source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/MuPgen.tex @ 1222

Last change on this file since 1222 was 1222, checked in by garnier, 15 years ago

CVS update

File size: 25.9 KB
Line 
1\section[Gamma Conversion into a Muon - Anti-mu Pair]
2 {Gamma Conversion into a Muon - Anti-muon Pair}
3
4The class {\tt G4GammaConversionToMuons} simulates the process of gamma
5conversion into muon pairs.  Given the photon energy and $Z$ and $A$ of the
6material in which the photon converts, the probability for the conversions
7to take place is calculated according to a parameterized total cross section.
8Next, the sharing of the photon energy between the $\mu^+$ and $\mu^-$ is
9determined.  Finally, the directions of the muons are generated.  Details of
10the implementation are given below and can be also found in\,\cite{MuPgen}.
11
12\subsection{Cross Section and Energy Sharing}
13In the field of the nucleus, muon pair production on atomic electrons,
14$\gamma+e\to e+\mu^+ +\mu^-$, has a threshold of
15$2m_\mu(m_\mu+m_e)/m_e\approx 43.9\;{\rm GeV}$ .
16%hbu check in MuonBkg.C  in fact 43.905 GeV
17Up to several hundred GeV this process has a much lower cross section than
18the corresponding process on the nucleus.  At higher energies, the cross
19section on atomic electrons represents a correction of $\sim 1/Z$ to the
20total cross section.
21
22For the approximately elastic scattering considered here, momentum, but no
23energy, is transferred to the nucleon.  The photon energy is fully shared
24by the two muons according to
25\begin{equation}
26E_\gamma = E_\mu^+ + E_\mu^-
27\end{equation}
28or in terms of energy fractions
29\[ x_+ = \frac{E_\mu^+}{E_\gamma}, \qquad x_- = \frac{E_\mu^-}{E_\gamma}, \qquad x_+ + x_- = 1\;.
30\]
31The differential cross section for electromagnetic pair creation of muons in
32terms of the energy fractions of the muons is
33\begin{equation}
34\frac{d\sigma}{d x_+} = 4 \, \alpha \, Z^2 \, r_c^2
35\left(1-\frac43\,x_+x_-\right)\log(W)\;,
36\label{eq:dSigxPlus}
37\end{equation}
38where $Z$ is the charge of the nucleus, $r_c$ is the classical radius of the
39particles which are pair produced (here muons) and
40\begin{equation}
41W = W_\infty \;
42\frac{1+(D_n\sqrt{e}-2)\,\delta\,/m_\mu}{1+B \, Z^{-1/3}\, \sqrt e \,\delta\,/m_e}
43\label{eq:W}
44\end{equation}
45where
46\[
47W_\infty = \frac{B \, Z^{-1/3}}{D_n} \, \frac{m_\mu}{m_e} \qquad
48\delta = \frac{m_\mu^2}{2\,E_\gamma\,x_+x_-} \qquad 
49\sqrt{e}=1.6487\dots .
50\]
51\begin{eqnarray}
52\mbox{For hydrogen} \qquad B=202.4 \qquad D_n=&1.49 & \nonumber\\
53\mbox{and for all other nuclei} \qquad B=183 \qquad D_n=&1.54 \, A^{0.27}. & 
54\end{eqnarray}
55These formulae are obtained from the differential cross section for muon
56bremsstrahlung \cite{Kelner:1995hu} by means of crossing relations.  The
57formulae take into account the screening of the field of the nucleus by the
58atomic electrons in the Thomas-Fermi model, as well as the finite size of
59the nucleus, which is essential for the problem under consideration.
60%
61The above parameterization gives good results for $E_\gamma \gg m_\mu$.  The
62fact that it is approximate close to threshold is of little practical
63importance.  Close to threshold, the cross section is small and the few low
64energy muons produced will not travel very far.  The cross section
65calculated from Eq.\,(\ref{eq:dSigxPlus}) is positive for
66$E_\gamma > 4 m_\mu$ and
67\begin{equation}
68x_{\rm min} \leq x \leq x_{\rm max} \quad {\rm with} \quad
69x_{\rm min} = \frac12 - \sqrt{\frac{1}{4}-\frac{m_\mu}{E_\gamma}} \qquad
70x_{\rm max} = \frac12 + \sqrt{\frac{1}{4}-\frac{m_\mu}{E_\gamma}}\;,
71\end{equation}
72except for very asymmetric pair-production, close to threshold, which can
73easily be taken care of by explicitly setting $\sigma = 0$ whenever
74$\sigma < 0$.
