\section{Positron - Electron Annihilation into Muon - Anti-muon} The class {\tt G4AnnihiToMuPair} simulates the electromagnetic production of muon pairs by the annihilation of high-energy positrons with atomic electrons. Details of the implementation are given below and can also be found in Ref. \cite{AnnihiToMuPair}. \subsection{Total Cross Section} The annihilation of positrons and target electrons producing muon pairs in the final state (${\rm e}^+{\rm e}^- \to \mu^+\mu^-$) may give an appreciable contribution to the total number of muons produced in high-energy electromagnetic cascades. The threshold positron energy in the laboratory system for this process with the target electron at rest is \begin{equation}\label{e0} E_{\rm th}=2m_\mu^2/m_e-m_e\approx 43.69\:{\rm GeV}\,, \end{equation} where $m_\mu$ and $m_e$ are the muon and electron masses, respectively. The total cross section for the process on the electron is \begin{equation}\label{e1} \sigma=\frac{\pi\,r_\mu^2} 3\, \xi\left(1+\frac\xi2\right) \sqrt{1-\xi}\,, \end{equation} where $r_\mu=r_e\, m_e/m_\mu$ is the classical muon radius, $\xi=E_{\rm th}/E$, and $E$ is the total positron energy in the laboratory frame. In Eq.\,\ref{e1}, approximations are made that utilize the inequality $m_e^2\ll m_\mu^2$. \begin{figure}[htbp] \center \includegraphics[scale=0.8]{electromagnetic/standard/AnnihiToMuPair1.eps} \caption{Total cross section for the process ${\rm e}^+{\rm e}^- \rightarrow \mu^+\mu^-$ as a function of the positron energy $E$ in the laboratory system.} \label{plot:AnnihiToMuPair1} \end{figure} \noindent The cross section as a function of the positron energy $E$ is shown in Fig.\ref{plot:AnnihiToMuPair1}. It has a maximum at $E = 1.396 \, E_{\rm th}$ and the value at the maximum is $\sigma_{\max}=0.5426\,r_\mu^2 = 1.008\,\mu{\rm b}$. \subsection{Sampling of Energies and Angles} It is convenient to simulate the muon kinematic parameters in the center-of-mass (c.m.) system, and then to convert into the laboratory frame. The energies of all particles are the same in the c.m. frame and equal to \begin{equation}\label{e2} E_{\rm cm}=\sqrt{\frac12\,m_e(E+m_e)}\,. \end{equation} The muon momenta in the c.m. frame are $P_{\rm cm}=\sqrt{E_{\rm cm}^2-m_\mu^2}$. In what follows, let the cosine of the angle between the c.m. momenta of the $\mu^+$ and $e^+$ be denoted as $x=\cos\theta_{\rm cm}$ . From the differential cross section it is easy to derive that, apart from normalization, the distribution in $x$ is described by \begin{equation}\label{e3} f(x)\,d x=(1+\xi+x^2\,(1-\xi))\,d x\,, \quad -1\le x \le1\,. \end{equation} The value of this function is contained in the interval $(1+\xi)\le f(x)\le 2$ and the generation of $x$ is straightforward using the rejection technique. Fig.\,\ref{plot:AnnihiToMuPair2} shows both generated and analytic distributions. \begin{figure}[htpb] \center \includegraphics[scale=.8]{electromagnetic/standard/AnnihiToMuPair2.eps} \caption{Generated histograms with $10^6$ entries each and the expected $\cos\theta_{\rm cm}$ distributions (dashed lines) at $E=50$ and 500\,GeV positron energy in the lab frame. The asymptotic $1+\cos\theta_{\rm cm}^2$ distribution valid for $E \rightarrow \infty$ is shown as dotted line.} \label{plot:AnnihiToMuPair2} \end{figure} The transverse momenta of the $\mu^+$ and $\mu^-$ particles are the same, both in the c.m. and the lab frame, and their absolute values are equal to \begin{equation}\label{perp} P_\perp=P_{\rm cm} \, \sin\theta_{\rm cm}=P_{\rm cm} \, \sqrt{1-x^2}\,. \end{equation} The energies and longitudinal components of the muon momenta in the lab system may be obtained by means of a Lorentz transformation. The velocity and Lorentz factor of the center-of-mass in the lab frame may be written as \begin{equation}\label{e5} \beta=\sqrt{\frac{E-m_e}{E+m_e}}\,,\quad \gamma\equiv\frac1{\sqrt{1-\beta^2}}= \sqrt{\frac{E+m_e}{2 m_e}} = \frac{E_{\rm cm}}{m_e}\,. \end{equation} The laboratory energies and longitudinal components of the momenta of the positive and negative muons may then be obtained: \begin{eqnarray} \label{e6} E_+&=&\gamma\,(E_{\rm cm}+x \, \beta \,P_{\rm cm})\,,\quad P_{+_\parallel}=\gamma\,(\beta E_{\rm cm} + x \, P_{\rm cm})\,, \\ \label{e7} E_-&=&\gamma\,(E_{\rm cm}-x \, \beta \,P_{\rm cm})\,,\quad P_{-_\parallel}=\gamma\,(\beta E_{\rm cm} -x \, P_{\rm cm})\,. \end{eqnarray} Finally, for the vectors of the muon momenta one obtains: \begin{eqnarray} \label{e8} {\bf P}_+&=&(+P_\perp\cos\varphi ,+P_\perp \sin\varphi,P_{+_\parallel})\,,\\ \label{e9} {\bf P}_-&=&(-P_\perp\cos\varphi, -P_\perp\sin\varphi,P_{-_\parallel})\,, \end{eqnarray} where $\varphi$ is a random azimuthal angle chosen between 0 and $2\,\pi$. The $z$-axis is directed along the momentum of the initial positron in the lab frame. The maximum and minimum energies of the muons are given by \begin{equation}\label{e10} E_{\max}\approx\frac12\,E\left(1+\sqrt{1-\xi}\right)\,, \end{equation} \begin{equation}\label{e11} E_{\min}\approx\frac12\,E\left(1-\sqrt{1-\xi}\right)= \frac{\displaystyle E_{\rm th}}{\displaystyle 2\left(1+\sqrt{1-\xi} \right)}\,. \end{equation} The fly-out polar angles of the muons are approximately \begin{equation}\label{e12} \theta_+\approx P_{{}\perp}/P_{+_\parallel},\quad \theta_-\approx P_{{}\perp}/P_{-_\parallel}\,; \end{equation} the maximal angle $\displaystyle\theta_{\max}\approx\frac{m_e}{m_\mu}\, \sqrt{1-\xi}\,$ is always small compared to 1. \medskip \subsection*{Validity} The process described is assumed to be purely electromagnetic. It is based on virtual $\gamma$ exchange, and the $Z$-boson exchange and $\gamma - Z$ interference processes are neglected. The $Z$-pole corresponds to a positron energy of $E = M_Z^2 / 2 m_e = 8136\,{\rm TeV}$. The validity of the current implementation is therefore restricted to initial positron energies of less than about 1000\,TeV. \subsection{Status of this document} 05.02.03 created by H.Burkhardt \\ 14.04.03 minor re-wording by D.H. Wright \begin{latexonly} \begin{thebibliography}{99} \bibitem{AnnihiToMuPair} H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in annihilation of high-energy positrons with resting electrons,'' CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003. \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in annihilation of high-energy positrons with resting electrons,'' CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003. \end{enumerate} \end{htmlonly}