| 1 |
|
|---|
| 2 | \section{Positron - Electron Pair Production by Muons}
|
|---|
| 3 |
|
|---|
| 4 | Direct electron pair production is one of the most important muon interaction
|
|---|
| 5 | processes. At TeV muon energies, the pair production cross section exceeds
|
|---|
| 6 | those of other muon interaction processes over a range of energy transfers
|
|---|
| 7 | between 100 MeV and 0.1$E_{\mu}$. The average energy loss for pair
|
|---|
| 8 | production increases linearly with muon energy, and in the TeV region this
|
|---|
| 9 | process contributes more than half the total energy loss rate.
|
|---|
| 10 |
|
|---|
| 11 | To adequately describe the number of pairs produced, the average energy loss
|
|---|
| 12 | and the stochastic energy loss distribution, the differential cross section
|
|---|
| 13 | behavior over an energy transfer range of
|
|---|
| 14 | 5~MeV~$\leq \epsilon \leq $~0.1~$\cdot E_{ \mu }$ must be accurately
|
|---|
| 15 | reproduced. This is is because the main contribution to the total cross
|
|---|
| 16 | section is given by transferred energies
|
|---|
| 17 | 5 MeV $\leq $ $\epsilon $ $\leq $ 0.01 $\cdot E_{ \mu }$, and because the
|
|---|
| 18 | contribution to the average muon energy loss is determined mostly in the
|
|---|
| 19 | region
|
|---|
| 20 | $0.001 \cdot E_{ \mu } \leq \epsilon \leq $ 0.1 $\cdot E_{\mu }$ .
|
|---|
| 21 |
|
|---|
| 22 | For a theoretical description of the cross section, the formulae of
|
|---|
| 23 | Ref.~\cite{pair.koko69} are used, along with a correction for finite nuclear
|
|---|
| 24 | size \cite{pair.koko71}. To take into account electron pair production in
|
|---|
| 25 | the field of atomic electrons, the inelastic atomic form factor contribution
|
|---|
| 26 | of Ref. \cite{pair.keln97} is also applied.
|
|---|
| 27 |
|
|---|
| 28 |
|
|---|
| 29 | \subsection{Differential Cross Section}
|
|---|
| 30 |
|
|---|
| 31 | \subsubsection{Definitions and Applicability}
|
|---|
| 32 |
|
|---|
| 33 | In the following discussion, these definitions are used:
|
|---|
| 34 |
|
|---|
| 35 | \begin{itemize}
|
|---|
| 36 | \item $m$ and $\mu$ are the electron and muon masses, respectively
|
|---|
| 37 | \item $E\equiv E_{\mu}$ is the total muon energy, $E = T +\mu $
|
|---|
| 38 | \item $Z$ and $A$ are the atomic number and weight of the material
|
|---|
| 39 | \item $\epsilon$ is the total pair energy or, approximately, the muon energy
|
|---|
| 40 | loss $(E-E')$
|
|---|
| 41 | \item $v = \epsilon/E$
|
|---|
| 42 | \item $e = 2.718\dots$
|
|---|
| 43 | \item $A^{\star} = 183$.
|
|---|
| 44 | \end{itemize}
|
|---|
| 45 |
|
|---|
| 46 | \noindent
|
|---|
| 47 | The formula for the differential cross section applies when:
|
|---|
| 48 |
|
|---|
| 49 | \begin{itemize}
|
|---|
| 50 | \item $E_{\mu} \gg \mu$ ($E \geq$ 2 -- 5 GeV) and
|
|---|
| 51 | $E_{\mu} \leq 10^{15}$ -- $10^{17} $ eV. If muon energies exceed this limit,
|
|---|
| 52 | the LPM (Landau Pomeranchuk Migdal) effect may become important, depending on
|
|---|
| 53 | the material
|
|---|
| 54 |
|
|---|
| 55 | \item the muon energy transfer $\epsilon$ lies between
|
|---|
| 56 | $\epsilon_{\rm min} = 4\,m$ and $\epsilon_{\rm max} = E_{\mu}- \frac{3 \sqrt{e}}{4}\,\mu \,Z^{1/3}$, although the formal lower limit is
|
|---|
| 57 | $\epsilon\gg 2\, m$, and the formal upper limit requires $E'_{\mu }\gg\mu$.
