| 1 |
|
|---|
| 2 | \section{Muon Photonuclear Interaction}
|
|---|
| 3 |
|
|---|
| 4 | %muon photonuclear interaction
|
|---|
| 5 | %(not deep inelastic scattering)
|
|---|
| 6 |
|
|---|
| 7 | The inelastic interaction of muons with nuclei is important at high muon
|
|---|
| 8 | energies ($E \geq 10$~ GeV), and at relatively high energy transfers $\nu$
|
|---|
| 9 | ($\nu / E \geq 10^{-2}$). It is especially important for light materials
|
|---|
| 10 | and for the study of detector response to high energy muons, muon propagation
|
|---|
| 11 | and muon-induced hadronic background. The average energy loss for this
|
|---|
| 12 | process increases almost lineary with energy, and at TeV muon energies
|
|---|
| 13 | constitutes about 10\% of the energy loss rate.\\
|
|---|
| 14 |
|
|---|
| 15 | \noindent
|
|---|
| 16 | The main contribution to the cross section $\sigma ( E, \nu $) and energy
|
|---|
| 17 | loss comes from the low $Q^{2}$--region ( $Q^{2} \ll 1~{\rm GeV}^{2}$).
|
|---|
| 18 | In this domain, many simplifications can be made in the theoretical
|
|---|
| 19 | consideration of the process in order to obtain convenient and simple
|
|---|
| 20 | formulae for the cross section. Most widely used are the expressions given
|
|---|
| 21 | by Borog and Petrukhin \cite{munu.bor75}, and Bezrukov and Bugaev
|
|---|
| 22 | \cite{munu.bez81}. Results from these authors agree within 10\% for the
|
|---|
| 23 | differential cross section and within about 5\% for the average energy loss,
|
|---|
| 24 | provided the same photonuclear cross section, $\sigma_{\gamma N}$, is used
|
|---|
| 25 | in the calculations.
|
|---|
| 26 |
|
|---|
| 27 | \subsection{Differential Cross Section}
|
|---|
| 28 |
|
|---|
| 29 | The Borog and Petrukhin formula for the cross section is based on:
|
|---|
| 30 | \begin{itemize}
|
|---|
| 31 | \item Hand's formalism \cite{munu.hand63} for inelastic muon scattering,
|
|---|
| 32 | \item a semi-phenomenological inelastic form factor, which is a Vector
|
|---|
| 33 | Dominance Model with parameters estimated from experimental data, and
|
|---|
| 34 | \item nuclear shadowing effects with a reasonable theoretical
|
|---|
| 35 | parameterization \cite{munu.brod72}.
|
|---|
| 36 | \end{itemize}
|
|---|
| 37 |
|
|---|
| 38 | \noindent
|
|---|
| 39 | For $E\geq10$~GeV, the Borog and Petrukhin cross section
|
|---|
| 40 | \mbox{(${\rm cm}^{2}$/g GeV)}, differential in transferred energy, is
|
|---|
| 41 | \begin{equation}
|
|---|
| 42 | \label{munu.1}
|
|---|
| 43 | \sigma(E,\nu ) = \Psi(\nu ) \Phi( E,v ) ,
|
|---|
| 44 | \end{equation}
|
|---|
| 45 |
|
|---|
| 46 | \begin{equation}
|
|---|
| 47 | \label{munu.2}
|
|---|
| 48 | \Psi(\nu) = \frac{\alpha}{\pi} \frac{A_{\rm eff} N_{AV}}{A}
|
|---|
| 49 | \sigma_{\gamma N}(\nu) \frac{1}{\nu} ,
|
|---|
| 50 | \end{equation}
|
|---|
| 51 |
|
|---|
| 52 | \begin{equation}
|
|---|
| 53 | \label{munu.3}
|
|---|