75
76Note that the differential cross section is symmetric in $x_+$ and $x_-$ and
77that
78\[ x_+ x_- = x - x^2 \] 
79where $x$ stands for either $x_+$ or $x_-$.  By defining a constant
80\begin{equation}
81\sigma_0 = 4 \, \alpha \, Z^2 \, r_c^2 \log(W_\infty)\;
82\label{eq:sigma0}
83\end{equation}
84the differential cross section Eq.\,(\ref{eq:dSigxPlus}) can be rewritten
85as a normalized and symmetric as function of $x$:
86\begin{equation}
87\frac{1}{\sigma_0} \, \frac{d\sigma}{dx} = \left[ 1-\frac43 \,(x - x^2) \right]
88\, \frac{\log W}{\log W_\infty}\;.
89\label{eq:dSigdx}
90\end{equation}
91This is shown in Fig.\,\ref{plot:dsigdx} for several elements and a wide
92range of photon energies.  The asymptotic differential cross section for
93$E_\gamma \rightarrow \infty$
94\[  \frac{1}{\sigma_0} \, \frac{d\sigma_\infty}{dx} = 1-\frac43 \,(x - x^2) \]
95is also shown.
96\begin{figure}[htpb]
97\center\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/dsigdx.eps}
98\caption{Normalized differential cross section for pair production as a
99function of $x$, the energy fraction of the photon energy carried by one of
100the leptons in the pair.  The function is shown for three different
101elements, hydrogen, beryllium and lead, and for a wide range of photon
102energies.}
103\label{plot:dsigdx}
104\end{figure}
105
106\subsection{Parameterization of the Total Cross Section}
107The total cross section is obtained by integration of the differential
108cross section Eq.\,(\ref{eq:dSigxPlus}), that is
109\begin{equation}
110\sigma_{\rm tot}(E_\gamma) = \int_{x_{\rm min}}^{x_{\rm max}} \frac{d\sigma}{d x_+} \, d x_+
111= 4 \, \alpha \, Z^2 \, r_c^2 \, \int_{x_{\rm min}}^{x_{\rm max}}\left(1-\frac43\,x_+x_-\right)\log(W) \, d x_+ \;.
112\label{eq:sigmatot}
113\end{equation}
114$W$ is a function of ($x_+, E_\gamma$) and ($Z, A$) of the element
115(see Eq.\,(\ref{eq:W})).  Numerical values of $W$ are given in
116Table\,\ref{tab:W}.
117
118\begin{table}[htbp]\center
119\caption{Numerical values of $W$ for $x_+=0.5$ for different elements.}
120\label{tab:W}\vskip 1mm
121\begin{tabular}{|c|c|c|c|c|} \hline
122$E_\gamma$ & W for H & W for Be & W for Cu & W for Pb \\
123 GeV      & & & & \\ \hline
124     1    & 2.11  & 1.594  & 1.3505 & 5.212 \\
125    10    & 19.4  & 10.85  & 6.803 & 43.53  \\
126   100    & 191.5 & 102.3  & 60.10 & 332.7  \\
127  1000    & 1803  & 919.3  & 493.3 & 1476.1 \\
128 10000    & 11427 & 4671   & 1824  & 1028.1 \\
129 $\infty$ & 28087 & 8549   & 2607  & 1339.8 \\ \hline
130\end{tabular}
131\end{table}
132%
133Values of the total cross section obtained by numerical integration are
134listed in Table\,\ref{tab:sigmatot} for four different elements.  Units are
135in $\mu{\rm barn}\,$, where $1\,\mu{\rm barn} = 10^{-34}\,{\rm m}^2\,$.
