| 1 | \section[Gamma Conversion into a Muon - Anti-mu Pair]
|
|---|
| 2 | {Gamma Conversion into a Muon - Anti-muon Pair}
|
|---|
| 3 |
|
|---|
| 4 | The class {\tt G4GammaConversionToMuons} simulates the process of gamma
|
|---|
| 5 | conversion into muon pairs. Given the photon energy and $Z$ and $A$ of the
|
|---|
| 6 | material in which the photon converts, the probability for the conversions
|
|---|
| 7 | to take place is calculated according to a parameterized total cross section.
|
|---|
| 8 | Next, the sharing of the photon energy between the $\mu^+$ and $\mu^-$ is
|
|---|
| 9 | determined. Finally, the directions of the muons are generated. Details of
|
|---|
| 10 | the implementation are given below and can be also found in\,\cite{MuPgen}.
|
|---|
| 11 |
|
|---|
| 12 | \subsection{Cross Section and Energy Sharing}
|
|---|
| 13 | In the field of the nucleus, muon pair production on atomic electrons,
|
|---|
| 14 | $\gamma+e\to e+\mu^+ +\mu^-$, has a threshold of
|
|---|
| 15 | $2m_\mu(m_\mu+m_e)/m_e\approx 43.9\;{\rm GeV}$ .
|
|---|
| 16 | %hbu check in MuonBkg.C in fact 43.905 GeV
|
|---|
| 17 | Up to several hundred GeV this process has a much lower cross section than
|
|---|
| 18 | the corresponding process on the nucleus. At higher energies, the cross
|
|---|
| 19 | section on atomic electrons represents a correction of $\sim 1/Z$ to the
|
|---|
| 20 | total cross section.
|
|---|
| 21 |
|
|---|
| 22 | For the approximately elastic scattering considered here, momentum, but no
|
|---|
| 23 | energy, is transferred to the nucleon. The photon energy is fully shared
|
|---|
| 24 | by the two muons according to
|
|---|
| 25 | \begin{equation}
|
|---|
| 26 | E_\gamma = E_\mu^+ + E_\mu^-
|
|---|
| 27 | \end{equation}
|
|---|
| 28 | or in terms of energy fractions
|
|---|
| 29 | \[ x_+ = \frac{E_\mu^+}{E_\gamma}, \qquad x_- = \frac{E_\mu^-}{E_\gamma}, \qquad x_+ + x_- = 1\;.
|
|---|
| 30 | \]
|
|---|
| 31 | The differential cross section for electromagnetic pair creation of muons in
|
|---|
| 32 | terms of the energy fractions of the muons is
|
|---|
| 33 | \begin{equation}
|
|---|
| 34 | \frac{d\sigma}{d x_+} = 4 \, \alpha \, Z^2 \, r_c^2
|
|---|
| 35 | \left(1-\frac43\,x_+x_-\right)\log(W)\;,
|
|---|
| 36 | \label{eq:dSigxPlus}
|
|---|
| 37 | \end{equation}
|
|---|
| 38 | where $Z$ is the charge of the nucleus, $r_c$ is the classical radius of the
|
|---|
| 39 | particles which are pair produced (here muons) and
|
|---|
| 40 | \begin{equation}
|
|---|
| 41 | W = W_\infty \;
|
|---|
| 42 | \frac{1+(D_n\sqrt{e}-2)\,\delta\,/m_\mu}{1+B \, Z^{-1/3}\, \sqrt e \,\delta\,/m_e}
|
|---|
| 43 | \label{eq:W}
|
|---|
| 44 | \end{equation}
|
|---|
| 45 | where
|
|---|
| 46 | \[
|
|---|
| 47 | W_\infty = \frac{B \, Z^{-1/3}}{D_n} \, \frac{m_\mu}{m_e} \qquad
|
|---|
| 48 | \delta = \frac{m_\mu^2}{2\,E_\gamma\,x_+x_-} \qquad
|
|---|
| 49 | \sqrt{e}=1.6487\dots .
|
|---|
| 50 | \]
|
|---|
| 51 | \begin{eqnarray}
|
|---|
| 52 | \mbox{For hydrogen} \qquad B=202.4 \qquad D_n=&1.49 & \nonumber\\
|
|---|
| 53 | \mbox{and for all other nuclei} \qquad B=183 \qquad D_n=&1.54 \, A^{0.27}. &
|
|---|
| 54 | \end{eqnarray}
|
|---|
| 55 | These formulae are obtained from the differential cross section for muon
|
|---|
| 56 | bremsstrahlung \cite{Kelner:1995hu} by means of crossing relations. The
|
|---|
| 57 | formulae take into account the screening of the field of the nucleus by the
|
|---|
| 58 | atomic electrons in the Thomas-Fermi model, as well as the finite size of
|
|---|
| 59 | the nucleus, which is essential for the problem under consideration.