| 54 | \Phi(E,v) = v-1 + \left[1-v+\frac{v^{2}}{2}
|
|---|
| 55 | \left(1+\frac{2\mu^{2}}{\Lambda^{2}}\right)\right]
|
|---|
| 56 | \ln\frac{\displaystyle\frac{E^{2}(1-v)}{\mu^{2}}\left(1+\displaystyle\frac{\mu^{2}
|
|---|
| 57 | v^{2}}{\Lambda^{2}(1-v)}\right)}
|
|---|
| 58 | {\displaystyle
|
|---|
| 59 | 1+\frac{Ev}{\Lambda}\left(1+\frac{\Lambda}{2M}+\frac{Ev}{\Lambda}\right)},
|
|---|
| 60 | \end{equation}
|
|---|
| 61 | %
|
|---|
| 62 | where $\nu$ is the energy lost by the muon, $v = \nu /$E, and $\mu$ and $M$
|
|---|
| 63 | are the muon and nucleon (proton) masses, respectively. $\Lambda$ is a
|
|---|
| 64 | Vector Dominance Model parameter in the inelastic form factor which is
|
|---|
| 65 | estimated to be $\Lambda^{2}=0.4 \;{\rm GeV}^{2}$. \\
|
|---|
| 66 |
|
|---|
| 67 | \noindent
|
|---|
| 68 | For $A_{\rm eff}$, which includes the effect of nuclear shadowing, the
|
|---|
| 69 | parameterization \cite{munu.brod72}
|
|---|
| 70 | \begin{equation}
|
|---|
| 71 | \label{munu.4}
|
|---|
| 72 | A_{\rm eff} = 0.22 A + 0.78 A^{0.89}
|
|---|
| 73 | \end{equation}
|
|---|
| 74 | is chosen. \\
|
|---|
| 75 |
|
|---|
| 76 | \noindent
|
|---|
| 77 | A reasonable choice for the photonuclear cross section, $\sigma_{\gamma N}$,
|
|---|
| 78 | is the parameterization obtained by Caldwell et al. \cite{munu.cald79}
|
|---|
| 79 | based on the experimental data on photoproduction by real photons:
|
|---|
| 80 | \begin{equation}
|
|---|
| 81 | \label{munu.5}
|
|---|
| 82 | \sigma_{\gamma N} = ( 49.2 + 11.1 \ln K + 151.8/ \sqrt{K} ) \cdot 10^{-30} {\rm cm}^{2} \quad K~~\mbox{in GeV} .
|
|---|
| 83 | \end{equation}
|
|---|
| 84 | The upper limit of the transferred energy is taken to be
|
|---|
| 85 | $\nu_{\rm max}$ = $E - M/2$. The choice of the lower limit $\nu_{\rm min}$
|
|---|
| 86 | is less certain since the formula \ref{munu.1}, \ref{munu.2}, \ref{munu.3} is
|
|---|
| 87 | not valid in this domain. Fortunately, $\nu_{\rm min}$ influences the total
|
|---|
| 88 | cross section only logarithmically and has no practical effect on the average
|
|---|
| 89 | energy loss for high energy muons. Hence, a reasonable choice for
|
|---|
| 90 | $\nu_{\rm min}$ is 0.2~GeV. \\
|
|---|
| 91 |
|
|---|
| 92 | \noindent
|
|---|
| 93 | In Eq.~\ref{munu.2}, $A_{\rm eff}$ and $\sigma_{\gamma N}$ appear as
|
|---|
| 94 | factors. A more rigorous theoretical approach may lead to some dependence
|
|---|
| 95 | of the shadowing effect on $\nu$ and $E$; therefore in the differential
|
|---|
| 96 | cross section and in the sampling procedure, this possibility is forseen
|
|---|
| 97 | and the atomic weight $A$ of the element is kept as an explicit parameter. \\
|
|---|
| 98 |
|
|---|
| 99 | \noindent
|
|---|
| 100 | The total cross section is obtained by integration of Eq.~\ref{munu.1}
|
|---|
| 101 | between $\nu_{\min}$ and $\nu_{\max}$; to facilitate the computation,
|
|---|
| 102 | a $\ln (\nu )$--substitution is used.