136%
137\begin{table}[htbp]\center
138\caption{Numerical values for the total cross section}
139\label{tab:sigmatot}\vskip 1mm
140\begin{tabular}{|c|c|c|c|c|} \hline
141$E_\gamma$ & $\sigma_{\rm tot}$, H & $\sigma_{\rm tot}$, Be & $\sigma_{\rm tot}$, Cu & $\sigma_{\rm tot}$, Pb \\
142 GeV      & $\mu{\rm barn}\,$       & $\mu{\rm barn}\,$       & $\mu{\rm barn}\,$       & $\mu{\rm barn}\,$      \\ \hline
143     1    & 0.01559 & 0.1515 & 5.047 & 30.22 \\
144    10    & 0.09720 & 1.209  & 49.56 & 334.6 \\
145   100    & 0.1921  & 2.660  & 121.7 & 886.4 \\
146  1000    & 0.2873  & 4.155  & 197.6 & 1476  \\
147 10000    & 0.3715  & 5.392  & 253.7 & 1880  \\
148 $\infty$ & 0.4319  & 6.108  & 279.0 & 2042  \\ \hline
149\end{tabular}
150\end{table}
151%
152\begin{figure}[htpb]
153\center\includegraphics[scale=.7]{electromagnetic/standard/MuPgen/SigTot.eps}
154\caption{Total cross section for the Bethe-Heitler process
155$\gamma \rightarrow \mu^+\mu^-$ as a function of the photon energy
156$E_\gamma$ in hydrogen and lead, normalized to the asymptotic cross section
157$\sigma_\infty$.}
158\label{plot:SigTot}
159\end{figure}
160
161\noindent
162Well above threshold, the total cross section rises about linearly in
163$\log(E_\gamma)$ with the slope
164\begin{equation}
165W_M = \frac{1}{4\, D_n \, \sqrt e \,m_\mu}
166\end{equation}
167until it saturates due to screening at $\sigma_\infty$
168Fig.\,\ref{plot:SigTot} shows the normalized cross section where
169\begin{equation}
170\sigma_\infty = \frac79 \, \sigma_0 \qquad {\rm and} \qquad \sigma_0 = 4 \, \alpha \, Z^2 \, r_c^2 \, \log(W_\infty)\;.
171\end{equation}
172Numerical values of $W_M$ are listed in Table\,\ref{tab:WM}.
173
174\begin{table}[htbp]\center
175\caption{Numerical values of $W_M$.}
176\label{tab:WM}\vskip 1mm
177\begin{tabular}{|c|c|} \hline
178Element & $W_M$ \\
179        & 1/GeV \\ \hline
180H       & 0.963169 \\
181Be      & 0.514712 \\
182Cu      & 0.303763 \\
183Pb      & 0.220771 \\
184\hline
185\end{tabular}
186\end{table}
187
188
189The total cross section can be parameterized as
190\begin{equation}
191\sigma_{\rm par} = \frac{28 \, \alpha \, Z^2 \, r_c^2}{9}  \; \log(1 + W_M C_f E_g)\;,
192\label{eq:sigpar}
193\end{equation}
194with
195\begin{equation}
196E_g = \left(1-\frac{4 m_\mu}{E_\gamma}\right)^{t}
197\left(W_{\rm sat}^{s} + E_\gamma^{s} \right)^{1/s}\;.
198\end{equation}
199and
200\[
201W_{\rm sat} = \frac{W_\infty}{W_M} = B \, Z^{-1/3} \, \frac{4\,\sqrt e \,m_\mu^2 }{m_e}\;.
202\]
203The threshold behavior in the cross section was found to be well
204approximated by $t = 1.479 + 0.00799 D_n $ and the saturation by
205$ s = -0.88 $.  The agreement at lower energies is improved using an
206empirical correction factor, applied to the slope $W_M$, of the form
207\[
208C_f = \left[ 1 + 0.04 \log \left(1+\frac{E_c}{E_\gamma}\right)\right]\;,
209\]
210where
211\[ E_c = \left[ -18.+\frac{4347.}{B \, Z^{-1/3}}\right] \;{\rm GeV}\;.
212\]
213A comparison of the parameterized cross section with the numerical
214integration of the exact cross section shows that the accuracy of the
215parametrization is better than 2\%, as seen in Fig.\,\ref{plot:SigApRat}.
216\begin{figure}[htpb]
217\center\includegraphics[scale=.8333]{electromagnetic/standard/MuPgen/SigApRat.eps}
218\caption{Ratio of numerically integrated and parametrized total cross
219sections as a function of $E_\gamma$ for hydrogen, beryllium, copper and
220lead.}
221\label{plot:SigApRat}
222\end{figure}
223
224\subsection{Multi-differential Cross Section and Angular Variables}
225The angular distributions are based on the multi-differential cross section
226for lepton pair production in the field of the Coulomb center
227\[
228\frac{d\sigma}{dx_+ \, du_+ \, du_-\,d\varphi} = \frac{4\,Z^2\alpha^3}{\pi}\,\frac{m_\mu^2}{q^4}\,u_+\,u_-
229\]
230\[
231\left\{ \frac{u_+^2+u_-^2}{(1+u_+^2)\,(1+u_-^2)} -2x_+x_- \right.
232\]
233\begin{equation}
234\left.