|
|---|
| 60 | %
|
|---|
| 61 | The above parameterization gives good results for $E_\gamma \gg m_\mu$. The
|
|---|
| 62 | fact that it is approximate close to threshold is of little practical
|
|---|
| 63 | importance. Close to threshold, the cross section is small and the few low
|
|---|
| 64 | energy muons produced will not travel very far. The cross section
|
|---|
| 65 | calculated from Eq.\,(\ref{eq:dSigxPlus}) is positive for
|
|---|
| 66 | $E_\gamma > 4 m_\mu$ and
|
|---|
| 67 | \begin{equation}
|
|---|
| 68 | x_{\rm min} \leq x \leq x_{\rm max} \quad {\rm with} \quad
|
|---|
| 69 | x_{\rm min} = \frac12 - \sqrt{\frac{1}{4}-\frac{m_\mu}{E_\gamma}} \qquad
|
|---|
| 70 | x_{\rm max} = \frac12 + \sqrt{\frac{1}{4}-\frac{m_\mu}{E_\gamma}}\;,
|
|---|
| 71 | \end{equation}
|
|---|
| 72 | except for very asymmetric pair-production, close to threshold, which can
|
|---|
| 73 | easily be taken care of by explicitly setting $\sigma = 0$ whenever
|
|---|
| 74 | $\sigma < 0$.
|
|---|
| 75 |
|
|---|
| 76 | Note that the differential cross section is symmetric in $x_+$ and $x_-$ and
|
|---|
| 77 | that
|
|---|
| 78 | \[ x_+ x_- = x - x^2 \]
|
|---|
| 79 | where $x$ stands for either $x_+$ or $x_-$. By defining a constant
|
|---|
| 80 | \begin{equation}
|
|---|
| 81 | \sigma_0 = 4 \, \alpha \, Z^2 \, r_c^2 \log(W_\infty)\;
|
|---|
| 82 | \label{eq:sigma0}
|
|---|
| 83 | \end{equation}
|
|---|
| 84 | the differential cross section Eq.\,(\ref{eq:dSigxPlus}) can be rewritten
|
|---|
| 85 | as a normalized and symmetric as function of $x$:
|
|---|
| 86 | \begin{equation}
|
|---|
| 87 | \frac{1}{\sigma_0} \, \frac{d\sigma}{dx} = \left[ 1-\frac43 \,(x - x^2) \right]
|
|---|
| 88 | \, \frac{\log W}{\log W_\infty}\;.
|
|---|
| 89 | \label{eq:dSigdx}
|
|---|
| 90 | \end{equation}
|
|---|
| 91 | This is shown in Fig.\,\ref{plot:dsigdx} for several elements and a wide
|
|---|
| 92 | range of photon energies. The asymptotic differential cross section for
|
|---|
| 93 | $E_\gamma \rightarrow \infty$
|
|---|
| 94 | \[ \frac{1}{\sigma_0} \, \frac{d\sigma_\infty}{dx} = 1-\frac43 \,(x - x^2) \]
|
|---|
| 95 | is also shown.
|
|---|
| 96 | \begin{figure}[htpb]
|
|---|
| 97 | \center\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/dsigdx.eps}
|
|---|
| 98 | \caption{Normalized differential cross section for pair production as a
|
|---|
| 99 | function of $x$, the energy fraction of the photon energy carried by one of
|
|---|
| 100 | the leptons in the pair. The function is shown for three different
|
|---|
| 101 | elements, hydrogen, beryllium and lead, and for a wide range of photon
|
|---|
| 102 | energies.}
|
|---|
| 103 | \label{plot:dsigdx}
|
|---|
| 104 | \end{figure}
|
|---|
| 105 |
|
|---|
| 106 | \subsection{Parameterization of the Total Cross Section}
|
|---|
| 107 | The total cross section is obtained by integration of the differential
|
|---|
| 108 | cross section Eq.\,(\ref{eq:dSigxPlus}), that is
|
|---|
| 109 | \begin{equation}
|
|---|
| 110 | \sigma_{\rm tot}(E_\gamma) = \int_{x_{\rm min}}^{x_{\rm max}} \frac{d\sigma}{d x_+} \, d x_+
|
|---|
| 111 | = 4 \, \alpha \, Z^2 \, r_c^2 \, \int_{x_{\rm min}}^{x_{\rm max}}\left(1-\frac43\,x_+x_-\right)\log(W) \, d x_+ \;.
|
|---|
| 112 | \label{eq:sigmatot}
|
|---|
| 113 | \end{equation}
|
|---|
| 114 | $W$ is a function of ($x_+, E_\gamma$) and ($Z, A$) of the element
|
|---|
| 115 | (see Eq.\,(\ref{eq:W})). Numerical values of $W$ are given in
|
|---|
| 116 | Table\,\ref{tab:W}.