|
|---|
| 58 |
|
|---|
| 59 | \item $Z \leq$ 40 -- 50. For higher $Z$, the Coulomb correction is important
|
|---|
| 60 | but has not been sufficiently studied theoretically.
|
|---|
| 61 | \end{itemize}
|
|---|
| 62 |
|
|---|
| 63 | \subsubsection{Formulae}
|
|---|
| 64 |
|
|---|
| 65 | The differential cross section for electron pair production by muons
|
|---|
| 66 | $\sigma(Z,A,E,\epsilon)$ can be written as :
|
|---|
| 67 | \begin{equation}
|
|---|
| 68 | \label{mupair.a}
|
|---|
| 69 | \sigma(Z,A,E,\epsilon)=\frac{4}{3\pi}\,\frac{Z(Z+\zeta )}
|
|---|
| 70 | {A}\, N_{A}\,(\alpha r_{0})^{2}\, \frac{1-v}{\epsilon}
|
|---|
| 71 | \int_{0}^{\rho_{\rm max}}G(Z,E,v,\rho)\,d\rho ,
|
|---|
| 72 | \end{equation}
|
|---|
| 73 |
|
|---|
| 74 | \noindent
|
|---|
| 75 | where
|
|---|
| 76 | $$G(Z,E,v,\rho ) = \Phi_e + (m/\mu)^2 \Phi_{\mu} , $$
|
|---|
| 77 | $$\Phi_{e,\mu} = B_{e,\mu} L'_{e,\mu} $$ and
|
|---|
| 78 | $$\Phi_{e,\mu} = 0 \quad {\rm whenever} \quad \Phi_{e,\mu} < 0 . $$
|
|---|
| 79 |
|
|---|
| 80 | \noindent
|
|---|
| 81 | $B_{e}$ and $B_{\mu}$ do not depend on $Z,A$, and are given by
|
|---|
| 82 |
|
|---|
| 83 | $$B_{e}=[(2+\rho^{2})(1+\beta)+\xi(3+\rho^{2})]
|
|---|
| 84 | \ln\left(1+\frac{1}{\xi}\right)+\frac{1-\rho^{2}-\beta}{1+\xi}-(3+\rho^{2}) ; $$
|
|---|
| 85 | $$B_{e}\approx
|
|---|
| 86 | \frac{1}{2\xi}\,[(3-\rho^{2})+2\beta(1+\rho^{2})]\quad {\rm
|
|---|
| 87 | for}\quad\xi\geq 10^{3};$$
|
|---|
| 88 |
|
|---|
| 89 | $$B_{\mu}=\left[(1+\rho^{2})
|
|---|
| 90 | \left(1+\frac{3\beta}{2}
|
|---|
| 91 | \right)-\frac{1}{\xi}(1+2\beta)
|
|---|
| 92 | (1-\rho^{2})\right]\ln(1+\xi )
|
|---|
| 93 | $$
|
|---|
| 94 | $$
|
|---|
| 95 | +\frac{\xi(1-\rho^{2}-\beta)}{1+\xi}+
|
|---|
| 96 | (1+2\beta)(1-\rho^{2});$$
|
|---|
| 97 | $$B_{\mu}\approx\frac{\xi}{2}\,[(5-\rho^{2})+\beta(3+\rho^{2})]\quad{\rm
|
|---|
| 98 | for}\quad\xi\leq10^{-3}
|
|---|
| 99 | ;$$
|
|---|
| 100 |
|
|---|
| 101 | \noindent
|
|---|
| 102 | Also,
|
|---|
| 103 | % $B_{e},\:B_{\mu}$ do not depend on $\,Z,\:A$.
