| 1 |
|
|---|
| 2 | \section{Positron - Electron Annihilation into Muon - Anti-muon}
|
|---|
| 3 |
|
|---|
| 4 | The class {\tt G4AnnihiToMuPair} simulates the electromagnetic production
|
|---|
| 5 | of muon pairs by the annihilation of high-energy positrons with atomic
|
|---|
| 6 | electrons. Details of the implementation are given below and can also be
|
|---|
| 7 | found in Ref. \cite{AnnihiToMuPair}.
|
|---|
| 8 |
|
|---|
| 9 | \subsection{Total Cross Section}
|
|---|
| 10 |
|
|---|
| 11 | The annihilation of positrons and target electrons producing muon pairs in
|
|---|
| 12 | the final state (${\rm e}^+{\rm e}^- \to \mu^+\mu^-$) may give an
|
|---|
| 13 | appreciable contribution to the total number of muons produced in
|
|---|
| 14 | high-energy electromagnetic cascades. The threshold positron energy in the
|
|---|
| 15 | laboratory system for this process with the target electron at rest is
|
|---|
| 16 | \begin{equation}\label{e0}
|
|---|
| 17 | E_{\rm th}=2m_\mu^2/m_e-m_e\approx 43.69\:{\rm GeV}\,,
|
|---|
| 18 | \end{equation}
|
|---|
| 19 | where $m_\mu$ and $m_e$ are the muon and electron masses, respectively.
|
|---|
| 20 | The total cross section for the process on the electron is
|
|---|
| 21 | \begin{equation}\label{e1}
|
|---|
| 22 | \sigma=\frac{\pi\,r_\mu^2} 3\, \xi\left(1+\frac\xi2\right)
|
|---|
| 23 | \sqrt{1-\xi}\,,
|
|---|
| 24 | \end{equation}
|
|---|
| 25 | where $r_\mu=r_e\, m_e/m_\mu$ is the classical muon radius,
|
|---|
| 26 | $\xi=E_{\rm th}/E$, and $E$ is the total positron energy in the laboratory
|
|---|
| 27 | frame. In Eq.\,\ref{e1}, approximations are made that utilize the
|
|---|
| 28 | inequality $m_e^2\ll m_\mu^2$.
|
|---|
| 29 |
|
|---|
| 30 | \begin{figure}[htbp]
|
|---|
| 31 | \center
|
|---|
| 32 | \includegraphics[scale=0.8]{electromagnetic/standard/AnnihiToMuPair1.eps}
|
|---|
| 33 | \caption{Total cross section for the process
|
|---|
| 34 | ${\rm e}^+{\rm e}^- \rightarrow \mu^+\mu^-$ as a function of the positron
|
|---|
| 35 | energy $E$ in the laboratory system.}
|
|---|
| 36 | \label{plot:AnnihiToMuPair1}
|
|---|
| 37 | \end{figure}
|
|---|
| 38 | \noindent
|
|---|
| 39 | The cross section as a function of the positron energy $E$ is shown in
|
|---|
| 40 | Fig.\ref{plot:AnnihiToMuPair1}. It has a maximum at
|
|---|
| 41 | $E = 1.396 \, E_{\rm th}$ and the value at the maximum is
|
|---|
| 42 | $\sigma_{\max}=0.5426\,r_\mu^2 = 1.008\,\mu{\rm b}$.
|
|---|
| 43 |
|
|---|
| 44 | \subsection{Sampling of Energies and Angles}
|
|---|
| 45 |
|
|---|
| 46 | It is convenient to simulate the muon kinematic parameters in the
|
|---|
| 47 | center-of-mass (c.m.) system, and then to convert into the laboratory
|
|---|
| 48 | frame.
|
|---|
| 49 |
|
|---|
| 50 | The energies of all particles are the same in the c.m. frame and equal to
|
|---|
| 51 | \begin{equation}\label{e2}
|
|---|
| 52 | E_{\rm cm}=\sqrt{\frac12\,m_e(E+m_e)}\,.
|
|---|
| 53 | \end{equation}
|
|---|
| 54 | The muon momenta in the c.m. frame are
|
|---|
| 55 | $P_{\rm cm}=\sqrt{E_{\rm cm}^2-m_\mu^2}$. In what follows, let the cosine
|
|---|
| 56 | of the angle between the c.m. momenta of the $\mu^+$ and $e^+$ be denoted as
|
|---|
| 57 | $x=\cos\theta_{\rm cm}$ .