|
|---|
| 103 |
|
|---|
| 104 | \subsection{Sampling}
|
|---|
| 105 |
|
|---|
| 106 | \subsubsection{Sampling the Transferred Energy}
|
|---|
| 107 |
|
|---|
| 108 | The muon photonuclear interaction is always treated as a discrete process
|
|---|
| 109 | with its mean free path determined by the total cross section. The total
|
|---|
| 110 | cross section is obtained by the numerical integration of Eq.~\ref{munu.1}
|
|---|
| 111 | within the limits $\nu_{\min}$ and $\nu_{\max}$. The process is considered
|
|---|
| 112 | for muon energies $1 \rm{GeV} \leq T \leq 1000 \rm{PeV}$, though it should
|
|---|
| 113 | be noted that above 100~TeV the extrapolation (Eq.~\ref{munu.5}) of
|
|---|
| 114 | $\sigma_{\gamma N}$ may be too crude. \\
|
|---|
| 115 |
|
|---|
| 116 | \noindent
|
|---|
| 117 | The random transferred energy, $\nu_{p}$, is found from the numerical
|
|---|
| 118 | solution of the equation :
|
|---|
| 119 | \begin{equation}
|
|---|
| 120 | \label{munu.6}
|
|---|
| 121 | P = \int_{\nu_{p}}^{\nu_{\rm max}} \sigma(E,\nu ) d \nu
|
|---|
| 122 | \left/ \int_{\nu_{\rm min}}^{\nu_{\rm max}} \sigma(E,\nu) d\nu \right. .
|
|---|
| 123 | \end{equation}
|
|---|
| 124 | %
|
|---|
| 125 | Here $P$ is the random uniform probability, with $\nu_{\rm max}= E-M/2$
|
|---|
| 126 | and $\nu_{\rm min}=0.2$~GeV. \\
|
|---|
| 127 |
|
|---|
| 128 | \noindent
|
|---|
| 129 | For fast sampling, the solution of Eq.~\ref{munu.6} is tabulated at
|
|---|
| 130 | initialization time. During simulation, the sampling method returns a value
|
|---|
| 131 | of $\nu_{p}$ corresponding to the probability $P$, by interpolating the
|
|---|
| 132 | table. The tabulation routine uses Eq.~\ref{munu.1} for the differential
|
|---|
| 133 | cross section. The table contains values of
|
|---|
| 134 | \begin{equation}
|
|---|
| 135 | \label{munu.7}
|
|---|
| 136 | x_p = \ln (\nu_p / \nu_{\rm max})/\ln (\nu_{\rm max}/\nu_{\rm min}),
|
|---|
| 137 | \end{equation}
|
|---|
| 138 | calculated at each point on a three-dimensional grid with constant spacings
|
|---|
| 139 | in $\ln (T)$, $\ln(A)$ and $\ln(P)$ . The sampling uses linear
|
|---|
| 140 | interpolations in $\ln(T)$ and $\ln(A)$, and a cubic interpolation in
|
|---|
| 141 | $\ln(P)$. Then the transferred energy is calculated from the inverse
|
|---|
| 142 | transformation of Eq.~\ref{munu.7},
|
|---|
| 143 | $\nu_{p}=\nu_{\rm max}(\nu_{\rm max}/\nu_{\rm min})^{x_{p}}$.
|
|---|
| 144 | Tabulated parameters reproduce the theoretical dependence to better than
|
|---|
| 145 | 2\% for $T > 1$~GeV and better than 1\% for $ T >10$~GeV.