235\left[\frac{u_+^2}{(1+u_+^2)^2}+\frac{u_-^2}{(1+u_-^2)^2}\right]
236-\frac{2u_+u_-(1-2x_+x_-)\,\cos\varphi}{(1+u_+^2)\,(1+u_-^2)}
237\right\} \,. \\
238\label{eq:MultiDiff}
239\end{equation}
240Here
241\begin{equation}
242u_\pm = \gamma_\pm \theta_\pm \quad , \qquad \gamma_\pm = \frac{E_\mu^\pm}{m_\mu}
243\quad,\qquad q^2=q_{\parallel}^2+q_{\perp}^2\quad, %new
244\label{eq:uthetagamma}
245\end{equation}
246where
247\begin{eqnarray}
248  q_{\parallel}^2=q_{\min}^2\,(1+x_-u_+^2+x_+u_-^2)^2\,, \nonumber \\
249  q_{\perp}^2=m_\mu^2\left[(u_+-u_-)^2+2\,u_+u_-(1-\cos\varphi)
250  \right]\,. \,
251\label{eq:q2}
252\end{eqnarray}
253$q^2$ is the square of the momentum ${\bf q}$ transferred to the target
254and $q_{\parallel}^2$ and $q_{\perp}^2$ are the squares of the components
255of the vector ${\bf q}$, which are parallel and perpendicular to the
256initial photon momentum, respectively.
257The minimum momentum transfer is
258$q_{\min}=m_\mu^2/(2E_\gamma \, x_+x_-)$.\\
259
260The muon vectors have the components
261\begin{equation}
262  \begin{array}{rcl}\displaystyle
263  {\bf p}_+&=&p_+\,(\;\;\;\sin\theta_+\cos(\varphi_0+\varphi/2)\,,\,\;\;\;\sin\theta_+\sin(\varphi_0+\varphi/2)\,,\,\cos\theta_+)\,,\\ 
264  {\bf p}_-&=&p_-\,(     -\sin\theta_-\cos(\varphi_0-\varphi/2)\,,\,     -\sin\theta_-\sin(\varphi_0-\varphi/2)\,,\,\cos\theta_-)\,,
265  \end{array}
266\label{eq:pvec}
267\end{equation}
268where $p_{\pm}=\sqrt{E_{\pm}^2-m_\mu^2}$.
269The initial photon direction is taken as the $z$-axis.
270The cross section of Eq.\,(\ref{eq:MultiDiff}) does not depend on
271$\varphi_0$.  Because of azimuthal symmetry, $\varphi_0$ can simply be
272sampled at random in the interval $(0,\,2\,\pi)$.
273
274Eq.\,(\ref{eq:MultiDiff}) is too complicated for efficient Monte Carlo
275generation.  To simplify, the cross section is rewritten to be symmetric
276in $u_+$, $u_-$ using a new variable $u$ and small parameters $\xi,\beta$,
277where $u_\pm=u \pm \xi/2$ and $\beta = u \,\varphi$.  When higher powers
278in small parameters are dropped, the differential cross section in terms
279of $u,\xi,\beta$ becomes
280\begin{eqnarray}
281\label{mupgen.a}
282 \frac{d\sigma}{dx_+ \, d\xi \, d\beta\, u du} & = & \frac{4\,Z^2\alpha^3}{\pi}
283\frac{m_\mu^2}{\left(q_{\parallel}^2+m_\mu^2(\xi^2+\beta^2)\right)^2} \\
284& &   \left\{\xi^2\left[\frac1{(1+u^2)^2}-2\,x_+x_-\,\frac{(1-u^2)^2}{(1+u^2)^4}\right]+
285  \frac{\beta^2(1-2x_+x_-)}{(1+u^2)^2}\right\}\,, \nonumber
286\label{eq:MultiDiff2}
287\end{eqnarray}
288where, in this approximation,
289$$
290q_{\parallel}^2=q_{\min}^2\,(1+u^2)^2\,.\,
291$$
292For Monte Carlo generation, it is convenient to replace ($\xi,\beta$) by
293the polar coordinates ($\rho,\psi$) with $\xi=\rho\,\cos\psi$ and
294$\beta=\rho\,\sin\psi$.  Integrating Eq.~\ref{mupgen.a} over $\psi$ and
295using symbolically $du^2$ where $du^2 = 2 u \, du$ yields
296\begin{equation}
297\label{mupgen.b}
298\frac{d\sigma}{dx_+\,d\rho\,du^2} =\frac{4Z^2\alpha^3}{m_\mu^2}\,\frac{\rho^3}{(q_{\parallel}^2/m_\mu^2+\rho^2)^2}
299\,\,\left\{\frac{1-x_+x_-}{(1+u^2)^2}-\frac{x_+x_-(1-u^2)^2}{(1+u^2)^4}\right\}.\,
300\end{equation}
301Integration with logarithmic accuracy over $\rho$ gives
302\begin{equation}\label{q4}
303\int\!\frac{\rho^3\,d\rho}{(q_{\parallel}^2/m_\mu^2+\rho^2)^2}
304\approx \int\limits_{q_{\parallel}/m_\mu}^1\!\frac{d\rho}{\rho}
305=\log\left(\frac{m_\mu}{q_{\parallel}}\right)\,.