|
|---|
| 117 |
|
|---|
| 118 | \begin{table}[htbp]\center
|
|---|
| 119 | \caption{Numerical values of $W$ for $x_+=0.5$ for different elements.}
|
|---|
| 120 | \label{tab:W}\vskip 1mm
|
|---|
| 121 | \begin{tabular}{|c|c|c|c|c|} \hline
|
|---|
| 122 | $E_\gamma$ & W for H & W for Be & W for Cu & W for Pb \\
|
|---|
| 123 | GeV & & & & \\ \hline
|
|---|
| 124 | 1 & 2.11 & 1.594 & 1.3505 & 5.212 \\
|
|---|
| 125 | 10 & 19.4 & 10.85 & 6.803 & 43.53 \\
|
|---|
| 126 | 100 & 191.5 & 102.3 & 60.10 & 332.7 \\
|
|---|
| 127 | 1000 & 1803 & 919.3 & 493.3 & 1476.1 \\
|
|---|
| 128 | 10000 & 11427 & 4671 & 1824 & 1028.1 \\
|
|---|
| 129 | $\infty$ & 28087 & 8549 & 2607 & 1339.8 \\ \hline
|
|---|
| 130 | \end{tabular}
|
|---|
| 131 | \end{table}
|
|---|
| 132 | %
|
|---|
| 133 | Values of the total cross section obtained by numerical integration are
|
|---|
| 134 | listed in Table\,\ref{tab:sigmatot} for four different elements. Units are
|
|---|
| 135 | in $\mu{\rm barn}\,$, where $1\,\mu{\rm barn} = 10^{-34}\,{\rm m}^2\,$.
|
|---|
| 136 | %
|
|---|
| 137 | \begin{table}[htbp]\center
|
|---|
| 138 | \caption{Numerical values for the total cross section}
|
|---|
| 139 | \label{tab:sigmatot}\vskip 1mm
|
|---|
| 140 | \begin{tabular}{|c|c|c|c|c|} \hline
|
|---|
| 141 | $E_\gamma$ & $\sigma_{\rm tot}$, H & $\sigma_{\rm tot}$, Be & $\sigma_{\rm tot}$, Cu & $\sigma_{\rm tot}$, Pb \\
|
|---|
| 142 | GeV & $\mu{\rm barn}\,$ & $\mu{\rm barn}\,$ & $\mu{\rm barn}\,$ & $\mu{\rm barn}\,$ \\ \hline
|
|---|
| 143 | 1 & 0.01559 & 0.1515 & 5.047 & 30.22 \\
|
|---|
| 144 | 10 & 0.09720 & 1.209 & 49.56 & 334.6 \\
|
|---|
| 145 | 100 & 0.1921 & 2.660 & 121.7 & 886.4 \\
|
|---|
| 146 | 1000 & 0.2873 & 4.155 & 197.6 & 1476 \\
|
|---|
| 147 | 10000 & 0.3715 & 5.392 & 253.7 & 1880 \\
|
|---|
| 148 | $\infty$ & 0.4319 & 6.108 & 279.0 & 2042 \\ \hline
|
|---|
| 149 | \end{tabular}
|
|---|
| 150 | \end{table}
|
|---|
| 151 | %
|
|---|
| 152 | \begin{figure}[htpb]
|
|---|
| 153 | \center\includegraphics[scale=.7]{electromagnetic/standard/MuPgen/SigTot.eps}
|
|---|
| 154 | \caption{Total cross section for the Bethe-Heitler process
|
|---|
| 155 | $\gamma \rightarrow \mu^+\mu^-$ as a function of the photon energy
|
|---|
| 156 | $E_\gamma$ in hydrogen and lead, normalized to the asymptotic cross section
|
|---|
| 157 | $\sigma_\infty$.}
|
|---|
| 158 | \label{plot:SigTot}
|
|---|
| 159 | \end{figure}
|
|---|
| 160 |
|
|---|
| 161 | \noindent
|
|---|
| 162 | Well above threshold, the total cross section rises about linearly in
|
|---|
| 163 | $\log(E_\gamma)$ with the slope
|
|---|
| 164 | \begin{equation}
|
|---|
| 165 | W_M = \frac{1}{4\, D_n \, \sqrt e \,m_\mu}
|
|---|
| 166 | \end{equation}
|
|---|
| 167 | until it saturates due to screening at $\sigma_\infty$.
|
|---|
| 168 | Fig.\,\ref{plot:SigTot} shows the normalized cross section where
|
|---|
| 169 | \begin{equation}
|
|---|
| 170 | \sigma_\infty = \frac79 \, \sigma_0 \qquad {\rm and} \qquad \sigma_0 = 4 \, \alpha \, Z^2 \, r_c^2 \, \log(W_\infty)\;.
|
|---|
| 171 | \end{equation}
|
|---|
| 172 | Numerical values of $W_M$ are listed in Table\,\ref{tab:WM}.