|
|---|
| 58 |
|
|---|
| 59 | From the differential cross section it is easy to derive that, apart from
|
|---|
| 60 | normalization, the distribution in $x$ is described by
|
|---|
| 61 | \begin{equation}\label{e3}
|
|---|
| 62 | f(x)\,d x=(1+\xi+x^2\,(1-\xi))\,d x\,, \quad -1\le x \le1\,.
|
|---|
| 63 | \end{equation}
|
|---|
| 64 | The value of this function is contained in the interval
|
|---|
| 65 | $(1+\xi)\le f(x)\le 2$ and the generation of $x$ is straightforward using
|
|---|
| 66 | the rejection technique. Fig.\,\ref{plot:AnnihiToMuPair2} shows both
|
|---|
| 67 | generated and analytic distributions.
|
|---|
| 68 | \begin{figure}[htpb]
|
|---|
| 69 | \center
|
|---|
| 70 | \includegraphics[scale=.8]{electromagnetic/standard/AnnihiToMuPair2.eps}
|
|---|
| 71 | \caption{Generated histograms with $10^6$ entries each and the expected
|
|---|
| 72 | $\cos\theta_{\rm cm}$ distributions (dashed lines) at $E=50$ and 500\,GeV
|
|---|
| 73 | positron energy in the lab frame. The asymptotic
|
|---|
| 74 | $1+\cos\theta_{\rm cm}^2$ distribution valid for $E \rightarrow \infty$ is
|
|---|
| 75 | shown as dotted line.}
|
|---|
| 76 | \label{plot:AnnihiToMuPair2}
|
|---|
| 77 | \end{figure}
|
|---|
| 78 |
|
|---|
| 79 | The transverse momenta of the $\mu^+$ and $\mu^-$ particles are the same,
|
|---|
| 80 | both in the c.m. and the lab frame, and their absolute values are equal to
|
|---|
| 81 | \begin{equation}\label{perp}
|
|---|
| 82 | P_\perp=P_{\rm cm} \, \sin\theta_{\rm cm}=P_{\rm cm} \, \sqrt{1-x^2}\,.
|
|---|
| 83 | \end{equation}
|
|---|
| 84 | The energies and longitudinal components of the muon momenta in the
|
|---|
| 85 | lab system may be obtained by means of a Lorentz transformation. The
|
|---|
| 86 | velocity and Lorentz factor of the center-of-mass in the lab frame may be
|
|---|
| 87 | written as
|
|---|
| 88 | \begin{equation}\label{e5}
|
|---|
| 89 | \beta=\sqrt{\frac{E-m_e}{E+m_e}}\,,\quad \gamma\equiv\frac1{\sqrt{1-\beta^2}}=
|
|---|
| 90 | \sqrt{\frac{E+m_e}{2 m_e}} = \frac{E_{\rm cm}}{m_e}\,.
|
|---|
| 91 | \end{equation}
|
|---|
| 92 | The laboratory energies and longitudinal components of the momenta of the
|
|---|
| 93 | positive and negative muons may then be obtained:
|
|---|
| 94 | \begin{eqnarray}
|
|---|
| 95 | \label{e6}
|
|---|
| 96 | E_+&=&\gamma\,(E_{\rm cm}+x \, \beta \,P_{\rm cm})\,,\quad
|
|---|
| 97 | P_{+_\parallel}=\gamma\,(\beta E_{\rm cm} + x \, P_{\rm cm})\,, \\
|
|---|
| 98 | \label{e7}
|
|---|
| 99 | E_-&=&\gamma\,(E_{\rm cm}-x \, \beta \,P_{\rm cm})\,,\quad
|
|---|
| 100 | P_{-_\parallel}=\gamma\,(\beta E_{\rm cm} -x \, P_{\rm cm})\,.