306\end{equation}
307Within the logarithmic accuracy, $\log(m_\mu/q_{\parallel})$ can be
308replaced by $\log(m_\mu/q_{\min})$, so that
309\begin{equation}
310\frac{d\sigma}{dx_+\,du^2}=\frac{4\,Z^2\alpha^3}{m_\mu^2}\,
311\left\{\frac{1-x_+x_-}{(1+u^2)^2}-\frac{x_+x_-(1-u^2)^2}{(1+u^2)^4}\right\}\,
312\log\left(\frac{m_\mu}{q_{\min}}\right)\,.
313\end{equation}
314Making the substitution $u^2 = 1/t -1$, $du^2 = -dt \, / t^2$ gives
315\begin{equation}
316\frac{d\sigma}{dx_+\,dt}=\frac{4\,Z^2\alpha^3}{m_\mu^2}\,
317\left[1-2\,x_+x_-+4\,x_+x_-t\,(1-t)\right]\,
318\log\left(\frac{m_\mu}{q_{\min}}\right) . \,
319\label{eq:sigmadxdt}
320\end{equation}
321Atomic screening and the finite nuclear radius may be taken into account by
322multiplying the differential cross section determined by
323Eq.\,(\ref{eq:MultiDiff2}) with the factor
324\begin{equation}\label{q5}
325  \left(F_a(q)-F_n(q)\,\right)^2\,,
326\end{equation}
327where $F_a$ and $F_n$ are atomic and nuclear form factors.
328Please note that after integrating Eq.~\ref{mupgen.b} over $\rho$, the
329$q$-dependence is lost.
330
331\subsection{Procedure for the Generation of Muon - Anti-muon Pairs}
332
333Given the photon energy $E_\gamma$ and $Z$ and $A$ of the material in which
334the $\gamma$ converts, the probability for the conversions to take place is
335calculated according to the parametrized total cross section
336Eq.\,(\ref{eq:sigpar}).  The next step, determining how the photon energy
337is shared between the $\mu^+$ and $\mu^-$, is done by generating $x_+$ 
338according to Eq.\,(\ref{eq:dSigxPlus}).  The directions of the muons are
339then generated via the auxilliary variables $t,\,\rho,\,\psi$.  In more
340detail, the final state is generated by the following five steps, in which
341$R_{1,2,3,4,...}$ are random numbers with a flat distribution in the
342interval [0,1]. The generation proceeds as follows.
343\\ \\
344{\bf 1)} Sampling of the positive muon energy $E_\mu^+ = x_+ \, E_\gamma$. \\
345This is done using the rejection technique.
346$x_+$ is first sampled from a flat distribution within kinematic limits
347using
348\[ x_+ = x_{\rm min} + R_1 (x_{\rm max} - x_{\rm min}) \]
349and then brought to the shape of Eq.\,(\ref{eq:dSigxPlus}) by keeping all
350$x_+$ which satisfy
351\[ \left(1-\frac43\,x_+x_-\right)\frac{\log(W)}{\log(W_{\rm max})} < R_2 \,. \]
352Here $W_{\rm max}= W(x_+=1/2)$ is the maximum value of $W$, obtained for
353symmetric pair production at $x_+=1/2$.  About 60\% of the events are kept
354in this step.  Results of a Monte Carlo generation of $x_+$ are illustrated
355in Fig.\,\ref{plot:xPlusGen}.  The shape of the histograms agrees with the
356differential cross section illustrated in Fig.\,\ref{plot:dsigdx}.
357\begin{figure}[htpb]
358\center\includegraphics[scale=.7]{electromagnetic/standard/MuPgen/xPlusGen.eps}
359\caption{Histogram of generated $x_+$ distributions for beryllium at three
360different photon energies.  The total number of entries at each energy is
361$10^6$.}
362\label{plot:xPlusGen}
363\end{figure}
364\\ \\
365{\bf 2)} Generate $t ( = \frac{1}{\gamma^2 \theta^2 + 1} )$ . \\
366The distribution in $t$ is obtained from Eq.(\ref{eq:sigmadxdt}) as
367\begin{equation}\label{t}
368f_1(t)\,dt=\frac{1-2\,x_+x_-+4\,x_+x_-t\,(1-t)}
369{1+C_1/t^2}\,dt\,,\quad 0<t\le 1\,.