|
|---|
| 173 |
|
|---|
| 174 | \begin{table}[htbp]\center
|
|---|
| 175 | \caption{Numerical values of $W_M$.}
|
|---|
| 176 | \label{tab:WM}\vskip 1mm
|
|---|
| 177 | \begin{tabular}{|c|c|} \hline
|
|---|
| 178 | Element & $W_M$ \\
|
|---|
| 179 | & 1/GeV \\ \hline
|
|---|
| 180 | H & 0.963169 \\
|
|---|
| 181 | Be & 0.514712 \\
|
|---|
| 182 | Cu & 0.303763 \\
|
|---|
| 183 | Pb & 0.220771 \\
|
|---|
| 184 | \hline
|
|---|
| 185 | \end{tabular}
|
|---|
| 186 | \end{table}
|
|---|
| 187 |
|
|---|
| 188 |
|
|---|
| 189 | The total cross section can be parameterized as
|
|---|
| 190 | \begin{equation}
|
|---|
| 191 | \sigma_{\rm par} = \frac{28 \, \alpha \, Z^2 \, r_c^2}{9} \; \log(1 + W_M C_f E_g)\;,
|
|---|
| 192 | \label{eq:sigpar}
|
|---|
| 193 | \end{equation}
|
|---|
| 194 | with
|
|---|
| 195 | \begin{equation}
|
|---|
| 196 | E_g = \left(1-\frac{4 m_\mu}{E_\gamma}\right)^{t}
|
|---|
| 197 | \left(W_{\rm sat}^{s} + E_\gamma^{s} \right)^{1/s}\;.
|
|---|
| 198 | \end{equation}
|
|---|
| 199 | and
|
|---|
| 200 | \[
|
|---|
| 201 | W_{\rm sat} = \frac{W_\infty}{W_M} = B \, Z^{-1/3} \, \frac{4\,\sqrt e \,m_\mu^2 }{m_e}\;.
|
|---|
| 202 | \]
|
|---|
| 203 | The threshold behavior in the cross section was found to be well
|
|---|
| 204 | approximated by $t = 1.479 + 0.00799 D_n $ and the saturation by
|
|---|
| 205 | $ s = -0.88 $. The agreement at lower energies is improved using an
|
|---|
| 206 | empirical correction factor, applied to the slope $W_M$, of the form
|
|---|
| 207 | \[
|
|---|
| 208 | C_f = \left[ 1 + 0.04 \log \left(1+\frac{E_c}{E_\gamma}\right)\right]\;,
|
|---|
| 209 | \]
|
|---|
| 210 | where
|
|---|
| 211 | \[ E_c = \left[ -18.+\frac{4347.}{B \, Z^{-1/3}}\right] \;{\rm GeV}\;.
|
|---|
| 212 | \]
|
|---|
| 213 | A comparison of the parameterized cross section with the numerical
|
|---|
| 214 | integration of the exact cross section shows that the accuracy of the
|
|---|
| 215 | parametrization is better than 2\%, as seen in Fig.\,\ref{plot:SigApRat}.
|
|---|
| 216 | \begin{figure}[htpb]
|
|---|
| 217 | \center\includegraphics[scale=.8333]{electromagnetic/standard/MuPgen/SigApRat.eps}
|
|---|
| 218 | \caption{Ratio of numerically integrated and parametrized total cross
|
|---|
| 219 | sections as a function of $E_\gamma$ for hydrogen, beryllium, copper and
|
|---|
| 220 | lead.}
|
|---|
| 221 | \label{plot:SigApRat}
|
|---|
| 222 | \end{figure}
|
|---|
| 223 |
|
|---|
| 224 | \subsection{Multi-differential Cross Section and Angular Variables}
|
|---|
| 225 | The angular distributions are based on the multi-differential cross section
|
|---|
| 226 | for lepton pair production in the field of the Coulomb center
|
|---|
| 227 | \[
|
|---|
| 228 | \frac{d\sigma}{dx_+ \, du_+ \, du_-\,d\varphi} = \frac{4\,Z^2\alpha^3}{\pi}\,\frac{m_\mu^2}{q^4}\,u_+\,u_-
|
|---|
| 229 | \]
|
|---|
| 230 | \[
|
|---|
| 231 | \left\{ \frac{u_+^2+u_-^2}{(1+u_+^2)\,(1+u_-^2)} -2x_+x_- \right.
|
|---|
| 232 | \]
|
|---|
| 233 | \begin{equation}
|
|---|
| 234 | \left.
|
|---|
| 235 | \left[\frac{u_+^2}{(1+u_+^2)^2}+\frac{u_-^2}{(1+u_-^2)^2}\right]
|
|---|
| 236 | -\frac{2u_+u_-(1-2x_+x_-)\,\cos\varphi}{(1+u_+^2)\,(1+u_-^2)}
|
|---|
| 237 | \right\} \,. \\
|
|---|
| 238 | \label{eq:MultiDiff}
|
|---|
| 239 | \end{equation}
|
|---|
| 240 | Here
|
|---|
| 241 | \begin{equation}
|
|---|
| 242 | u_\pm = \gamma_\pm \theta_\pm \quad , \qquad \gamma_\pm = \frac{E_\mu^\pm}{m_\mu}
|
|---|
| 243 | \quad,\qquad q^2=q_{\parallel}^2+q_{\perp}^2\quad, %new
|
|---|
| 244 | \label{eq:uthetagamma}
|
|---|
| 245 | \end{equation}
|
|---|
| 246 | where
|
|---|
| 247 | \begin{eqnarray}
|
|---|
| 248 | q_{\parallel}^2=q_{\min}^2\,(1+x_-u_+^2+x_+u_-^2)^2\,, \nonumber \\
|
|---|
| 249 | q_{\perp}^2=m_\mu^2\left[(u_+-u_-)^2+2\,u_+u_-(1-\cos\varphi)
|
|---|
| 250 | \right]\,. \,
|
|---|
| 251 | \label{eq:q2}
|
|---|
| 252 | \end{eqnarray}
|
|---|
| 253 | $q^2$ is the square of the momentum ${\bf q}$ transferred to the target
|
|---|
| 254 | and $q_{\parallel}^2$ and $q_{\perp}^2$ are the squares of the components
|
|---|
| 255 | of the vector ${\bf q}$, which are parallel and perpendicular to the
|
|---|
| 256 | initial photon momentum, respectively.