|
|---|
| 101 | \end{eqnarray}
|
|---|
| 102 | Finally, for the vectors of the muon momenta one obtains:
|
|---|
| 103 | \begin{eqnarray}
|
|---|
| 104 | \label{e8}
|
|---|
| 105 | {\bf P}_+&=&(+P_\perp\cos\varphi ,+P_\perp \sin\varphi,P_{+_\parallel})\,,\\
|
|---|
| 106 | \label{e9}
|
|---|
| 107 | {\bf P}_-&=&(-P_\perp\cos\varphi,
|
|---|
| 108 | -P_\perp\sin\varphi,P_{-_\parallel})\,,
|
|---|
| 109 | \end{eqnarray}
|
|---|
| 110 | where $\varphi$ is a random azimuthal angle chosen between 0 and $2\,\pi$.
|
|---|
| 111 | The $z$-axis is directed along the momentum of the initial positron in the
|
|---|
| 112 | lab frame.
|
|---|
| 113 |
|
|---|
| 114 | The maximum and minimum energies of the muons are given by
|
|---|
| 115 | \begin{equation}\label{e10}
|
|---|
| 116 | E_{\max}\approx\frac12\,E\left(1+\sqrt{1-\xi}\right)\,,
|
|---|
| 117 | \end{equation}
|
|---|
| 118 | \begin{equation}\label{e11}
|
|---|
| 119 | E_{\min}\approx\frac12\,E\left(1-\sqrt{1-\xi}\right)=
|
|---|
| 120 | \frac{\displaystyle
|
|---|
| 121 | E_{\rm th}}{\displaystyle 2\left(1+\sqrt{1-\xi} \right)}\,.
|
|---|
| 122 | \end{equation}
|
|---|
| 123 | The fly-out polar angles of the muons are approximately
|
|---|
| 124 | \begin{equation}\label{e12}
|
|---|
| 125 | \theta_+\approx P_{{}\perp}/P_{+_\parallel},\quad \theta_-\approx
|
|---|
| 126 | P_{{}\perp}/P_{-_\parallel}\,;
|
|---|
| 127 | \end{equation}
|
|---|
| 128 | the maximal angle $\displaystyle\theta_{\max}\approx\frac{m_e}{m_\mu}\,
|
|---|
| 129 | \sqrt{1-\xi}\,$ is always small compared to 1.
|
|---|
| 130 | \medskip
|
|---|
| 131 |
|
|---|
| 132 | \subsection*{Validity}
|
|---|
| 133 |
|
|---|
| 134 | The process described is assumed to be purely electromagnetic. It is
|
|---|
| 135 | based on virtual $\gamma$ exchange, and the $Z$-boson exchange and
|
|---|
| 136 | $\gamma - Z$ interference processes are neglected. The $Z$-pole corresponds
|
|---|
| 137 | to a positron energy of $E = M_Z^2 / 2 m_e = 8136\,{\rm TeV}$.
|
|---|
| 138 | The validity of the current implementation is therefore restricted to
|
|---|
| 139 | initial positron energies of less than about 1000\,TeV.
|
|---|
| 140 |
|
|---|
| 141 | \subsection{Status of this document}
|
|---|
| 142 | 05.02.03 created by H.Burkhardt \\
|
|---|
| 143 | 14.04.03 minor re-wording by D.H. Wright
|
|---|
| 144 |
|
|---|
| 145 | \begin{latexonly}
|
|---|
| 146 |
|
|---|
| 147 | \begin{thebibliography}{99}
|
|---|
| 148 |
|
|---|
| 149 | \bibitem{AnnihiToMuPair}
|
|---|
| 150 | H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in
|
|---|
| 151 | annihilation of high-energy positrons with resting electrons,''
|
|---|
| 152 | CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003.
|
|---|
| 153 |
|
|---|
| 154 | \end{thebibliography}
|
|---|
| 155 |
|
|---|
| 156 | \end{latexonly}
|
|---|
| 157 |
|
|---|
| 158 | \begin{htmlonly}
|
|---|
| 159 |
|
|---|
| 160 | \subsection{Bibliography}
|
|---|
| 161 |
|
|---|
| 162 | \begin{enumerate}
|
|---|
| 163 |
|
|---|
| 164 | \item H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in
|
|---|
| 165 | annihilation of high-energy positrons with resting electrons,''
|
|---|
| 166 | CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003.
|
|---|
| 167 |
|
|---|
| 168 | \end{enumerate}
|
|---|
| 169 |
|
|---|
| 170 | \end{htmlonly}
|
|---|