source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/muons/munu.tex @ 1292

Last change on this file since 1292 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 10.2 KB
Line 
1
2\section{Muon Photonuclear Interaction}
3
4%muon photonuclear interaction
5%(not deep inelastic scattering)
6
7The inelastic interaction of muons with nuclei is important at high muon
8energies ($E \geq 10$~ GeV), and at relatively high energy transfers $\nu$ 
9($\nu / E \geq 10^{-2}$).  It is especially important for light materials
10and for the study of detector response to high energy muons, muon propagation
11and muon-induced hadronic background.  The average energy loss for this
12process increases almost lineary with energy, and at TeV muon energies
13constitutes about 10\% of the energy loss rate.\\
14
15\noindent 
16The main contribution to the cross section $\sigma ( E, \nu $) and energy
17loss comes from the low $Q^{2}$--region ( $Q^{2} \ll 1~{\rm GeV}^{2}$).
18In this domain, many simplifications can be made in the theoretical
19consideration of the process in order to obtain convenient and simple
20formulae for the cross section.  Most widely used are the expressions given
21by Borog and Petrukhin \cite{munu.bor75}, and Bezrukov and Bugaev
22\cite{munu.bez81}.  Results from these authors agree within 10\% for the
23differential cross section and within about 5\% for the average energy loss,
24provided the same photonuclear cross section, $\sigma_{\gamma N}$, is used
25in the calculations.
26
27\subsection{Differential Cross Section}
28
29The Borog and Petrukhin formula for the cross section is based on:
30\begin{itemize}
31\item Hand's formalism \cite{munu.hand63} for inelastic muon scattering,
32\item a semi-phenomenological inelastic form factor, which is a Vector
33Dominance Model with parameters estimated from experimental data, and
34\item nuclear shadowing effects with a reasonable theoretical
35parameterization \cite{munu.brod72}.
36\end{itemize}
37
38\noindent
39For $E\geq10$~GeV, the Borog and Petrukhin cross section
40\mbox{(${\rm cm}^{2}$/g GeV)}, differential in transferred energy, is
41\begin{equation}
42\label{munu.1}
43\sigma(E,\nu ) = \Psi(\nu ) \Phi( E,v ) ,
44\end{equation}
45
46\begin{equation}
47\label{munu.2}
48\Psi(\nu) = \frac{\alpha}{\pi} \frac{A_{\rm eff} N_{AV}}{A}
49 \sigma_{\gamma N}(\nu) \frac{1}{\nu} ,
50\end{equation}
51
52\begin{equation}
53\label{munu.3}
54 \Phi(E,v) = v-1 + \left[1-v+\frac{v^{2}}{2} 
55 \left(1+\frac{2\mu^{2}}{\Lambda^{2}}\right)\right]
56 \ln\frac{\displaystyle\frac{E^{2}(1-v)}{\mu^{2}}\left(1+\displaystyle\frac{\mu^{2}
57v^{2}}{\Lambda^{2}(1-v)}\right)}
58{\displaystyle
591+\frac{Ev}{\Lambda}\left(1+\frac{\Lambda}{2M}+\frac{Ev}{\Lambda}\right)},
60\end{equation}
61%
62where $\nu$ is the energy lost by the muon, $v = \nu /$E, and $\mu$ and $M$ 
63are the muon and nucleon (proton) masses, respectively.  $\Lambda$ is a
64Vector Dominance Model parameter in the inelastic form factor which is
65estimated to be $\Lambda^{2}=0.4 \;{\rm GeV}^{2}$. \\
66
67\noindent
68For $A_{\rm eff}$, which includes the effect of nuclear shadowing, the
69parameterization \cite{munu.brod72}
70\begin{equation}
71\label{munu.4}
72  A_{\rm eff} = 0.22 A + 0.78 A^{0.89}
73\end{equation}
74is chosen. \\
75
76\noindent
77A reasonable choice for the photonuclear cross section, $\sigma_{\gamma N}$,
78is the parameterization obtained by Caldwell et al. \cite{munu.cald79}
79based on the experimental data on photoproduction by real photons:
80\begin{equation}
81\label{munu.5}
82 \sigma_{\gamma N} = ( 49.2 + 11.1 \ln K + 151.8/ \sqrt{K} ) \cdot 10^{-30} {\rm cm}^{2} \quad K~~\mbox{in GeV} .
