| 1 |
|
|---|
| 2 | \section[Bremsstrahlung]{Bremsstrahlung} \label{secmubrem}
|
|---|
| 3 |
|
|---|
| 4 | Bremsstrahlung dominates other muon interaction processes in the region of
|
|---|
| 5 | catastrophic collisions ($v \geq 0.1$ ), that is at "moderate" muon
|
|---|
| 6 | energies above the kinematic limit for knock--on electron production.
|
|---|
| 7 | At high energies ($E \geq 1$ TeV) this process contributes about
|
|---|
| 8 | 40\% of the average muon energy loss.
|
|---|
| 9 |
|
|---|
| 10 | \subsection{Differential Cross Section}
|
|---|
| 11 |
|
|---|
| 12 | The differential cross section for muon bremsstrahlung (in units of
|
|---|
| 13 | ${\rm cm}^{2}/(\mbox{g GeV})$)
|
|---|
| 14 | can be written as
|
|---|
| 15 | \begin{eqnarray}
|
|---|
| 16 | \label{mubrem.a}
|
|---|
| 17 | \frac{d \sigma (E,\epsilon,Z,A)}{d \epsilon}&=&
|
|---|
| 18 | \frac{16}{3} \alpha N_A (\frac{m}{\mu} r_{e})^2
|
|---|
| 19 | \frac{1}{\epsilon A} Z(Z \Phi_n + \Phi_e)(1-v+\frac{3}{4} v^2)\nonumber\\
|
|---|
| 20 | &=&0 \quad {\rm if} \quad \epsilon \geq \epsilon_{\rm max} = E-\mu ,
|
|---|
| 21 | \end{eqnarray}
|
|---|
| 22 | where $\mu$ and $m$ are the muon and electron masses, $Z$ and $A$ are the
|
|---|
| 23 | atomic number and atomic weight of the material, and $N_{A}$ is Avogadro's
|
|---|
| 24 | number. If $E$ and $T$ are the initial total and kinetic energy of the
|
|---|
| 25 | muon, and $\epsilon$ is the emitted photon energy, then
|
|---|
| 26 | $\epsilon = E - E'$ and the relative energy transfer $v = \epsilon /E$.
|
|---|
| 27 |
|
|---|
| 28 | $\Phi_{n}$ represents the contribution of the nucleus and can be expressed
|
|---|
| 29 | as
|
|---|
| 30 | \begin{eqnarray*}
|
|---|
| 31 | \Phi_{n} &=& \ln \frac {BZ^{-1/3}(\mu + \delta (D_{n}' \sqrt{e} -2))}
|
|---|
| 32 | {D_{n}'(m+ \delta \sqrt{e}BZ^{-1/3})} ; \\
|
|---|
| 33 | &=& 0 \quad {\rm if} \quad {\rm negative}.
|
|---|
| 34 | \end{eqnarray*}
|
|---|
| 35 | $\Phi_{e}$ represents the contribution of the electrons and can be expressed
|
|---|
| 36 | as
|
|---|
| 37 | \begin{eqnarray*}
|
|---|
| 38 | \Phi_{e} &=& \ln \frac {B'Z^{-2/3} \mu }
|
|---|
| 39 | {\left(1+ \displaystyle\frac{\delta \mu}{m^{2} \sqrt{e}}\right)(m+ \delta
|
|---|
| 40 | \sqrt{e}
|
|---|
| 41 | B'Z^{-2/3})
|
|---|
| 42 | }; \\
|
|---|
| 43 | &=& 0 \quad {\rm if} \quad \epsilon \geq \epsilon'_{\rm max} = E/(1+
|
|---|
| 44 | \mu^{2}/2mE); \\
|
|---|
| 45 | &=& 0 \quad {\rm if} \quad {\rm negative}.
|
|---|
| 46 | \end{eqnarray*}
|
|---|
| 47 | In $\Phi_n$ and $\Phi_e$, for all nuclei except hydrogen,
|
|---|
| 48 | \begin{eqnarray*}
|
|---|
| 49 | \delta &=& \mu^{2} \epsilon /2EE' = \mu^{2} v/2(E- \epsilon);\\
|
|---|
| 50 | D'_{n} &=& D_{n}^{(1-1/Z)}, \quad D_{n}= 1.54A^{0.27}; \\
|
|---|
| 51 | B &=& 183, \quad B'=1429, \quad \sqrt{e}=1.648(721271).
|
|---|
| 52 | \end{eqnarray*}
|
|---|
| 53 | %
|
|---|
| 54 | For hydrogen ($Z$=1) $B = 202.4,\: B' = 446, \: D_{n}' = D_{n}$.