|
|---|
| 104 |
|
|---|
| 105 | $$\xi=\frac{\mu^{2} v^{2}}{4m^{2}}\, \frac{(1-\rho^{2})}{(1-v)};\quad
|
|---|
| 106 | \beta=\frac{v^{2}}{2(1-v)};$$
|
|---|
| 107 |
|
|---|
| 108 | $$L'_{e}=\ln\frac{A^{*}Z^{-1/3}\sqrt{(1+\xi)(1+Y_{e})}}
|
|---|
| 109 | {1+\displaystyle\frac{2m\sqrt{e}A^{*}Z^{-1/3}(1+\xi)(1+Y_{e})}{Ev(1-\rho^{2})}}
|
|---|
| 110 | $$
|
|---|
| 111 | $$
|
|---|
| 112 | -\frac{1}{2}\ln\left[1+\left(\frac{3mZ^{1/3}}{2\mu}\right)^{2}(1+\xi)(1+Y_{e})\right];
|
|---|
| 113 | $$
|
|---|
| 114 |
|
|---|
| 115 | $$L'_{\mu}=\ln\frac{(\mu/m)A^{*}Z^{-1/3}\sqrt{(1+1/\xi)(1+Y_{\mu})}}
|
|---|
| 116 | {1+\displaystyle\frac{2m\sqrt{e}A^{*}Z^{-1/3}(1+\xi)(1+Y_{\mu})}{Ev(1-\rho^{2})}}
|
|---|
| 117 | $$
|
|---|
| 118 | $$
|
|---|
| 119 | -\ln\left[\frac{3}{2}\,Z^{1/3}\sqrt{(1+1/\xi)(1+Y_{\mu})}\right].
|
|---|
| 120 | $$
|
|---|
| 121 | %
|
|---|
| 122 | For faster computing, the expressions for $L'_{e,\mu }$ are
|
|---|
| 123 | further algebraically transformed. The functions $L'_{e,\mu }$ include the
|
|---|
| 124 | nuclear size correction \cite{pair.koko71} in comparison with parameterization
|
|---|
| 125 | \cite{pair.koko69} :
|
|---|
| 126 | %
|
|---|
| 127 | $$Y_{e}=\frac{5-\rho^{2}+4\,\beta\,(1+\rho^{2})}
|
|---|
| 128 | {2(1+3\beta)\ln(3+{1}/{\xi})-\rho^{2}-2\beta(2-\rho^{2})} ;$$
|
|---|
| 129 |
|
|---|
| 130 | $$Y_{\mu}=\frac{4+\rho^{2}+3\,\beta\,(1+\rho^{2})}
|
|---|
| 131 | {(1+\rho^{2})(\frac{3}{2}+2\beta)\ln(3+\xi)+1-\frac{3}{2}\,\rho^{2}};$$
|
|---|
| 132 | %$Y_{e,\mu}$~--~ approximations (\cite{pair.koko69}); there is
|
|---|
| 133 | %a possibility that they will be improved , as well as corrections (second
|
|---|
| 134 | % terms) in $L_{e,\mu}$.
|
|---|
| 135 | %
|
|---|
| 136 | $$\rho_{\rm max}=[1-6\mu^{2}/E^{2}(1-v)]\sqrt{1-4m/Ev}.$$
|
|---|
| 137 |
|
|---|
| 138 | \subsubsection{Comment on the Calculation of the Integral $\int\!d\rho$ in
|
|---|
| 139 | Eq.~\ref{mupair.a}}
|
|---|
| 140 |
|
|---|
| 141 | The integral $\int\limits_{0}^{\rho_{\max}}G(Z,E,v,\rho)~d\rho$ is computed
|
|---|
| 142 | with the substitutions:
|
|---|
| 143 | \begin{eqnarray*}
|
|---|
| 144 | t&=& \ln(1-\rho),\\
|
|---|
| 145 | 1 - \rho &= &\exp(t),\\
|
|---|
| 146 | 1 + \rho& =& 2 - \exp(t),\\
|
|---|
| 147 | 1 - \rho^{2} &=&e^{t}\,(2-e^{t}).
