source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/AnnihiToMuPair.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 6.5 KB
Line 
1
2\section{Positron - Electron Annihilation into Muon - Anti-muon}
3
4The class {\tt G4AnnihiToMuPair} simulates the electromagnetic production
5of muon pairs by the annihilation of high-energy positrons with atomic
6electrons.  Details of the implementation are given below and can also be
7found in Ref. \cite{AnnihiToMuPair}.
8
9\subsection{Total Cross Section}
10
11The annihilation of positrons and target electrons producing muon pairs in
12the final state (${\rm e}^+{\rm e}^- \to \mu^+\mu^-$) may give an
13appreciable contribution to the total number of muons produced in
14high-energy electromagnetic cascades.  The threshold positron energy in the
15laboratory system for this process with the target electron at rest is
16\begin{equation}\label{e0}
17E_{\rm th}=2m_\mu^2/m_e-m_e\approx 43.69\:{\rm GeV}\,,
18\end{equation}
19where $m_\mu$ and $m_e$ are the muon and electron masses, respectively.
20The total cross section for the process on the electron is
21\begin{equation}\label{e1}
22\sigma=\frac{\pi\,r_\mu^2} 3\, \xi\left(1+\frac\xi2\right)
23\sqrt{1-\xi}\,,
24\end{equation}
25where $r_\mu=r_e\, m_e/m_\mu$ is the classical muon radius,
26$\xi=E_{\rm th}/E$, and $E$ is the total positron energy in the laboratory
27frame.  In Eq.\,\ref{e1}, approximations are made that utilize the
28inequality $m_e^2\ll m_\mu^2$.
29
30\begin{figure}[htbp]
31\center
32\includegraphics[scale=0.8]{electromagnetic/standard/AnnihiToMuPair1.eps}
33\caption{Total cross section for the process
34${\rm e}^+{\rm e}^- \rightarrow \mu^+\mu^-$ as a function of the positron
35energy $E$ in the laboratory system.}
36\label{plot:AnnihiToMuPair1}
37\end{figure}
38\noindent
39The cross section as a function of the positron energy $E$ is shown in
40Fig.\ref{plot:AnnihiToMuPair1}.  It has a maximum at
41$E = 1.396 \, E_{\rm th}$ and the value at the maximum is
42$\sigma_{\max}=0.5426\,r_\mu^2 = 1.008\,\mu{\rm b}$.
43
44\subsection{Sampling of Energies and Angles}
45
46It is convenient to simulate the muon kinematic parameters in the
47center-of-mass (c.m.) system, and then to convert into the laboratory
48frame.
49
50The energies of all particles are the same in the c.m. frame and equal to
51\begin{equation}\label{e2}
52E_{\rm cm}=\sqrt{\frac12\,m_e(E+m_e)}\,.
53\end{equation}
54The muon momenta in the c.m. frame are
55$P_{\rm cm}=\sqrt{E_{\rm cm}^2-m_\mu^2}$.  In what follows, let the cosine
56of the angle between the c.m. momenta of the $\mu^+$ and $e^+$ be denoted as
57$x=\cos\theta_{\rm cm}$ .
58
59From the differential cross section it is easy to derive that, apart from
60normalization, the distribution in $x$ is described by
61\begin{equation}\label{e3}
62f(x)\,d x=(1+\xi+x^2\,(1-\xi))\,d x\,, \quad -1\le x \le1\,.
63\end{equation}
64The value of this function is contained in the interval
65$(1+\xi)\le f(x)\le 2$ and the generation of $x$ is straightforward using
66the rejection technique.  Fig.\,\ref{plot:AnnihiToMuPair2} shows both
67generated and analytic distributions.
68\begin{figure}[htpb]
69\center
70\includegraphics[scale=.8]{electromagnetic/standard/AnnihiToMuPair2.eps}
71\caption{Generated histograms with $10^6$ entries each and the expected
72$\cos\theta_{\rm cm}$ distributions (dashed lines) at $E=50$ and 500\,GeV
73positron energy in the lab frame.  The asymptotic
74$1+\cos\theta_{\rm cm}^2$ distribution valid for $E \rightarrow \infty$ is
75shown as dotted line.}
76\label{plot:AnnihiToMuPair2}
77\end{figure}
78
79The transverse momenta of the $\mu^+$ and $\mu^-$ particles are the same,
80both in the c.m. and the lab frame, and their absolute values are equal to
81\begin{equation}\label{perp}
82P_\perp=P_{\rm cm} \, \sin\theta_{\rm cm}=P_{\rm cm} \, \sqrt{1-x^2}\,.