83\end{equation}
84The upper limit of the transferred energy is taken to be
85$\nu_{\rm max}$ = $E - M/2$.  The choice of the lower limit $\nu_{\rm min}$ 
86is less certain since the formula \ref{munu.1}, \ref{munu.2}, \ref{munu.3} is
87not valid in this domain.  Fortunately, $\nu_{\rm min}$ influences the total
88cross section only logarithmically and has no practical effect on the average
89energy loss for high energy muons.  Hence, a reasonable choice for
90$\nu_{\rm min}$ is 0.2~GeV. \\
91
92\noindent
93In Eq.~\ref{munu.2}, $A_{\rm eff}$ and $\sigma_{\gamma N}$ appear as
94factors.  A more rigorous theoretical approach may lead to some dependence
95of the shadowing effect on $\nu$ and $E$;  therefore in the differential
96cross section and in the sampling procedure, this possibility is forseen
97and the atomic weight $A$ of the element is kept as an explicit parameter. \\
98       
99\noindent         
100The total cross section is obtained by integration of Eq.~\ref{munu.1} 
101between $\nu_{\min}$ and $\nu_{\max}$;  to facilitate the computation,
102a $\ln (\nu )$--substitution is used.
103
104\subsection{Sampling}
105
106\subsubsection{Sampling the Transferred Energy}
107
108The muon photonuclear interaction is always treated as a discrete process
109with its mean free path determined by the total cross section.  The total
110cross section is obtained by the numerical integration of Eq.~\ref{munu.1} 
111within the limits $\nu_{\min}$ and $\nu_{\max}$.  The process is considered
112for muon energies $1 \rm{GeV} \leq T \leq 1000 \rm{PeV}$, though it should
113be noted that above 100~TeV the extrapolation (Eq.~\ref{munu.5}) of
114$\sigma_{\gamma N}$ may be too crude. \\
115
116\noindent 
117The random transferred energy, $\nu_{p}$, is found from the numerical
118solution of the equation :
119\begin{equation}
120\label{munu.6}
121P = \int_{\nu_{p}}^{\nu_{\rm max}}  \sigma(E,\nu ) d \nu 
122\left/ \int_{\nu_{\rm min}}^{\nu_{\rm max}} \sigma(E,\nu) d\nu \right. .
123\end{equation}
124%
125Here $P$ is the random uniform probability, with $\nu_{\rm max}= E-M/2$
126and $\nu_{\rm min}=0.2$~GeV. \\ 
127
128\noindent
129For fast sampling, the solution of Eq.~\ref{munu.6} is tabulated at
130initialization time.  During simulation, the sampling method returns a value
131of $\nu_{p}$ corresponding to the probability $P$, by interpolating the
132table.  The tabulation routine uses Eq.~\ref{munu.1} for the differential
133cross section.  The table contains values of
134\begin{equation}
135\label{munu.7}
136 x_p = \ln (\nu_p / \nu_{\rm max})/\ln (\nu_{\rm max}/\nu_{\rm min}),
137\end{equation}
138calculated at each point on a three-dimensional grid with constant spacings
139in $\ln (T)$, $\ln(A)$ and $\ln(P)$ .  The sampling uses linear
140interpolations in $\ln(T)$ and $\ln(A)$, and a cubic interpolation in
141$\ln(P)$.  Then the transferred energy is calculated from the inverse
142transformation of Eq.~\ref{munu.7},
143$\nu_{p}=\nu_{\rm max}(\nu_{\rm max}/\nu_{\rm min})^{x_{p}}$.
144Tabulated parameters reproduce the theoretical dependence to better than
1452\% for $T > 1$~GeV and better than 1\% for $ T >10$~GeV.
146
147\subsubsection{Sampling the Muon Scattering Angle}
148
149According to Refs.~\cite{munu.bor75, munu.bor77}, in the region where the
150four-momentum transfer is not very large ($Q^{2} \leq 3 {\rm GeV}^{2}$),
151the $t$~--~dependence of the cross section may be described as:
152\begin{equation}
153\label{munu.8}
154 \frac{d \sigma }{dt} \sim  \frac{(1- t / t_{\rm max}) }
155{t (1+t/ \nu^{2})(1+t/m^{2}_{0})} [(1-y)(1-t_{\rm min}/t)+y^{2}/2] ,
156\end{equation} 
157where $t$ is the square of the four-momentum transfer,
158$Q^{2} = 2 (EE' - PP'\cos\theta  - \mu^{2})$.  Also,
159$t_{\rm min} = (\mu y)^{2} / (1-y)$, $y=\nu /E$ and
160$t_{\rm max} = 2M\nu $$\nu = E-E'$ is the energy lost by the muon and
161$E$ is the total initial muon energy.  $M$ is the nucleon (proton) mass and
162$m_{0}^{2} \equiv \Lambda^{2} \simeq 0.4\;{\rm GeV}^{2}$ is
163a phenomenological parameter determing the behavior of the inelastic form
164factor.  Factors which depend weakly, or not at all, on $t$ are omitted. \\
165
166\noindent
167To simulate random $t$ and hence the random muon deflection angle, it is
168convenient to represent Eq.~\ref{munu.8} in the form :
169%
170\begin{equation}
171\label{munu.9}
172 \sigma( t ) \sim f(t) g(t),
173\end{equation}
174where
175\begin{eqnarray}
176\label{munu.10}
177f(t) = \frac{1}{t(1+ t/t_{1} )} , \\
178g(t) = \frac{1-t/t_{\max}}{1+t/t_{2}} \cdot
179\frac{(1-y)(1-t_{\min}/t)+y^{2}/2}
180{(1-y)+y^{2}/2}, \nonumber
181\end{eqnarray}
182and
183\begin{equation}
184\label{munu.11}
185 t_{1} = {\min} (\nu^{2}, m_{0}^{2}) \quad
186  t_{2} ={\max} (\nu^{2}, m_{0}^{2}) .