|
|---|
| 55 |
|
|---|
| 56 |
|
|---|
| 57 | These formulae are taken mostly from Refs. \cite{brem.kel95} and
|
|---|
| 58 | \cite{brem.kel97}. They include improved nuclear size corrections in
|
|---|
| 59 | comparison with Ref. \cite{brem.petr68} in the region $v \sim 1$ and low $Z$.
|
|---|
| 60 | Bremsstrahlung on atomic electrons (taking into account target recoil and
|
|---|
| 61 | atomic binding) is introduced instead of a rough substitution $Z(Z+1)$.
|
|---|
| 62 | A correction for processes with nucleus excitation is also
|
|---|
| 63 | included \cite{brem.andr94}.
|
|---|
| 64 |
|
|---|
| 65 | \subsubsection{Applicability and Restrictions of the Method}
|
|---|
| 66 |
|
|---|
| 67 | The above formulae assume that: \\
|
|---|
| 68 | 1. $E \gg \mu $, hence the ultrarelativistic approximation is used; \\
|
|---|
| 69 | 2. $E \leq 10^{20}$ eV; above this energy, LPM suppression can be expected;\\
|
|---|
| 70 | 3. $v \geq 10^{-6}$ ; below $10^{-6}$ Ter-Mikaelyan suppression takes place.
|
|---|
| 71 | However, in the latter region the cross section of muon bremsstrahlung is
|
|---|
| 72 | several orders of magnitude less than that of other processes.\\
|
|---|
| 73 | The Coulomb correction (for high $Z$) is not included. However, existing
|
|---|
| 74 | calculations \cite{brem.andr97} show that for muon bremsstrahlung this
|
|---|
| 75 | correction is small.
|
|---|
| 76 |
|
|---|
| 77 | \subsection{Continuous Energy Loss}
|
|---|
| 78 |
|
|---|
| 79 | The restricted energy loss for muon bremsstrahlung $(d E/ dx)_{\rm rest}$
|
|---|
| 80 | with relative transfers $v = \epsilon / (T+ \mu) \leq v_{\rm cut}$
|
|---|
| 81 | can be calculated as follows :
|
|---|
| 82 | $$
|
|---|
| 83 | \left(\frac{d E}{d x}\right)_{\rm rest}
|
|---|
| 84 | = \int_{0}^{\epsilon_{\rm cut}} \epsilon\,\sigma (E,\epsilon )\,d\epsilon
|
|---|
| 85 | =
|
|---|
| 86 | (T+\mu ) \int_{0}^{v_{\rm cut}}\epsilon\,\sigma (E,\epsilon)\,dv\,.
|
|---|
| 87 | $$
|
|---|
| 88 | %
|
|---|
| 89 | If the user cut $v_{\rm cut} \geq v_{\rm max}=T/(T+ \mu)$, the total
|
|---|
| 90 | average energy loss is calculated. Integration is done using Gaussian
|
|---|
| 91 | quadratures, and binning provides an accuracy better than about 0.03\% for
|
|---|
| 92 | $T = 1$ GeV, $Z=1$. This rapidly improves with increasing $T$ and $Z$.
|
|---|
| 93 |
|
|---|
| 94 |
|
|---|
| 95 | \subsection{Total Cross Section}
|
|---|
| 96 |
|
|---|
| 97 | The integration of the differential cross section over $d\epsilon$ gives the
|
|---|
| 98 | total cross section for muon bremsstrahlung:
|
|---|
| 99 | \begin{equation}
|
|---|
| 100 | \label{mubrem.b}
|
|---|
| 101 | \sigma_{\rm tot} (E,\epsilon_{\rm cut})
|
|---|
| 102 | = \int_{\epsilon_{\rm cut}}^{\epsilon_{\rm max}}\sigma (E,\epsilon )
|
|---|
| 103 | d \epsilon =
|
|---|
| 104 | \int_{\ln v_{\rm cut}}^{\ln v_{\rm max}}\epsilon \sigma (E,\epsilon)
|
|---|
| 105 | d(\ln v) ,
|
|---|
| 106 | \end{equation}
|
|---|
| 107 | where $v_{\rm max}=T/(T+ \mu)$. If $v_{\rm cut} \geq v_{\rm max}$ ,
|
|---|
| 108 | $\sigma_{\rm tot}=0$.
|
|---|
| 109 |
|
|---|
| 110 | \subsection{Sampling}
|
|---|
| 111 |
|
|---|
| 112 | The photon energy $\epsilon_{p}$ is found by numerically solving the
|
|---|
| 113 | equation :
|
|---|
| 114 | $$ P \:= \int_{\epsilon_{p}}^{\epsilon_{\rm max}} \sigma (E,\epsilon,Z,A
|
|---|
| 115 | ) \, d \epsilon
|
|---|
| 116 | \left/ \int_{\epsilon_{\rm cut}}^{\epsilon_{\rm max}}
|
|---|
| 117 | \sigma (E,\epsilon,Z,A ) \, d \epsilon\right. .