370\end{equation}
371with form factors taken into account by
372\begin{equation}\label{C_1}
373C_1=
374\frac{(0.35\,A^{0.27})^2}{x_+x_-\,E_\gamma/m_\mu }\,.
375\end{equation}
376In the interval considered, the function $f_1(t)$ will always be bounded
377from above by
378\[
379\max [f_1(t)]=\frac{1-x_+x_-}{1+C_1}\;.\,
380\]
381For small $x_+$ and large $E_\gamma$, $f_1(t)$ approaches unity, as shown
382in Fig.\,\ref{f1t.eps}.
383\begin{figure}[htpb]
384\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/f1t_10.eps}\hfill\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/f1t_1000.eps}
385  \caption{The function $f_1(t)$ at $E_\gamma = 10\,{\rm GeV}$ (left) and
386  $E_\gamma = 1\,{\rm TeV}$ (right) in beryllium for different values of
387  $x_+$.}
388\label{f1t.eps}
389\end{figure}
390
391\begin{figure}[htpb]
392% \begin{minipage}[t]{7.5cm}
393% \includegraphics[scale=.62]{electromagnetic/standard/MuPgen/f1tgen.eps}
394  \center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/f1tgen.eps}
395 \caption{Histograms of generated $t$ distributions for
396  $E_\gamma = 10\,{\rm GeV}$ (solid line) and
397  $E_\gamma = 100\,{\rm GeV}$ (dashed line) with $10^6$ events each.}
398 \label{f1t_gen.eps}
399% \end{minipage}
400\end{figure}
401% \hfill
402\begin{figure}[htpb]
403%  \begin{minipage}[t]{7.5cm}
404% { \center\includegraphics[scale=.6]{electromagnetic/standard/MuPgen/PsiGen.eps}
405  \center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/PsiGen.eps}
406  \caption{Histograms of generated $\psi$ distributions for beryllium at
407  four different photon energies.}
408  \label{plot:PsiGen.eps}
409% }
410% \end{minipage}
411\end{figure}
412
413\noindent
414The Monte Carlo generation is done using the rejection technique.  About
41570\% of the generated numbers are kept in this step.  Generated
416$t$-distributions are shown in Fig.\,\ref{f1t_gen.eps}.
417\\ \\
418{\bf 3)} Generate $\psi$ by the rejection technique using $t$ generated in
419the previous step for the frequency distribution
420\begin{equation}\label{q3}
421f_2(\psi) =\Big[1-2\,x_+x_-+4\,x_+x_-t\,(1-t)\,(1+\cos(2\psi))\Big]\;, \qquad 0\le\psi\le2\pi\,.
422\end{equation}
423The maximum of $f_2(\psi)$ is
424\begin{equation}
425\max [f_2(\psi)]=1-2\,x_+x_-\left[1-4\,t\,(1-t)\right]\,.\,
426\end{equation}
427Generated distributions in $\psi$ are shown in Fig.\,\ref{plot:PsiGen.eps}.
428\\ \\
429{\bf 4)} Generate $\rho$. \\
430%old The frequency distribution to generate is
431%old \begin{equation}
432%old f_2(\rho^2) = \frac{1}{\rho^2 + \kappa^2} \qquad  0 \leq \rho^2 \leq 1
433%old \end{equation}
434%old where $\kappa^2=1/W$ with the value of $W$ calculated in step 1. % according to Eq.\,\ref{eq:W}.
435%old The distribution can be generated by direct transformation.
436%old By integration
437%old \[
438%old F_2(x) = \int_0^x f_2(\rho^2) \, d \rho^2 = \log\left(1 + \frac{x}{\kappa^2} \right)
439%old \]
440%old with the inverse
441%old \[
442%old F_2^{-1}(x) =  \kappa^2 \, \left(e^x -1\right)\;.
443%old \]
444%old This is mapped by linear transform $a + b x$ to the range
445%old $(0,1)$ of the standard random generator.