187\end{equation}
188 
189\noindent 
190$t_{P}$ is found analytically from Eq.~\ref{munu.10} :
191$$t_{P} = \frac{t_{\max}t_{1}}
192{\displaystyle(t_{\max}+t_{1})\left[\frac{t_{\max}(t_{\min}+t_{1})}
193{t_{\min}(t_{\max}+t_{1})}\right]^{P}-t_{\max}} ,
194$$ 
195%
196where $P$ is a random uniform number between 0 and 1, which is accepted with
197probability $g(t)$.  The conditions of Eq.~\ref{munu.11} make use of the
198symmetry between $\nu^{2}$ and $m_{0}^{2}$ in Eq.~\ref{munu.8} and allow
199increased selection efficiency, which is typically $\geq 0.7$.  The polar
200muon deflection angle $\theta$ can easily be found from
201\footnote{This convenient formula has been shown to the authors by
202D.A. Timashkov.}
203
204$$\sin^{2}(\theta /2) = \frac {t_{P} - t_{\rm min}}
205{4\,(EE'- \mu^{2}) - 2\,t_{\rm min}}.  $$
206The hadronic vertex is generated by the hadronic processes taking
207into account the four-momentum transfer.
208
209\subsection{Status of this document}
210
21112.10.98 created by R.Kokoulin, A.Rybin.\\
21218.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin. \\
21307.12.02 re-worded by D.H. Wright \\
21430.08.04 correction of eq. 8.24 (to 1/sqrt) from H. Araujo \\
215%
216
217\begin{latexonly}
218
219\begin{thebibliography}{99}
220
221\bibitem{munu.bor75} V.V.Borog and A.A.Petrukhin,
222               Proc. 14th Int.Conf. on Cosmic Rays, Munich,1975,
223               {\bf vol.6}, p.1949.
224\bibitem{munu.bez81} L.B.Bezrukov and E.V.Bugaev,
225               Sov. J. Nucl. Phys., {\bf 33}, 1981, p.635.
226\bibitem{munu.hand63} L.N.Hand. Phys. Rev., {\bf 129}, 1834 (1963).
227\bibitem{munu.brod72} S.J.Brodsky, F.E.Close and J.F.Gunion,
228                Phys. Rev. {\bf D6}, 177 (1972).
229\bibitem{munu.cald79} D.O. Caldwell et al.,
230               Phys. Rev. Lett., {\bf 42}, 553 (1979).
231\bibitem{munu.bor77} V.V.Borog, V.G.Kirillov-Ugryumov, A.A.Petrukhin,
232               Sov. J. Nucl. Phys., {\bf 25}, 1977, p.46.
233
234
235\end{thebibliography}
236
237\end{latexonly}
238
239\begin{htmlonly}
240
241\subsection{Bibliography}
242
243\begin{enumerate}
244\item V.V.Borog and A.A.Petrukhin,
245               Proc. 14th Int.Conf. on Cosmic Rays, Munich,1975,
246               {\bf vol.6}, p.1949.
247\item L.B.Bezrukov and E.V.Bugaev,
248               Sov. J. Nucl. Phys., {\bf 33}, 1981, p.635.
249\item L.N.Hand. Phys. Rev., {\bf 129}, 1834 (1963).
250\item S.J.Brodsky, F.E.Close and J.F.Gunion,
251                Phys. Rev. {\bf D6}, 177 (1972).
252\item D.O. Caldwell et al.,
253               Phys. Rev. Lett., {\bf 42}, 553 (1979).
254\item V.V.Borog, V.G.Kirillov-Ugryumov, A.A.Petrukhin,
255               Sov. J. Nucl. Phys., {\bf 25}, 1977, p.46.
256\end{enumerate}
257
258\end{htmlonly}
259
Note: See TracBrowser for help on using the repository browser.