|
|---|
| 146 |
|
|---|
| 147 | \subsubsection{Sampling the Muon Scattering Angle}
|
|---|
| 148 |
|
|---|
| 149 | According to Refs.~\cite{munu.bor75, munu.bor77}, in the region where the
|
|---|
| 150 | four-momentum transfer is not very large ($Q^{2} \leq 3 {\rm GeV}^{2}$),
|
|---|
| 151 | the $t$~--~dependence of the cross section may be described as:
|
|---|
| 152 | \begin{equation}
|
|---|
| 153 | \label{munu.8}
|
|---|
| 154 | \frac{d \sigma }{dt} \sim \frac{(1- t / t_{\rm max}) }
|
|---|
| 155 | {t (1+t/ \nu^{2})(1+t/m^{2}_{0})} [(1-y)(1-t_{\rm min}/t)+y^{2}/2] ,
|
|---|
| 156 | \end{equation}
|
|---|
| 157 | where $t$ is the square of the four-momentum transfer,
|
|---|
| 158 | $Q^{2} = 2 (EE' - PP'\cos\theta - \mu^{2})$. Also,
|
|---|
| 159 | $t_{\rm min} = (\mu y)^{2} / (1-y)$, $y=\nu /E$ and
|
|---|
| 160 | $t_{\rm max} = 2M\nu $. $\nu = E-E'$ is the energy lost by the muon and
|
|---|
| 161 | $E$ is the total initial muon energy. $M$ is the nucleon (proton) mass and
|
|---|
| 162 | $m_{0}^{2} \equiv \Lambda^{2} \simeq 0.4\;{\rm GeV}^{2}$ is
|
|---|
| 163 | a phenomenological parameter determing the behavior of the inelastic form
|
|---|
| 164 | factor. Factors which depend weakly, or not at all, on $t$ are omitted. \\
|
|---|
| 165 |
|
|---|
| 166 | \noindent
|
|---|
| 167 | To simulate random $t$ and hence the random muon deflection angle, it is
|
|---|
| 168 | convenient to represent Eq.~\ref{munu.8} in the form :
|
|---|
| 169 | %
|
|---|
| 170 | \begin{equation}
|
|---|
| 171 | \label{munu.9}
|
|---|
| 172 | \sigma( t ) \sim f(t) g(t),
|
|---|
| 173 | \end{equation}
|
|---|
| 174 | where
|
|---|
| 175 | \begin{eqnarray}
|
|---|
| 176 | \label{munu.10}
|
|---|
| 177 | f(t) = \frac{1}{t(1+ t/t_{1} )} , \\
|
|---|
| 178 | g(t) = \frac{1-t/t_{\max}}{1+t/t_{2}} \cdot
|
|---|
| 179 | \frac{(1-y)(1-t_{\min}/t)+y^{2}/2}
|
|---|
| 180 | {(1-y)+y^{2}/2}, \nonumber
|
|---|
| 181 | \end{eqnarray}
|
|---|
| 182 | and
|
|---|
| 183 | \begin{equation}
|
|---|
| 184 | \label{munu.11}
|
|---|
| 185 | t_{1} = {\min} (\nu^{2}, m_{0}^{2}) \quad
|
|---|
| 186 | t_{2} ={\max} (\nu^{2}, m_{0}^{2}) .
|
|---|
| 187 | \end{equation}
|
|---|
| 188 |
|
|---|
| 189 | \noindent
|
|---|
| 190 | $t_{P}$ is found analytically from Eq.~\ref{munu.10} :
|
|---|
| 191 | $$t_{P} = \frac{t_{\max}t_{1}}
|
|---|
| 192 | {\displaystyle(t_{\max}+t_{1})\left[\frac{t_{\max}(t_{\min}+t_{1})}
|
|---|
| 193 | {t_{\min}(t_{\max}+t_{1})}\right]^{P}-t_{\max}} ,
|
|---|
| 194 | $$
|
|---|
| 195 | %
|
|---|
| 196 | where $P$ is a random uniform number between 0 and 1, which is accepted with
|
|---|
| 197 | probability $g(t)$. The conditions of Eq.~\ref{munu.11} make use of the
|
|---|
| 198 | symmetry between $\nu^{2}$ and $m_{0}^{2}$ in Eq.~\ref{munu.8} and allow
|
|---|
| 199 | increased selection efficiency, which is typically $\geq 0.7$. The polar
|
|---|
| 200 | muon deflection angle $\theta$ can easily be found from
|
|---|
| 201 | \footnote{This convenient formula has been shown to the authors by
|
|---|
| 202 | D.A. Timashkov.}
|
|---|
| 203 |
|
|---|
| 204 | $$\sin^{2}(\theta /2) = \frac {t_{P} - t_{\rm min}}
|
|---|
| 205 | {4\,(EE'- \mu^{2}) - 2\,t_{\rm min}}. $$
|
|---|
| 206 | The hadronic vertex is generated by the hadronic processes taking
|
|---|
| 207 | into account the four-momentum transfer.