|
|---|
| 257 | The minimum momentum transfer is
|
|---|
| 258 | $q_{\min}=m_\mu^2/(2E_\gamma \, x_+x_-)$.\\
|
|---|
| 259 |
|
|---|
| 260 | The muon vectors have the components
|
|---|
| 261 | \begin{equation}
|
|---|
| 262 | \begin{array}{rcl}\displaystyle
|
|---|
| 263 | {\bf p}_+&=&p_+\,(\;\;\;\sin\theta_+\cos(\varphi_0+\varphi/2)\,,\,\;\;\;\sin\theta_+\sin(\varphi_0+\varphi/2)\,,\,\cos\theta_+)\,,\\
|
|---|
| 264 | {\bf p}_-&=&p_-\,( -\sin\theta_-\cos(\varphi_0-\varphi/2)\,,\, -\sin\theta_-\sin(\varphi_0-\varphi/2)\,,\,\cos\theta_-)\,,
|
|---|
| 265 | \end{array}
|
|---|
| 266 | \label{eq:pvec}
|
|---|
| 267 | \end{equation}
|
|---|
| 268 | where $p_{\pm}=\sqrt{E_{\pm}^2-m_\mu^2}$.
|
|---|
| 269 | The initial photon direction is taken as the $z$-axis.
|
|---|
| 270 | The cross section of Eq.\,(\ref{eq:MultiDiff}) does not depend on
|
|---|
| 271 | $\varphi_0$. Because of azimuthal symmetry, $\varphi_0$ can simply be
|
|---|
| 272 | sampled at random in the interval $(0,\,2\,\pi)$.
|
|---|
| 273 |
|
|---|
| 274 | Eq.\,(\ref{eq:MultiDiff}) is too complicated for efficient Monte Carlo
|
|---|
| 275 | generation. To simplify, the cross section is rewritten to be symmetric
|
|---|
| 276 | in $u_+$, $u_-$ using a new variable $u$ and small parameters $\xi,\beta$,
|
|---|
| 277 | where $u_\pm=u \pm \xi/2$ and $\beta = u \,\varphi$. When higher powers
|
|---|
| 278 | in small parameters are dropped, the differential cross section in terms
|
|---|
| 279 | of $u,\xi,\beta$ becomes
|
|---|
| 280 | \begin{eqnarray}
|
|---|
| 281 | \label{mupgen.a}
|
|---|
| 282 | \frac{d\sigma}{dx_+ \, d\xi \, d\beta\, u du} & = & \frac{4\,Z^2\alpha^3}{\pi}
|
|---|
| 283 | \frac{m_\mu^2}{\left(q_{\parallel}^2+m_\mu^2(\xi^2+\beta^2)\right)^2} \\
|
|---|
| 284 | & & \left\{\xi^2\left[\frac1{(1+u^2)^2}-2\,x_+x_-\,\frac{(1-u^2)^2}{(1+u^2)^4}\right]+
|
|---|
| 285 | \frac{\beta^2(1-2x_+x_-)}{(1+u^2)^2}\right\}\,, \nonumber
|
|---|
| 286 | \label{eq:MultiDiff2}
|
|---|
| 287 | \end{eqnarray}
|
|---|
| 288 | where, in this approximation,
|
|---|
| 289 | $$
|
|---|
| 290 | q_{\parallel}^2=q_{\min}^2\,(1+u^2)^2\,.\,
|
|---|
| 291 | $$
|
|---|
| 292 | For Monte Carlo generation, it is convenient to replace ($\xi,\beta$) by
|
|---|
| 293 | the polar coordinates ($\rho,\psi$) with $\xi=\rho\,\cos\psi$ and
|
|---|
| 294 | $\beta=\rho\,\sin\psi$. Integrating Eq.~\ref{mupgen.a} over $\psi$ and
|
|---|
| 295 | using symbolically $du^2$ where $du^2 = 2 u \, du$ yields
|
|---|
| 296 | \begin{equation}
|
|---|
| 297 | \label{mupgen.b}
|
|---|
| 298 | \frac{d\sigma}{dx_+\,d\rho\,du^2} =\frac{4Z^2\alpha^3}{m_\mu^2}\,\frac{\rho^3}{(q_{\parallel}^2/m_\mu^2+\rho^2)^2}
|
|---|
| 299 | \,\,\left\{\frac{1-x_+x_-}{(1+u^2)^2}-\frac{x_+x_-(1-u^2)^2}{(1+u^2)^4}\right\}.\,
|
|---|
| 300 | \end{equation}
|
|---|
| 301 | Integration with logarithmic accuracy over $\rho$ gives
|
|---|
| 302 | \begin{equation}\label{q4}
|
|---|
| 303 | \int\!\frac{\rho^3\,d\rho}{(q_{\parallel}^2/m_\mu^2+\rho^2)^2}
|
|---|
| 304 | \approx \int\limits_{q_{\parallel}/m_\mu}^1\!\frac{d\rho}{\rho}
|
|---|
| 305 | =\log\left(\frac{m_\mu}{q_{\parallel}}\right)\,.