|
|---|
| 148 | \end{eqnarray*}
|
|---|
| 149 |
|
|---|
| 150 | \noindent
|
|---|
| 151 | After that,
|
|---|
| 152 | \begin{equation}
|
|---|
| 153 | \label{mupair.b}
|
|---|
| 154 | \int_{0}^{\rho_{\rm max}}G(Z,E,v,\rho)~d\rho =
|
|---|
| 155 | \int_{t_{\rm min}}^{0}G(Z,E,v,\rho )\,e^{t}\,dt ,
|
|---|
| 156 | \end{equation}
|
|---|
| 157 |
|
|---|
| 158 | \noindent
|
|---|
| 159 | where
|
|---|
| 160 |
|
|---|
| 161 | $$t_{\rm
|
|---|
| 162 | min}=\ln\frac{\displaystyle\frac{4m}{\epsilon}+\frac{12\mu^{2}}{EE'}\left(1-\frac{4m}
|
|---|
| 163 | {\epsilon}\right)}
|
|---|
| 164 | {\displaystyle 1+\left(1-\frac{6\mu^{2}}{EE'}\right)\sqrt{1-\frac{4m}{\epsilon}}}.
|
|---|
| 165 | $$
|
|---|
| 166 |
|
|---|
| 167 | To compute the integral of Eq.~\ref{mupair.b} with an accuracy better than
|
|---|
| 168 | 0.5\%, Gaussian quadrature with $N=8$ points is sufficient.
|
|---|
| 169 |
|
|---|
| 170 | The function $\zeta(E,Z)$ in Eq.~\ref{mupair.a} serves to take into account
|
|---|
| 171 | the process on atomic electrons (inelastic atomic form factor contribution).
|
|---|
| 172 | To treat the energy loss balance correctly, the following approximation,
|
|---|
| 173 | which is an algebraic transformation of the expression in
|
|---|
| 174 | Ref.~\cite{pair.keln97}, is used:
|
|---|
| 175 |
|
|---|
| 176 | $$\zeta(E,Z)=\frac{\displaystyle 0.073\ln\frac{E/\mu}{
|
|---|
| 177 | 1+\gamma_{1}Z^{2/3}E/\mu}
|
|---|
| 178 | -0.26}
|
|---|
| 179 | {\displaystyle 0.058\ln\frac{E/\mu}{1+\gamma_{2}Z^{1/3}E/\mu}
|
|---|
| 180 | -0.14}; $$
|
|---|
| 181 | $$\zeta(E,Z)=0\quad\mbox{if the numerator is negative.}$$
|
|---|
| 182 |
|
|---|
| 183 | \noindent
|
|---|
| 184 | For E $\leq 35\,\mu, ~ \zeta(E,Z)=0$. Also
|
|---|
| 185 | $\gamma_{1}= 1.95\cdot 10^{-5} $ and $\gamma_{2}= 5.30\cdot 10^{-5} $.