|
|---|
| 208 |
|
|---|
| 209 | \subsection{Status of this document}
|
|---|
| 210 |
|
|---|
| 211 | 12.10.98 created by R.Kokoulin, A.Rybin.\\
|
|---|
| 212 | 18.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin. \\
|
|---|
| 213 | 07.12.02 re-worded by D.H. Wright \\
|
|---|
| 214 | 30.08.04 correction of eq. 8.24 (to 1/sqrt) from H. Araujo \\
|
|---|
| 215 | %
|
|---|
| 216 |
|
|---|
| 217 | \begin{latexonly}
|
|---|
| 218 |
|
|---|
| 219 | \begin{thebibliography}{99}
|
|---|
| 220 |
|
|---|
| 221 | \bibitem{munu.bor75} V.V.Borog and A.A.Petrukhin,
|
|---|
| 222 | Proc. 14th Int.Conf. on Cosmic Rays, Munich,1975,
|
|---|
| 223 | {\bf vol.6}, p.1949.
|
|---|
| 224 | \bibitem{munu.bez81} L.B.Bezrukov and E.V.Bugaev,
|
|---|
| 225 | Sov. J. Nucl. Phys., {\bf 33}, 1981, p.635.
|
|---|
| 226 | \bibitem{munu.hand63} L.N.Hand. Phys. Rev., {\bf 129}, 1834 (1963).
|
|---|
| 227 | \bibitem{munu.brod72} S.J.Brodsky, F.E.Close and J.F.Gunion,
|
|---|
| 228 | Phys. Rev. {\bf D6}, 177 (1972).
|
|---|
| 229 | \bibitem{munu.cald79} D.O. Caldwell et al.,
|
|---|
| 230 | Phys. Rev. Lett., {\bf 42}, 553 (1979).
|
|---|
| 231 | \bibitem{munu.bor77} V.V.Borog, V.G.Kirillov-Ugryumov, A.A.Petrukhin,
|
|---|
| 232 | Sov. J. Nucl. Phys., {\bf 25}, 1977, p.46.
|
|---|
| 233 |
|
|---|
| 234 |
|
|---|
| 235 | \end{thebibliography}
|
|---|
| 236 |
|
|---|
| 237 | \end{latexonly}
|
|---|
| 238 |
|
|---|
| 239 | \begin{htmlonly}
|
|---|
| 240 |
|
|---|
| 241 | \subsection{Bibliography}
|
|---|
| 242 |
|
|---|
| 243 | \begin{enumerate}
|
|---|
| 244 | \item V.V.Borog and A.A.Petrukhin,
|
|---|
| 245 | Proc. 14th Int.Conf. on Cosmic Rays, Munich,1975,
|
|---|
| 246 | {\bf vol.6}, p.1949.
|
|---|
| 247 | \item L.B.Bezrukov and E.V.Bugaev,
|
|---|
| 248 | Sov. J. Nucl. Phys., {\bf 33}, 1981, p.635.
|
|---|
| 249 | \item L.N.Hand. Phys. Rev., {\bf 129}, 1834 (1963).
|
|---|
| 250 | \item S.J.Brodsky, F.E.Close and J.F.Gunion,
|
|---|
| 251 | Phys. Rev. {\bf D6}, 177 (1972).
|
|---|
| 252 | \item D.O. Caldwell et al.,
|
|---|
| 253 | Phys. Rev. Lett., {\bf 42}, 553 (1979).
|
|---|
| 254 | \item V.V.Borog, V.G.Kirillov-Ugryumov, A.A.Petrukhin,
|
|---|
| 255 | Sov. J. Nucl. Phys., {\bf 25}, 1977, p.46.
|
|---|
| 256 | \end{enumerate}
|
|---|
| 257 |
|
|---|
| 258 | \end{htmlonly}
|
|---|
| 259 |
|
|---|