|
|---|
| 118 | $$
|
|---|
| 119 | Here $P$ is the random uniform probability, $\epsilon_{\rm max}=T$, and
|
|---|
| 120 | $\epsilon_{\rm cut}=(T+\mu) \cdot v_{\rm cut}$. $v_{min.cut}=10^{-5}$ is
|
|---|
| 121 | the minimal relative energy transfer adopted in the algorithm.
|
|---|
| 122 |
|
|---|
| 123 | For fast sampling, the solution of the above equation is tabulated at
|
|---|
| 124 | initialization time for selected $Z$, $T$ and $P$. During simulation, this
|
|---|
| 125 | table is interpolated in order to find the value of $\epsilon_{p}$
|
|---|
| 126 | corresponding to the probability $P$.
|
|---|
| 127 |
|
|---|
| 128 | The tabulation routine uses accurate functions for the differential cross
|
|---|
| 129 | section. The table contains values of
|
|---|
| 130 | \begin{equation}
|
|---|
| 131 | \label{mubrem.c}
|
|---|
| 132 | x_p = \ln (v_p / v_{\rm max})/\ln (v_{\rm max}/v_{\rm cut}) ,
|
|---|
| 133 | \end{equation}
|
|---|
| 134 | where $v_{p} = \epsilon_{p}/(T+ \mu)$ and $v_{\rm max} = T/(T+ \mu)$.
|
|---|
| 135 | Tabulation is performed in the range
|
|---|
| 136 | $1 \leq Z \leq 128$, $1 \leq T \leq 1000$~PeV, $10^{-5} \leq P \leq 1$
|
|---|
| 137 | with constant logarithmic steps. Atomic weight (which is a required
|
|---|
| 138 | parameter in the cross section) is estimated here with an iterative solution of the approximate relation:
|
|---|
| 139 | $$ A = Z\,(2+0.015\,A^{2/3}).$$
|
|---|
| 140 | For $Z=1$, $A=1$ is used.
|
|---|
| 141 |
|
|---|
| 142 | To find $x_{p}$ (and thus $\epsilon_{p}$) corresponding to a given
|
|---|
| 143 | probability $P$, the sampling method performs a linear interpolation in
|
|---|
| 144 | $\ln Z$ and $\ln T$, and a cubic, 4 point Lagrangian interpolation
|
|---|
| 145 | in $\ln P$. For $P \leq P_{\rm min}$, a linear interpolation in $(P,x)$
|
|---|
| 146 | coordinates is used, with $x = 0$ at $P = 0$. Then the energy
|
|---|
| 147 | $\epsilon_p$ is obtained from the inverse transformation of \ref{mubrem.c} :
|
|---|
| 148 | %
|
|---|
| 149 | $$\epsilon_{p} = (T+ \mu ) v_{\rm max} (v_{\rm max}/v_{\rm cut})^{x_{p}} $$
|
|---|
| 150 | %
|
|---|
| 151 | The algorithm with the parameters described above has been
|
|---|
| 152 | tested for various $Z$ and $T$. It reproduces the differential cross section
|
|---|
| 153 | to within 0.2 -- 0.7 \% for $T \geq 10$~GeV. The average total energy loss
|
|---|
| 154 | is accurate to within 0.5\%. While accuracy improves with increasing $T$,
|
|---|
| 155 | satisfactory results are also obtained for $1 \leq T \leq 10$~GeV.
|
|---|
| 156 |
|
|---|
| 157 | It is important to note that this sampling scheme allows the generation of
|
|---|
| 158 | $\epsilon_{p}$ for different user cuts on $v$ which are above
|
|---|
| 159 | $v_{\rm min.cut}$. To perform such a simulation, it is sufficient to
|
|---|
| 160 | define a new probability variable
|
|---|
| 161 | %
|
|---|
| 162 | $$P' = P \: \sigma_{\rm tot} \: (v_{\rm user.cut}) / \sigma_{\rm tot} (v_{\rm
|
|---|
| 163 | min.cut})$$
|
|---|
| 164 | %
|
|---|
| 165 | and use it in the sampling method. Time consuming re-calculation of the
|
|---|
| 166 | 3-dimensional table is therefore not required because only the tabulation
|
|---|
| 167 | of $\sigma_{\rm tot}(v_{\rm user.cut})$ is needed.
|
|---|
| 168 |
|
|---|
| 169 | The small-angle, ultrarelativistic approximation is used for the simulation
|
|---|
| 170 | (with about 20\% accuracy at $\theta\le\theta^*\approx1$) of the angular
|
|---|
| 171 | distribution of the final state muon and photon. Since the target recoil is
|
|---|
| 172 | small, the muon and photon are directed symmetrically (with equal transverse momenta and coplanar with the initial muon):
|
|---|
| 173 | \begin{equation}
|
|---|
| 174 | p_{\perp \mu} = p_{\perp \gamma}, \quad {\rm where} \quad p_{\perp \mu}=
|
|---|
| 175 | E' \theta_{\mu}, \quad p_{\perp \gamma} = \epsilon \theta_{\gamma} .