|
|---|
| 186 |
|
|---|
| 187 | The above formulae make use of the Thomas-Fermi model which is not good
|
|---|
| 188 | enough for light elements. For hydrogen ($Z = 1$) the following parameters
|
|---|
| 189 | must be changed: \\
|
|---|
| 190 | $A^{*}=183 ~\Rightarrow ~202.4;$\\
|
|---|
| 191 | $\gamma_{1}= 1.95\cdot 10^{-5} ~\Rightarrow ~ 4.4\cdot 10^{-5};$\\
|
|---|
| 192 | $\gamma_{2}= 5.30\cdot 10^{-5} ~\Rightarrow ~4.8\cdot 10^{-5}.$\\
|
|---|
| 193 |
|
|---|
| 194 | \subsection{Total Cross Section and Restricted Energy Loss}
|
|---|
| 195 |
|
|---|
| 196 | If the user's cut for the energy transfer $\epsilon_{\rm cut}$ is
|
|---|
| 197 | greater than $\epsilon_{\min}$, the process is represented by
|
|---|
| 198 | continuous restricted energy loss for interactions with
|
|---|
| 199 | $\epsilon\le\epsilon_{\rm cut}$, and discrete collisions with
|
|---|
| 200 | $\epsilon>\epsilon_{\rm cut}$. Respective values of the total cross
|
|---|
| 201 | section and restricted energy loss rate are defined as:
|
|---|
| 202 | $$
|
|---|
| 203 | \sigma_{\rm tot}=\int_{\epsilon_{\rm cut}}^{\epsilon_{\max}}
|
|---|
| 204 | \sigma(E,\epsilon)\,d\epsilon;\quad
|
|---|
| 205 | (dE/dx)_{\rm restr}=\int_{\epsilon_{\min}}^{\epsilon_{\rm cut}}
|
|---|
| 206 | \epsilon\,\sigma(E,\epsilon)\,d\epsilon.
|
|---|
| 207 | $$
|
|---|
| 208 | For faster computing, $\ln\epsilon$ substitution and Gaussian quadratures are
|
|---|
| 209 | used.
|
|---|
| 210 |
|
|---|
| 211 | \subsection{Sampling of Positron - Electron Pair Production}
|
|---|
| 212 |
|
|---|
| 213 | The e$^+$e$^-$ pair energy $\epsilon_P$, is found numerically by solving the
|
|---|
| 214 | equation
|
|---|
| 215 | \begin{equation}
|
|---|
| 216 | \label{mupair.c}
|
|---|
| 217 | P = \int_{\epsilon_P}^{\epsilon_{\rm max}} \sigma (Z,A,T,\epsilon) d\epsilon
|
|---|
| 218 | \quad / \int_{cut}^{\epsilon_{\rm max}} \sigma (Z,A,T,\epsilon) d\epsilon
|
|---|
| 219 | \end{equation}
|
|---|
| 220 | or
|
|---|
| 221 | \begin{equation}
|
|---|
| 222 | \label{mupair.d}
|
|---|
| 223 | 1 - P = \int_{cut}^{\epsilon_P} \sigma (Z,A,T,\epsilon) d\epsilon
|
|---|
| 224 | \quad / \int_{cut}^{\epsilon_{\rm max}} \sigma (Z,A,T,\epsilon) d\epsilon
|
|---|
| 225 | \end{equation}
|
|---|
| 226 |
|
|---|
| 227 | To reach high sampling speed, solutions of Eqs.~\ref{mupair.c}, \ref{mupair.d}
|
|---|
| 228 | are tabulated at initialization time. Two 3-dimensional tables (referred to
|
|---|
| 229 | here as A and B) of $\epsilon_{P}(P,T,Z)$ are created, and then interpolation
|
|---|
| 230 | is used to sample $\epsilon_P$.
|
|---|
| 231 |
|
|---|
| 232 | \noindent
|
|---|
| 233 | The number and spacing of entries in the table are chosen as follows:
|
|---|
| 234 | \begin{itemize}
|
|---|
| 235 | \item a constant increment in $\ln T$ is chosen such that there are four
|
|---|
| 236 | points per decade in the range $T_{\rm min}- T_{\rm max}$. The default range
|
|---|
| 237 | of muon kinetic energies in Geant4 is $T=1\:{\rm GeV}-1000\:{\rm PeV}$.
|
|---|
| 238 |
|
|---|
| 239 | \item a constant increment in $\ln Z$ is chosen. The shape of the sampling
|
|---|
| 240 | distribution does depend on $Z$, but very weakly, so that eight points in the
|
|---|
| 241 | range $1\leq Z\leq 128$ are sufficient. There is practically no dependence
|
|---|
| 242 | on the atomic weight $A$.
