| 1 | \section[Ionization]{Muon Ionization}
|
|---|
| 2 |
|
|---|
| 3 |
|
|---|
| 4 | The class {\it G4MuIonisation} provides the continuous energy loss due to
|
|---|
| 5 | ionization and simulates the 'discrete' part of the ionization, that is,
|
|---|
| 6 | delta rays produced by muons.
|
|---|
| 7 | Inside this class the following models are used:
|
|---|
| 8 | \begin{itemize}
|
|---|
| 9 | \item
|
|---|
| 10 | {\it G4BraggModel} (valid for protons with $T < 0.2 \;MeV$)
|
|---|
| 11 | \item
|
|---|
| 12 | {\it G4BetherBlochModel} (valid for protons with $0.2 \;MeV < T < 1\; GeV$)
|
|---|
| 13 | \item
|
|---|
| 14 | {\it G4MuBetherBlochModel} (valid for protons with $T > 1\; GeV$)
|
|---|
| 15 | \end{itemize}
|
|---|
| 16 | The limit energy $0.2\; MeV$ is equivalent to the proton limit energy $2 MeV$ because of
|
|---|
| 17 | scaling relation (\ref{enloss.sc}), which allows
|
|---|
| 18 | simulation for muons with energy below $1\; GeV$
|
|---|
| 19 | in the same way as for point-like hadrons with spin 1/2 described in the section \ref{en_loss}.
|
|---|
| 20 |
|
|---|
| 21 | For higher energies the {\it G4MuBetherBlochModel} is applied, in which
|
|---|
| 22 | leading radiative corrections are taken into account \cite{muion.br}.
|
|---|
| 23 | Simple analytical formula for the cross section, derived with the logarithmic
|
|---|
| 24 | are used. Calculation results appreciably differ from usual elastic $\mu -e$
|
|---|
| 25 | scattering in the region of high energy transfers $m_e << T < T_{max}$
|
|---|
| 26 | and give non-negligible correction to the total average energy loss of
|
|---|
| 27 | high-energy muons. The total cross section is written as following:
|
|---|
| 28 | \begin{equation}
|
|---|
| 29 | \label{muion.c}
|
|---|
| 30 | \sigma (E,\epsilon ) = \sigma_{BB}(E, \epsilon ) \left[ 1 + \frac{\alpha}{2\pi}
|
|---|
| 31 | ln\left( 1 + \frac{2\epsilon}{m_e} \right)
|
|---|
| 32 | ln\left(\frac{4m_e E(E - \epsilon )}{m_{\mu}^2( 2\epsilon + m_e) }\right) \right] ,
|
|---|
| 33 | \end{equation}
|
|---|
| 34 | here $\sigma(E,\epsilon)$ is the differential cross sections,
|
|---|
| 35 | $\sigma(E,\epsilon)_{BB}$ is the Bethe-Bloch cross section (\ref{hion.i}),
|
|---|
| 36 | $m_e$ is the electron mass, $m_{\mu}$ is the muon mass,
|
|---|
| 37 | $E$ is the muon energy, $\epsilon$
|
|---|
| 38 | is the energy transfer, $\epsilon = \omega + T$, where
|
|---|
| 39 | T is the electron kinetic energy and $\omega$ is the energy of radiative gamma.
|
|---|
| 40 |
|
|---|
| 41 | For computation of the truncated mean energy loss (\ref{comion.a}) the partial integration
|
|---|
| 42 | of the expression (\ref{muion.c}) is performed
|
|---|
| 43 | \begin{equation}
|
|---|
| 44 | \label{muion.d}
|
|---|
| 45 | S(E,\epsilon_{up}) = S_{BB}(E,\epsilon_{up}) + S_{RC}(E,\epsilon_{up}), \;\; \epsilon_{up} = min(\epsilon_{max},\epsilon_{cut}),
|
|---|
| 46 | \end{equation}
|
|---|
| 47 | where term $S_{BB}$ is the Bethe-Bloch truncated energy loss (\ref{hion.d}) for the interval
|
|---|
| 48 | of energy transfer $(0 - \epsilon_{up})$
|
|---|
| 49 | and term $S_{RC}$ is a correction due to radiative effects.