|
|---|
| 306 | \end{equation}
|
|---|
| 307 | Within the logarithmic accuracy, $\log(m_\mu/q_{\parallel})$ can be
|
|---|
| 308 | replaced by $\log(m_\mu/q_{\min})$, so that
|
|---|
| 309 | \begin{equation}
|
|---|
| 310 | \frac{d\sigma}{dx_+\,du^2}=\frac{4\,Z^2\alpha^3}{m_\mu^2}\,
|
|---|
| 311 | \left\{\frac{1-x_+x_-}{(1+u^2)^2}-\frac{x_+x_-(1-u^2)^2}{(1+u^2)^4}\right\}\,
|
|---|
| 312 | \log\left(\frac{m_\mu}{q_{\min}}\right)\,.
|
|---|
| 313 | \end{equation}
|
|---|
| 314 | Making the substitution $u^2 = 1/t -1$, $du^2 = -dt \, / t^2$ gives
|
|---|
| 315 | \begin{equation}
|
|---|
| 316 | \frac{d\sigma}{dx_+\,dt}=\frac{4\,Z^2\alpha^3}{m_\mu^2}\,
|
|---|
| 317 | \left[1-2\,x_+x_-+4\,x_+x_-t\,(1-t)\right]\,
|
|---|
| 318 | \log\left(\frac{m_\mu}{q_{\min}}\right) . \,
|
|---|
| 319 | \label{eq:sigmadxdt}
|
|---|
| 320 | \end{equation}
|
|---|
| 321 | Atomic screening and the finite nuclear radius may be taken into account by
|
|---|
| 322 | multiplying the differential cross section determined by
|
|---|
| 323 | Eq.\,(\ref{eq:MultiDiff2}) with the factor
|
|---|
| 324 | \begin{equation}\label{q5}
|
|---|
| 325 | \left(F_a(q)-F_n(q)\,\right)^2\,,
|
|---|
| 326 | \end{equation}
|
|---|
| 327 | where $F_a$ and $F_n$ are atomic and nuclear form factors.
|
|---|
| 328 | Please note that after integrating Eq.~\ref{mupgen.b} over $\rho$, the
|
|---|
| 329 | $q$-dependence is lost.
|
|---|
| 330 |
|
|---|
| 331 | \subsection{Procedure for the Generation of Muon - Anti-muon Pairs}
|
|---|
| 332 |
|
|---|
| 333 | Given the photon energy $E_\gamma$ and $Z$ and $A$ of the material in which
|
|---|
| 334 | the $\gamma$ converts, the probability for the conversions to take place is
|
|---|
| 335 | calculated according to the parametrized total cross section
|
|---|
| 336 | Eq.\,(\ref{eq:sigpar}). The next step, determining how the photon energy
|
|---|
| 337 | is shared between the $\mu^+$ and $\mu^-$, is done by generating $x_+$
|
|---|
| 338 | according to Eq.\,(\ref{eq:dSigxPlus}). The directions of the muons are
|
|---|
| 339 | then generated via the auxilliary variables $t,\,\rho,\,\psi$. In more
|
|---|
| 340 | detail, the final state is generated by the following five steps, in which
|
|---|
| 341 | $R_{1,2,3,4,...}$ are random numbers with a flat distribution in the
|
|---|
| 342 | interval [0,1]. The generation proceeds as follows.
|
|---|
| 343 | \\ \\
|
|---|
| 344 | {\bf 1)} Sampling of the positive muon energy $E_\mu^+ = x_+ \, E_\gamma$. \\
|
|---|
| 345 | This is done using the rejection technique.
|
|---|
| 346 | $x_+$ is first sampled from a flat distribution within kinematic limits
|
|---|
| 347 | using
|
|---|
| 348 | \[ x_+ = x_{\rm min} + R_1 (x_{\rm max} - x_{\rm min}) \]
|
|---|
| 349 | and then brought to the shape of Eq.\,(\ref{eq:dSigxPlus}) by keeping all
|
|---|
| 350 | $x_+$ which satisfy
|
|---|
| 351 | \[ \left(1-\frac43\,x_+x_-\right)\frac{\log(W)}{\log(W_{\rm max})} < R_2 \,. \]
|
|---|
| 352 | Here $W_{\rm max}= W(x_+=1/2)$ is the maximum value of $W$, obtained for
|
|---|
| 353 | symmetric pair production at $x_+=1/2$. About 60\% of the events are kept
|
|---|
| 354 | in this step. Results of a Monte Carlo generation of $x_+$ are illustrated
|
|---|
| 355 | in Fig.\,\ref{plot:xPlusGen}. The shape of the histograms agrees with the
|
|---|
| 356 | differential cross section illustrated in Fig.\,\ref{plot:dsigdx}.