446%old From
447%old \[ x=0 \quad : \qquad F_2^{-1}(a + b x) = \kappa^2 \, \left(e^a -1\right) = 0 \qquad  \Rightarrow \qquad a=0 \]
448%old and
449%old \[ x=1 \quad : \qquad F_2^{-1}(a + b x) = \kappa^2 \, \left(e^b -1\right) = 1 \qquad  \Rightarrow \qquad
450%old b=\log\left( 1+1/\kappa^2\right) = \log\left( 1+W^2\right) \; .\]
451%old The direct transformation $F_2^{-1}(a + b \, R)$, applied to the flat random distribution $R$ to generate $\rho^2$
452%old is therefore
453%old \begin{equation}
454%old \rho^2 = \kappa^2 \left(e^{R \log\left( 1+1/\kappa^2\right)} -1\right)
455%old = \kappa^2 \, \left[ \left( 1+1/\kappa^2\right)^R -1 \right]
456%old = \frac{\left( 1+W^2\right)^R -1 }{W^2} \;.
457%old \end{equation}
458%old Generated distributions in $\rho^2$ are shown in Fig.\,\ref{plot:rho2.eps}.
459%old The distribution is, with growing photon energy, increasingly peaked at 0.
460%old Note that $\rho$ does not depend on $t$. One could do step 3 before 2 or after step 4.
461The distribution in $\rho$ has the form
462\begin{equation}\label{rho1}
463f_3(\rho)\,d\rho=\frac{\rho^3\,d\rho}{\rho^4+C_2}\,,\quad
4640\le\rho\le \rho_{\rm max}\,,\,
465\end{equation}
466where
467\begin{equation}\label{rhomax}
468\rho_{\rm max}^2=\frac{1.9}{A^{0.27}}\,\left(\frac{1}{t}-1\right), \,
469\end{equation}
470and
471\begin{equation}\label{C2}
472C_2=\frac4{\sqrt{x_+x_-}}\left[\left(\frac{m_\mu}{2E_\gamma x_+x_-\,t}
473\right)^2+\left(\frac{m_e}{183 \, Z^{-1/3} \, m_\mu}\right)^2
474\right]^2\,.
475\end{equation}
476The $\rho$ distribution is obtained by a direct transformation applied to
477uniform random numbers $R_i$ according to
478\begin{equation}\label{rho}
479\rho=\left[C_2(\exp(\beta\,R_i)-1)\right]^{1/4}\,,
480\end{equation}
481where
482\begin{equation}\label{beta}
483\beta=\log\left(\frac{C_2+\rho_{\rm max}^4}{C_2}\right)\,.
484\end{equation}
485Generated distributions of $\rho$ are shown in Fig.\,\ref{plot:rho.eps}
486
487\begin{figure}[htpb]
488% \begin{minipage}[t]{7.5cm}
489% \includegraphics[scale=.6]{electromagnetic/standard/MuPgen/rho.eps}
490\center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/rho.eps}
491\caption{Histograms of generated $\rho$ distributions for beryllium at
492 two different photon energies.  The total number of entries at each energy
493 is $10^6$.}
494 \label{plot:rho.eps}
495% \end{minipage}
496\end{figure}
497% \hfill
498\begin{figure}[htpb]
499% \begin{minipage}[t]{7.5cm}
500% \includegraphics[scale=.6]{electromagnetic/standard/MuPgen/thetaPlus.eps}
501\center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/thetaPlus.eps}
502\caption{Histograms of generated $\theta_+$ distributions at different photon energies.}
503\label{plot:thetaPlus}
504% \end{minipage}
505\end{figure}
506
507\noindent
508{\bf 5)} Calculate $\theta_+,\theta_-$ and $\varphi$ from $t, \rho,\psi$ with
509\begin{equation}
510\gamma_\pm = \frac{E_\mu^\pm}{m_\mu} \qquad {\rm and} \qquad
511u=\sqrt{\frac1t-1}\,.
512\label{eq:gammau}
513\end{equation}
514according to
515\begin{equation}\label{s2}
516\theta_+=
517\frac{1}{\gamma_+}\,\left(u +\frac{\rho}{2}\,\cos\psi\right)\,,\quad \theta_-=
518\frac{1}{\gamma_-}\,\left(u -\frac{\rho}{2}\,\cos\psi\right)\, \quad {\rm and}
519\quad \varphi=\frac{\rho}{u} \, \sin\psi\, . \,
520\end{equation}
521The muon vectors can now be constructed from Eq.\,(\ref{eq:pvec}), where
522$\varphi_0$ is chosen randomly between 0 and $2\pi$.
523Fig.\,\ref{plot:thetaPlus} shows distributions of $\theta_+$ at different
524photon energies (in beryllium).  The spectra peak around $1/\gamma$ as
525expected.
526
527The most probable values are $\theta_+\sim m_\mu/E_\mu^+ = 1 / \gamma_+$. In the small angle
528approximation used here, the values of $\theta_+$ and $\theta_-$
529can in principle be any positive value from 0 to $\infty$.