|
|---|
| 176 | \end{equation}
|
|---|
| 177 | $\theta_{\mu}$ and $\theta_{\gamma}$ are muon and photon emission angles.
|
|---|
| 178 | The distribution in the variable
|
|---|
| 179 | $r=E\theta_{\gamma}/\mu$ is given by
|
|---|
| 180 | \begin{equation}
|
|---|
| 181 | f(r) dr \sim r dr/(1+r^2)^2 .
|
|---|
| 182 | \end{equation}
|
|---|
| 183 | Random angles are sampled as follows:
|
|---|
| 184 | \begin{equation}
|
|---|
| 185 | \theta_{\gamma} = \frac{\mu}{E} r \quad
|
|---|
| 186 | \theta_{\mu} = \frac{\epsilon}{E'} \theta_{\gamma} ,
|
|---|
| 187 | \end{equation}
|
|---|
| 188 | where
|
|---|
| 189 | $$
|
|---|
| 190 | r=\sqrt{\frac{a}{1-a}}\,,\quad a=\xi\,\frac{r_{\rm \max}^2}{1+r_{\rm max}^2}\,,\quad
|
|---|
| 191 | r_{\max}=\min(1,E'/\epsilon)\cdot E\,\theta^*/\mu\,,$$
|
|---|
| 192 | and $\xi$ is a random number uniformly distributed between 0 and 1.
|
|---|
| 193 |
|
|---|
| 194 | \subsection{Status of this document}
|
|---|
| 195 |
|
|---|
| 196 | 09.10.98 created by R.Kokoulin and A.Rybin\\
|
|---|
| 197 | 17.05.00 updated by S.Kelner, R.Kokoulin and A.Rybin\\
|
|---|
| 198 | 30.11.02 re-written by D.H. Wright\\
|
|---|
| 199 |
|
|---|
| 200 | \begin{latexonly}
|
|---|
| 201 |
|
|---|
| 202 | \begin{thebibliography}{599}
|
|---|
| 203 |
|
|---|
| 204 | \bibitem{brem.kel95}
|
|---|
| 205 | S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Preprint MEPhI 024-95, Moscow, 1995;
|
|---|
| 206 | CERN SCAN-9510048.
|
|---|
| 207 | \bibitem{brem.kel97}
|
|---|
| 208 | S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Phys. Atomic Nuclei, {\bf 60} (1997) 576.
|
|---|
| 209 | \bibitem{brem.petr68}
|
|---|
| 210 | A.A.Petrukhin, V.V.Shestakov. Canad.J.Phys., {\bf 46} (1968) S377.
|
|---|
| 211 | \bibitem{brem.andr94}
|
|---|
| 212 | Yu.M.Andreyev, L.B.Bezrukov, E.V.Bugaev. Phys. Atomic Nuclei, {\bf 57} (1994)
|
|---|
| 213 | 2066.
|
|---|
| 214 | \bibitem{brem.andr97}
|
|---|
| 215 | Yu.M.Andreev, E.V.Bugaev, Phys. Rev. D, {\bf 55} (1997) 1233.
|
|---|
| 216 | \end{thebibliography}
|
|---|
| 217 |
|
|---|
| 218 | \end{latexonly}
|
|---|
| 219 |
|
|---|
| 220 | \begin{htmlonly}
|
|---|
| 221 |
|
|---|
| 222 | \subsection{Bibliography}
|
|---|
| 223 |
|
|---|
| 224 | \begin{enumerate}
|
|---|
| 225 | \item S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Preprint MEPhI 024-95, Moscow,
|
|---|
| 226 | 1995; CERN SCAN-9510048.
|
|---|
| 227 | \item S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Phys. Atomic Nuclei, {\bf 60}
|
|---|
| 228 | (1997) 576.
|
|---|
| 229 | \item A.A.Petrukhin, V.V.Shestakov. Canad.J.Phys., {\bf 46} (1968) S377.
|
|---|
| 230 | \item Yu.M.Andreyev, L.B.Bezrukov, E.V.Bugaev. Phys. Atomic Nuclei, {\bf 57}
|
|---|
| 231 | (1994) 2066.
|
|---|
| 232 | \item Yu.M.Andreev, E.V.Bugaev, Phys. Rev. D, {\bf 55} (1997) 1233.
|
|---|
| 233 | \end{enumerate}
|
|---|
| 234 |
|
|---|
| 235 | \end{htmlonly}
|
|---|