|
|---|
| 357 | \begin{figure}[htpb]
|
|---|
| 358 | \center\includegraphics[scale=.7]{electromagnetic/standard/MuPgen/xPlusGen.eps}
|
|---|
| 359 | \caption{Histogram of generated $x_+$ distributions for beryllium at three
|
|---|
| 360 | different photon energies. The total number of entries at each energy is
|
|---|
| 361 | $10^6$.}
|
|---|
| 362 | \label{plot:xPlusGen}
|
|---|
| 363 | \end{figure}
|
|---|
| 364 | \\ \\
|
|---|
| 365 | {\bf 2)} Generate $t ( = \frac{1}{\gamma^2 \theta^2 + 1} )$ . \\
|
|---|
| 366 | The distribution in $t$ is obtained from Eq.(\ref{eq:sigmadxdt}) as
|
|---|
| 367 | \begin{equation}\label{t}
|
|---|
| 368 | f_1(t)\,dt=\frac{1-2\,x_+x_-+4\,x_+x_-t\,(1-t)}
|
|---|
| 369 | {1+C_1/t^2}\,dt\,,\quad 0<t\le 1\,.
|
|---|
| 370 | \end{equation}
|
|---|
| 371 | with form factors taken into account by
|
|---|
| 372 | \begin{equation}\label{C_1}
|
|---|
| 373 | C_1=
|
|---|
| 374 | \frac{(0.35\,A^{0.27})^2}{x_+x_-\,E_\gamma/m_\mu }\,.
|
|---|
| 375 | \end{equation}
|
|---|
| 376 | In the interval considered, the function $f_1(t)$ will always be bounded
|
|---|
| 377 | from above by
|
|---|
| 378 | \[
|
|---|
| 379 | \max [f_1(t)]=\frac{1-x_+x_-}{1+C_1}\;.\,
|
|---|
| 380 | \]
|
|---|
| 381 | For small $x_+$ and large $E_\gamma$, $f_1(t)$ approaches unity, as shown
|
|---|
| 382 | in Fig.\,\ref{f1t.eps}.
|
|---|
| 383 | \begin{figure}[htpb]
|
|---|
| 384 | \includegraphics[scale=.65]{electromagnetic/standard/MuPgen/f1t_10.eps}\hfill\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/f1t_1000.eps}
|
|---|
| 385 | \caption{The function $f_1(t)$ at $E_\gamma = 10\,{\rm GeV}$ (left) and
|
|---|
| 386 | $E_\gamma = 1\,{\rm TeV}$ (right) in beryllium for different values of
|
|---|
| 387 | $x_+$.}
|
|---|
| 388 | \label{f1t.eps}
|
|---|
| 389 | \end{figure}
|
|---|
| 390 |
|
|---|
| 391 | \begin{figure}[htpb]
|
|---|
| 392 | % \begin{minipage}[t]{7.5cm}
|
|---|
| 393 | % \includegraphics[scale=.62]{electromagnetic/standard/MuPgen/f1tgen.eps}
|
|---|
| 394 | \center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/f1tgen.eps}
|
|---|
| 395 | \caption{Histograms of generated $t$ distributions for
|
|---|
| 396 | $E_\gamma = 10\,{\rm GeV}$ (solid line) and
|
|---|
| 397 | $E_\gamma = 100\,{\rm GeV}$ (dashed line) with $10^6$ events each.}
|
|---|
| 398 | \label{f1t_gen.eps}
|
|---|
| 399 | % \end{minipage}
|
|---|
| 400 | \end{figure}
|
|---|
| 401 | % \hfill
|
|---|
| 402 | \begin{figure}[htpb]
|
|---|
| 403 | % \begin{minipage}[t]{7.5cm}
|
|---|
| 404 | % { \center\includegraphics[scale=.6]{electromagnetic/standard/MuPgen/PsiGen.eps}
|
|---|
| 405 | \center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/PsiGen.eps}
|
|---|
| 406 | \caption{Histograms of generated $\psi$ distributions for beryllium at
|
|---|
| 407 | four different photon energies.}
|
|---|
| 408 | \label{plot:PsiGen.eps}
|
|---|
| 409 | % }
|
|---|
| 410 | % \end{minipage}
|
|---|
| 411 | \end{figure}
|
|---|
| 412 |
|
|---|
| 413 | \noindent
|
|---|
| 414 | The Monte Carlo generation is done using the rejection technique. About
|
|---|
| 415 | 70\% of the generated numbers are kept in this step. Generated
|
|---|
| 416 | $t$-distributions are shown in Fig.\,\ref{f1t_gen.eps}.