530In the simulation, this may lead (with a very small probability, of the
531order of $m_\mu/E_\gamma$) to unphysical events in which $\theta_+$ or
532$\theta_-$ is greater than $\pi$.  To avoid this, a limiting angle
533$\theta_{\rm cut}=\pi$ is introduced, and the angular sampling repeated,
534whenever $\max(\theta_+,\,\theta_-)>\theta_{\rm cut}$ \, .
535
536\begin{figure}[htpb]
537\center\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/Fig1.eps}
538\caption{Angular distribution of positive (or negative) muons.
539%old $E_\gamma=10\:{\rm GeV}$, $x_+=0.3$; iron.
540The solid curve represents
541the results of the exact calculations. The histogram is the simulated
542distribution. The angular distribution for pairs created in the field
543of the Coulomb centre (point-like target) is shown by the dashed curve
544for comparison.}
545\label{plot:Fig1}
546\end{figure}
547
548\begin{figure}[htpb]
549% \begin{minipage}[t]{7.5cm}
550% { \center\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/Fig2.eps}
551\center\includegraphics[scale=0.8]{electromagnetic/standard/MuPgen/Fig2.eps}
552 \caption{Angular distribution in logarithmic scale.  The curve corresponds
553  to the exact calculations and the histogram is the simulated
554  distribution.}
555 \label{plot:Fig2}
556% }
557% \end{minipage}
558\end{figure}
559% \hfill
560\begin{figure}[htpb]
561% \begin{minipage}[t]{7.5cm} 
562% \includegraphics[scale=.65]{electromagnetic/standard/MuPgen/Fig3.eps}
563\center\includegraphics[scale=0.8]{electromagnetic/standard/MuPgen/Fig3.eps}
564\caption{Distribution of the difference of transverse momenta of positive
565 and negative muons (with logarithmic x-scale).}
566  \label{plot:Fig3}
567% \end{minipage}
568\end{figure}
569
570Figs.\,\ref{plot:Fig1},\ref{plot:Fig2} and \ref{plot:Fig3} show
571distributions of the simulated angular characteristics of muon pairs in
572comparison with results of exact calculations.  The latter were obtained
573by means of numerical integration of the squared matrix elements with
574respective nuclear and atomic form factors.  All these calculations were
575made for iron, with $E_\gamma=10\,{\rm GeV}$ and $x_+=0.3$.  As seen from
576Fig.\,\ref{plot:Fig1}, wide angle pairs (at low values of the argument in
577the figure) are suppressed in comparison with the Coulomb center
578approximation.  This is due to the influence of the finite nuclear size
579which is comparable to the inverse mass of the muon.  Typical angles of
580particle emission are of the order of
581$1/\gamma_\pm=m_\mu/E_\mu^\pm$ (Fig.\,\ref{plot:Fig2}). Fig.\,\ref{plot:Fig3}
582illustrates the influence of the momentum transferred to the target on the
583angular characteristics of the produced pair.  In the frame of the often
584used model which neglects target recoil, the pair particles would be
585symmetric in transverse momenta, and coplanar with the initial photon.
586
587
588\subsection{Status of this document}
58928.05.02 created by H.Burkhardt. \\
59001.12.02 re-worded by D.H. Wright \\
591
592\begin{latexonly}
593
594\begin{thebibliography}{99}
595
596\bibitem{MuPgen}
597H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Monte Carlo Generator for Muon
598Pair Production''. CERN-SL-2002-016 (AP) and CLIC Note 511, May 2002.
599
600\bibitem{Kelner:1995hu}
601S.~R. Kelner, R.~P. Kokoulin, and A.~A. Petrukhin, ``About cross section
602for high energy muon bremsstrahlung,''. Moscow Phys. Eng. Inst. 024-95, 1995.
603  31pp.
604
605\end{thebibliography}
606
607\end{latexonly}
608
609\begin{htmlonly}
610
611\subsection{Bibliography}
612
613\begin{enumerate}
614\item H.~Burkhardt, S.~Kelner, and R.~Kokoulin,
615``Monte Carlo Generator for Muon
616Pair Production''. CERN-SL-2002-016 (AP) and CLIC Note 511, May 2002.
617
618\item S.~R. Kelner, R.~P. Kokoulin, and A.~A. Petrukhin, ``About cross section
619for high energy muon bremsstrahlung,''. Moscow Phys. Eng. Inst. 024-95, 1995.
620  31pp.
621\end{enumerate}
622
623\end{htmlonly}
624
625
Note: See TracBrowser for help on using the repository browser.