source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/muons/muion.tex @ 1358

Last change on this file since 1358 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 4.4 KB
Line 
1\section[Ionization]{Muon Ionization}
2 
3
4The class {\it G4MuIonisation} provides the continuous energy loss due to
5ionization and simulates the 'discrete' part of the ionization, that is,
6delta rays produced by muons.
7Inside this class the following models are used:
8\begin{itemize}
9\item 
10{\it G4BraggModel} (valid for protons with $T < 0.2 \;MeV$)
11\item
12{\it G4BetherBlochModel} (valid for protons with $0.2 \;MeV < T < 1\; GeV$)
13\item
14{\it G4MuBetherBlochModel} (valid for protons with $T > 1\; GeV$)
15\end{itemize}
16The limit energy $0.2\; MeV$ is equivalent to the proton limit energy $2 MeV$ because of
17scaling relation  (\ref{enloss.sc}), which allows
18simulation for muons with energy below $1\; GeV$
19in the same way as for point-like hadrons with spin 1/2 described in the section \ref{en_loss}.
20
21For higher energies the {\it G4MuBetherBlochModel} is applied, in which
22leading radiative corrections are taken into account \cite{muion.br}.
23Simple analytical formula for the cross section, derived with the logarithmic
24are used. Calculation results appreciably differ from usual elastic $\mu -e$
25scattering in the region of high energy transfers $m_e << T < T_{max}$
26and give non-negligible correction to the total average energy loss of
27high-energy muons. The total cross section is written as following:
28\begin{equation}
29\label{muion.c}
30\sigma (E,\epsilon ) = \sigma_{BB}(E, \epsilon ) \left[ 1 + \frac{\alpha}{2\pi}
31ln\left( 1 + \frac{2\epsilon}{m_e} \right)
32ln\left(\frac{4m_e E(E - \epsilon )}{m_{\mu}^2( 2\epsilon + m_e) }\right) \right] ,
33\end{equation}
34here $\sigma(E,\epsilon)$ is the differential cross sections,
35$\sigma(E,\epsilon)_{BB}$ is the Bethe-Bloch cross section (\ref{hion.i}),
36$m_e$ is the electron mass, $m_{\mu}$ is the muon mass,
37$E$ is the muon energy, $\epsilon$
38is the energy transfer, $\epsilon = \omega + T$, where
39T is the electron kinetic energy and $\omega$ is the energy of radiative gamma. 
40
41For computation of the truncated mean energy loss (\ref{comion.a}) the partial integration
42of the expression (\ref{muion.c}) is performed
43\begin{equation}
44\label{muion.d}
45S(E,\epsilon_{up}) = S_{BB}(E,\epsilon_{up}) + S_{RC}(E,\epsilon_{up}), \;\; \epsilon_{up} = min(\epsilon_{max},\epsilon_{cut}),
46\end{equation}
47where term $S_{BB}$ is the Bethe-Bloch truncated energy loss (\ref{hion.d}) for the interval
48of energy transfer $(0 - \epsilon_{up})$
49and term $S_{RC}$ is a correction due to radiative effects.
50The function become smooth after  log-substitution and
51is computed by numerical integration
52\begin{equation}
53\label{muion.e}
54S_{RC}(E,\epsilon_{up}) =
55\int^{\ln\epsilon_{up}}_{\ln\epsilon_1}\epsilon^2(\sigma(E,\epsilon) - \sigma_{BB}(E, \epsilon))d(\ln\epsilon),
56\end{equation}
57where lower limit $\epsilon_1$ does not
58effect result of integration in first order and
59in the class {\it G4MuBetheBlochModel} the default value $\epsilon_1 = 100 keV$ is used.
60
61For computation of the discrete cross section (\ref{comion.b}) another substitution is used
62in order to perform numerical integration of a smooth function
63\begin{equation}
64\label{muion.f}
65\sigma(E) = \int^{1/\epsilon_{up}}_{1/\epsilon_{max}}\epsilon^2\sigma (E,\epsilon )d(1/\epsilon ).
66\end{equation}
67The sampling of energy transfer is performed between $1/\epsilon_{up}$ and $1/\epsilon_{max}$ using
68rejection constant for the function $\epsilon^2\sigma(E,\epsilon)$.
69After the successful sampling of the energy transfer, the direction
70of the scattered electron is generated with respect to the direction of the
71incident particle. The energy of radiative gamma is neglected.
72The azimuthal electron angle $\phi$ is generated isotropically.
73The polar angle $\theta$ is calculated from energy-momentum conservation.
74This information is used to calculate the energy and momentum of both
75scattered particles and to transform them into the {\em global} coordinate
76system.
77
78\subsection{Status of this document}
79  09.10.98  created by L. Urb\'an. \\
80  14.12.01  revised by M.Maire \\
81  30.11.02  re-worded by D.H. Wright \\
82  01.12.03 revised by V. Ivanchenko     \\
83  22.06.07 rewritten by V. Ivanchenko     \\
84
85\begin{latexonly}
86
87\begin{thebibliography}{99}
88
89\bibitem{muion.br}
90S.R.~Kelner, R.P.~Kokoulin, A.A.~Petrukhin,
91Phys. Atomic Nuclei 60 (1997) 576.
92\end{thebibliography}
93
94\end{latexonly}
95
96\begin{htmlonly}
97
98\subsection{Bibliography}
99
100\begin{enumerate}
101\item 
102S.R.~Kelner, R.P.~Kokoulin, A.A.~Petrukhin,
103Phys. Atomic Nuclei 60 (1997) 576.
104\end{enumerate}
105
106\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.