper and laboratory times of a particle should be updated after each
|
|---|
| 96 | step.
|
|---|
| 97 | In the laboratory system:
|
|---|
| 98 | \begin{equation}
|
|---|
| 99 | \label{int.n}
|
|---|
| 100 | \Delta t_{lab} = 0.5 \Delta x (\frac{1}{v_1} + \frac{1}{v_2}),
|
|---|
| 101 | \end{equation}
|
|---|
| 102 | where $\Delta x$ is a step traveled by the particle, $v_1$ and $v_2$
|
|---|
| 103 | are particle velocities at the beginning and at the end of the step
|
|---|
| 104 | correspondingly.
|
|---|
| 105 | This expression is a good approximation if the velocity is not allowed to
|
|---|
| 106 | change too much during the step.
|
|---|
| 107 |
|
|---|
| 108 |
|
|---|
| 109 | \section{Status of this document}
|
|---|
| 110 | 09.10.98 created by L. Urb\'an. \\
|
|---|
| 111 | 27.07.01 minor revisions by M. Maire \\
|
|---|
| 112 | 01.12.03 integral method subsection added by V. Ivanchenko \\
|
|---|
| 113 | 12.08.04 splitted and partly moved in introduction by M. Maire \\
|
|---|
| 114 | 25.12.06 minor revision by V. Ivanchenko \\
|
|---|
| 115 | 15.12.08 minor revision by J. Apostolakis \\
|
|---|
| 116 |
|
|---|
| 117 | \begin{latexonly}
|
|---|
| 118 |
|
|---|
| 119 | \begin{thebibliography}{99}
|
|---|
| 120 | \bibitem{int.egs4} W.R. Nelson et al.
|
|---|
| 121 | the \textsc{egs4} Code System. SLAC-Report-265, December 1985.
|
|---|
| 122 |
|
|---|
| 123 | \bibitem{int.geant3}
|
|---|
| 124 | G\textsc{eant3} manual, CERN Program Library Long Writeup W5013 (October 1994).
|
|---|
| 125 |
|
|---|
| 126 | \end{thebibliography}
|
|---|
| 127 |
|
|---|
| 128 | \end{latexonly}
|
|---|
| 129 |
|
|---|
| 130 | \begin{htmlonly}
|
|---|
| 131 |
|
|---|
| 132 | \section{Bibliography}
|
|---|
| 133 |
|
|---|
| 134 | \begin{enumerate}
|
|---|
| 135 | \item W.R. Nelson et al.
|
|---|
| 136 | the \textsc{egs4} Code System. SLAC-Report-265, December 1985.
|
|---|
| 137 |
|
|---|
| 138 | \item G\textsc{eant3} manual, CERN Program Library Long Writeup W5013 (October 1994).
|
|---|
| 139 |
|
|---|
| 140 |
|
|---|
| 141 | \end{enumerate}
|
|---|
| 142 |
|
|---|
| 143 | \end{htmlonly}
|
|---|