|
|---|
| 243 |
|
|---|
| 244 | \item for probabilities $P \leq 0.5$, Eq.~\ref{mupair.c} is used and Table~A
|
|---|
| 245 | is computed with a constant increment in $\ln P$ in the range
|
|---|
| 246 | $10^{-7}\leq P \leq 0.5$. The number of points in $\ln P$ for Table~A is
|
|---|
| 247 | about 100.
|
|---|
| 248 |
|
|---|
| 249 | \item for $P \geq 0.5$, Eq.~\ref{mupair.d} is used and Table~B is computed
|
|---|
| 250 | with a constant increment in $\ln(1-P)$ in the range
|
|---|
| 251 | $10^{-5} \leq (1-P) \leq 0.5$. In this case 50 points are sufficient.
|
|---|
| 252 | \end{itemize}
|
|---|
| 253 |
|
|---|
| 254 | \noindent
|
|---|
| 255 | The values of $\ln (\epsilon_{P}-cut$) are stored in both Table~A and Table~B.
|
|---|
| 256 |
|
|---|
| 257 |
|
|---|
| 258 | To create the ``probability tables" for each $(T, Z)$ pair, the following
|
|---|
| 259 | procedure is used:
|
|---|
| 260 |
|
|---|
| 261 | \begin{itemize}
|
|---|
| 262 | \item a temporary table of $\sim$ 2000 values of
|
|---|
| 263 | $\epsilon \cdot \sigma(Z,A,T,\epsilon)$ is constructed with a constant
|
|---|
| 264 | increment ($\sim$ 0.02) in $\ln \epsilon$ in the range
|
|---|
| 265 | $(cut, \epsilon_{\max})$. $\epsilon$ is taken in the middle of the
|
|---|
| 266 | corresponding bin in $\ln \epsilon$.
|
|---|
| 267 |
|
|---|
| 268 | \item the accumulated cross sections
|
|---|
| 269 | $$\sigma_{1}=\int_{\ln\epsilon}^{\ln\epsilon_{\max}}
|
|---|
| 270 | \epsilon \, \sigma (Z,A,T,\epsilon)\, d (\ln\epsilon) $$
|
|---|
| 271 | and
|
|---|
| 272 | $$\sigma_{2}=\int_{\ln(cut)}^{\ln\epsilon}
|
|---|
| 273 | \epsilon \, \sigma (Z,A,T,\epsilon)\, d (\ln\epsilon ) $$
|
|---|
| 274 |
|
|---|
| 275 | are calculated by summing the temporary table over the values above
|
|---|
| 276 | $\ln \epsilon$ (for $\sigma_1$) and below $\ln \epsilon$ (for $\sigma_2$)
|
|---|
| 277 | and then normalizing to obtain the accumulated probability functions.
|
|---|
| 278 |
|
|---|
| 279 | \item finally, values of $\ln(\epsilon_{P} - cut $) for corresponding values
|
|---|
| 280 | of $\ln P$ and $\ln (1-P)$ are calculated by linear interpolation of the
|
|---|
| 281 | above accumulated probabilities to form Tables A and B. The monotonic
|
|---|
| 282 | behavior of the accumulated cross sections is very useful in speeding up
|
|---|
| 283 | the interpolation procedure.
|
|---|
| 284 |
|
|---|
| 285 | \end{itemize}
|
|---|
| 286 |
|
|---|
| 287 | The random transferred energy corresponding to a probability $P$, is then
|
|---|
| 288 | found by linear interpolation in $\ln Z$ and $\ln T$, and a cubic
|
|---|
| 289 | interpolation in $\ln P$ for Table A or in $\ln (1-P)$ for Table B.
|
|---|
| 290 | For $P \leq 10^{-7}$ and $(1-P) \leq 10^{-5}$, linear extrapolation using
|
|---|
| 291 | the entries at the edges of the tables may be safely used. Electron pair
|
|---|
| 292 | energy is related to the auxiliary variable
|
|---|
| 293 | $x = \ln (\epsilon_{P} - cut)$ found by the trivial interpolation
|
|---|
| 294 | $\epsilon_{P} = e^{x} + cut$.