|
|---|
| 50 | The function become smooth after log-substitution and
|
|---|
| 51 | is computed by numerical integration
|
|---|
| 52 | \begin{equation}
|
|---|
| 53 | \label{muion.e}
|
|---|
| 54 | S_{RC}(E,\epsilon_{up}) =
|
|---|
| 55 | \int^{\ln\epsilon_{up}}_{\ln\epsilon_1}\epsilon^2(\sigma(E,\epsilon) - \sigma_{BB}(E, \epsilon))d(\ln\epsilon),
|
|---|
| 56 | \end{equation}
|
|---|
| 57 | where lower limit $\epsilon_1$ does not
|
|---|
| 58 | effect result of integration in first order and
|
|---|
| 59 | in the class {\it G4MuBetheBlochModel} the default value $\epsilon_1 = 100 keV$ is used.
|
|---|
| 60 |
|
|---|
| 61 | For computation of the discrete cross section (\ref{comion.b}) another substitution is used
|
|---|
| 62 | in order to perform numerical integration of a smooth function
|
|---|
| 63 | \begin{equation}
|
|---|
| 64 | \label{muion.f}
|
|---|
| 65 | \sigma(E) = \int^{1/\epsilon_{up}}_{1/\epsilon_{max}}\epsilon^2\sigma (E,\epsilon )d(1/\epsilon ).
|
|---|
| 66 | \end{equation}
|
|---|
| 67 | The sampling of energy transfer is performed between $1/\epsilon_{up}$ and $1/\epsilon_{max}$ using
|
|---|
| 68 | rejection constant for the function $\epsilon^2\sigma(E,\epsilon)$.
|
|---|
| 69 | After the successful sampling of the energy transfer, the direction
|
|---|
| 70 | of the scattered electron is generated with respect to the direction of the
|
|---|
| 71 | incident particle. The energy of radiative gamma is neglected.
|
|---|
| 72 | The azimuthal electron angle $\phi$ is generated isotropically.
|
|---|
| 73 | The polar angle $\theta$ is calculated from energy-momentum conservation.
|
|---|
| 74 | This information is used to calculate the energy and momentum of both
|
|---|
| 75 | scattered particles and to transform them into the {\em global} coordinate
|
|---|
| 76 | system.
|
|---|
| 77 |
|
|---|
| 78 | \subsection{Status of this document}
|
|---|
| 79 | 09.10.98 created by L. Urb\'an. \\
|
|---|
| 80 | 14.12.01 revised by M.Maire \\
|
|---|
| 81 | 30.11.02 re-worded by D.H. Wright \\
|
|---|
| 82 | 01.12.03 revised by V. Ivanchenko \\
|
|---|
| 83 | 22.06.07 rewritten by V. Ivanchenko \\
|
|---|
| 84 |
|
|---|
| 85 | \begin{latexonly}
|
|---|
| 86 |
|
|---|
| 87 | \begin{thebibliography}{99}
|
|---|
| 88 |
|
|---|
| 89 | \bibitem{muion.br}
|
|---|
| 90 | S.R.~Kelner, R.P.~Kokoulin, A.A.~Petrukhin,
|
|---|
| 91 | Phys. Atomic Nuclei 60 (1997) 576.
|
|---|
| 92 | \end{thebibliography}
|
|---|
| 93 |
|
|---|
| 94 | \end{latexonly}
|
|---|
| 95 |
|
|---|
| 96 | \begin{htmlonly}
|
|---|
| 97 |
|
|---|
| 98 | \subsection{Bibliography}
|
|---|
| 99 |
|
|---|
| 100 | \begin{enumerate}
|
|---|
| 101 | \item
|
|---|
| 102 | S.R.~Kelner, R.P.~Kokoulin, A.A.~Petrukhin,
|
|---|
| 103 | Phys. Atomic Nuclei 60 (1997) 576.
|
|---|
| 104 | \end{enumerate}
|
|---|
| 105 |
|
|---|
| 106 | \end{htmlonly}
|
|---|