83\end{equation}
84The energies and longitudinal components of the muon momenta in the
85lab system may be obtained by means of a Lorentz transformation.  The
86velocity and Lorentz factor of the center-of-mass in the lab frame may be
87written as
88\begin{equation}\label{e5}
89\beta=\sqrt{\frac{E-m_e}{E+m_e}}\,,\quad \gamma\equiv\frac1{\sqrt{1-\beta^2}}=
90\sqrt{\frac{E+m_e}{2 m_e}} = \frac{E_{\rm cm}}{m_e}\,.
91\end{equation}
92The laboratory energies and longitudinal components of the momenta of the
93positive and negative muons may then be obtained:
94\begin{eqnarray}
95\label{e6}
96E_+&=&\gamma\,(E_{\rm cm}+x \, \beta \,P_{\rm cm})\,,\quad
97P_{+_\parallel}=\gamma\,(\beta E_{\rm cm} + x \, P_{\rm cm})\,, \\
98\label{e7}
99E_-&=&\gamma\,(E_{\rm cm}-x \, \beta \,P_{\rm cm})\,,\quad
100P_{-_\parallel}=\gamma\,(\beta E_{\rm cm} -x \, P_{\rm cm})\,.
101\end{eqnarray}
102Finally, for the vectors of the muon momenta one obtains:
103\begin{eqnarray}
104\label{e8}
105{\bf P}_+&=&(+P_\perp\cos\varphi ,+P_\perp \sin\varphi,P_{+_\parallel})\,,\\
106\label{e9}
107{\bf P}_-&=&(-P_\perp\cos\varphi,
108-P_\perp\sin\varphi,P_{-_\parallel})\,,
109\end{eqnarray}
110where $\varphi$ is a random azimuthal angle chosen between 0 and $2\,\pi$.
111The $z$-axis is directed along the momentum of the initial positron in the
112lab frame.
113
114The maximum and minimum energies of the muons are given by
115\begin{equation}\label{e10}
116E_{\max}\approx\frac12\,E\left(1+\sqrt{1-\xi}\right)\,,
117\end{equation}
118\begin{equation}\label{e11}
119E_{\min}\approx\frac12\,E\left(1-\sqrt{1-\xi}\right)=
120\frac{\displaystyle
121E_{\rm th}}{\displaystyle 2\left(1+\sqrt{1-\xi} \right)}\,.
122\end{equation}
123The fly-out polar angles of the muons are approximately
124\begin{equation}\label{e12}
125\theta_+\approx P_{{}\perp}/P_{+_\parallel},\quad \theta_-\approx
126P_{{}\perp}/P_{-_\parallel}\,;
127\end{equation}
128the maximal angle $\displaystyle\theta_{\max}\approx\frac{m_e}{m_\mu}\,
129\sqrt{1-\xi}\,$ is always small compared to 1.
130\medskip
131
132\subsection*{Validity}
133
134The process described is assumed to be purely electromagnetic.  It is
135based on virtual $\gamma$ exchange, and the $Z$-boson exchange and
136$\gamma - Z$ interference processes are neglected.  The $Z$-pole corresponds
137to a positron energy of $E = M_Z^2 / 2 m_e = 8136\,{\rm TeV}$.
138The validity of the current implementation is therefore restricted to
139initial positron energies of less than about 1000\,TeV.
140
141\subsection{Status of this document}
14205.02.03 created by H.Burkhardt \\
14314.04.03 minor re-wording by D.H. Wright
144
145\begin{latexonly}
146
147\begin{thebibliography}{99}
148
149\bibitem{AnnihiToMuPair}
150H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in
151annihilation of high-energy positrons with resting electrons,''
152CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003.
153
154\end{thebibliography}
155
156\end{latexonly}
157
158\begin{htmlonly}
159
160\subsection{Bibliography}
161
162\begin{enumerate}
163
164\item H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in
165annihilation of high-energy positrons with resting electrons,''
166CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003.
167
168\end{enumerate}
169
170\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.