|
|---|
| 295 |
|
|---|
| 296 | Similar to muon bremsstrahlung (section \ref{secmubrem}), this sampling
|
|---|
| 297 | algorithm does not re-initialize the tables for user cuts greater than
|
|---|
| 298 | $cut_{min}$. Instead, the probability variable is redefined as
|
|---|
| 299 | $$ P' = P \sigma_{\rm tot}(cut_{user}) / \sigma_{\rm tot}(cut_{min}),$$
|
|---|
| 300 | and $P'$ is used for sampling.
|
|---|
| 301 |
|
|---|
| 302 | In the simulation of the final state, the muon deflection angle (which is
|
|---|
| 303 | of the order of $m/E$) is neglected. The procedure for sampling the energy
|
|---|
| 304 | partition between $e^+$ and $e^-$ and their emission angles is similar to
|
|---|
| 305 | that used for the $\gamma \to e^+\,e^-$ conversion.
|
|---|
| 306 |
|
|---|
| 307 | \subsection{Status of this document}
|
|---|
| 308 |
|
|---|
| 309 | 12.10.98 created by R.Kokoulin and A.Rybin\\
|
|---|
| 310 | 18.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin\\
|
|---|
| 311 | 27.01.03 re-written by D.H. Wright
|
|---|
| 312 |
|
|---|
| 313 | \begin{latexonly}
|
|---|
| 314 |
|
|---|
| 315 | \begin{thebibliography}{99}
|
|---|
| 316 |
|
|---|
| 317 | \bibitem{pair.koko69} R.P.Kokoulin and A.A.Petrukhin,
|
|---|
| 318 | Proc. 11th Intern. Conf. on Cosmic Rays, Budapest, 1969
|
|---|
| 319 | [Acta Phys. Acad. Sci. Hung.,{\bf 29, Suppl.4},
|
|---|
| 320 | p.277, 1970].
|
|---|
| 321 |
|
|---|
| 322 | \bibitem{pair.koko71} R.P.Kokoulin and A.A.Petrukhin,
|
|---|
| 323 | Proc. 12th Int. Conf. on Cosmic Rays, Hobart, 1971,
|
|---|
| 324 | {\bf vol.6}, p.2436.
|
|---|
| 325 |
|
|---|
| 326 | \bibitem{pair.keln97} S.R.Kelner, Phys. Atomic Nuclei,
|
|---|
| 327 | {\bf 61} (1998) 448.
|
|---|
| 328 |
|
|---|
| 329 | \end{thebibliography}
|
|---|
| 330 |
|
|---|
| 331 | \end{latexonly}
|
|---|
| 332 |
|
|---|
| 333 | \begin{htmlonly}
|
|---|
| 334 |
|
|---|
| 335 | \subsection{Bibliography}
|
|---|
| 336 |
|
|---|
| 337 | \begin{enumerate}
|
|---|
| 338 | \item R.P.Kokoulin and A.A.Petrukhin,
|
|---|
| 339 | Proc. 11th Intern. Conf. on Cosmic Rays, Budapest, 1969
|
|---|
| 340 | [Acta Phys. Acad. Sci. Hung.,{\bf 29, Suppl.4}, p.277, 1970].
|
|---|
| 341 |
|
|---|
| 342 | \item R.P.Kokoulin and A.A.Petrukhin,
|
|---|
| 343 | Proc. 12th Int. Conf. on Cosmic Rays, Hobart, 1971, {\bf vol.6}, p.2436.
|
|---|
| 344 |
|
|---|
| 345 | \item S.R.Kelner, Phys. Atomic Nuclei, {\bf 61} (1998) 448.
|
|---|
| 346 | \end{enumerate}
|
|---|
| 347 |
|
|---|
| 348 | \end{htmlonly}
|
|---|