|
|---|
| 417 | \\ \\
|
|---|
| 418 | {\bf 3)} Generate $\psi$ by the rejection technique using $t$ generated in
|
|---|
| 419 | the previous step for the frequency distribution
|
|---|
| 420 | \begin{equation}\label{q3}
|
|---|
| 421 | f_2(\psi) =\Big[1-2\,x_+x_-+4\,x_+x_-t\,(1-t)\,(1+\cos(2\psi))\Big]\;, \qquad 0\le\psi\le2\pi\,.
|
|---|
| 422 | \end{equation}
|
|---|
| 423 | The maximum of $f_2(\psi)$ is
|
|---|
| 424 | \begin{equation}
|
|---|
| 425 | \max [f_2(\psi)]=1-2\,x_+x_-\left[1-4\,t\,(1-t)\right]\,.\,
|
|---|
| 426 | \end{equation}
|
|---|
| 427 | Generated distributions in $\psi$ are shown in Fig.\,\ref{plot:PsiGen.eps}.
|
|---|
| 428 | \\ \\
|
|---|
| 429 | {\bf 4)} Generate $\rho$. \\
|
|---|
| 430 | %old The frequency distribution to generate is
|
|---|
| 431 | %old \begin{equation}
|
|---|
| 432 | %old f_2(\rho^2) = \frac{1}{\rho^2 + \kappa^2} \qquad 0 \leq \rho^2 \leq 1
|
|---|
| 433 | %old \end{equation}
|
|---|
| 434 | %old where $\kappa^2=1/W$ with the value of $W$ calculated in step 1. % according to Eq.\,\ref{eq:W}.
|
|---|
| 435 | %old The distribution can be generated by direct transformation.
|
|---|
| 436 | %old By integration
|
|---|
| 437 | %old \[
|
|---|
| 438 | %old F_2(x) = \int_0^x f_2(\rho^2) \, d \rho^2 = \log\left(1 + \frac{x}{\kappa^2} \right)
|
|---|
| 439 | %old \]
|
|---|
| 440 | %old with the inverse
|
|---|
| 441 | %old \[
|
|---|
| 442 | %old F_2^{-1}(x) = \kappa^2 \, \left(e^x -1\right)\;.
|
|---|
| 443 | %old \]
|
|---|
| 444 | %old This is mapped by linear transform $a + b x$ to the range
|
|---|
| 445 | %old $(0,1)$ of the standard random generator.
|
|---|
| 446 | %old From
|
|---|
| 447 | %old \[ x=0 \quad : \qquad F_2^{-1}(a + b x) = \kappa^2 \, \left(e^a -1\right) = 0 \qquad \Rightarrow \qquad a=0 \]
|
|---|
| 448 | %old and
|
|---|
| 449 | %old \[ x=1 \quad : \qquad F_2^{-1}(a + b x) = \kappa^2 \, \left(e^b -1\right) = 1 \qquad \Rightarrow \qquad
|
|---|
| 450 | %old b=\log\left( 1+1/\kappa^2\right) = \log\left( 1+W^2\right) \; .\]
|
|---|
| 451 | %old The direct transformation $F_2^{-1}(a + b \, R)$, applied to the flat random distribution $R$ to generate $\rho^2$
|
|---|
| 452 | %old is therefore
|
|---|
| 453 | %old \begin{equation}
|
|---|
| 454 | %old \rho^2 = \kappa^2 \left(e^{R \log\left( 1+1/\kappa^2\right)} -1\right)
|
|---|
| 455 | %old = \kappa^2 \, \left[ \left( 1+1/\kappa^2\right)^R -1 \right]
|
|---|
| 456 | %old = \frac{\left( 1+W^2\right)^R -1 }{W^2} \;.
|
|---|
| 457 | %old \end{equation}
|
|---|
| 458 | %old Generated distributions in $\rho^2$ are shown in Fig.\,\ref{plot:rho2.eps}.
|
|---|
| 459 | %old The distribution is, with growing photon energy, increasingly peaked at 0.
|
|---|
| 460 | %old Note that $\rho$ does not depend on $t$. One could do step 3 before 2 or after step 4.
|
|---|
| 461 | The distribution in $\rho$ has the form
|
|---|
| 462 | \begin{equation}\label{rho1}
|
|---|
| 463 | f_3(\rho)\,d\rho=\frac{\rho^3\,d\rho}{\rho^4+C_2}\,,\quad
|
|---|
| 464 | 0\le\rho\le \rho_{\rm max}\,,\,
|
|---|
| 465 | \end{equation}
|
|---|
| 466 | where
|
|---|
| 467 | \begin{equation}\label{rhomax}
|
|---|
| 468 | \rho_{\rm max}^2=\frac{1.9}{A^{0.27}}\,\left(\frac{1}{t}-1\right), \,
|
|---|
| 469 | \end{equation}
|
|---|
| 470 | and
|
|---|
| 471 | \begin{equation}\label{C2}
|
|---|
| 472 | C_2=\frac4{\sqrt{x_+x_-}}\left[\left(\frac{m_\mu}{2E_\gamma x_+x_-\,t}
|
|---|
| 473 | \right)^2+\left(\frac{m_e}{183 \, Z^{-1/3} \, m_\mu}\right)^2
|
|---|
| 474 | \right]^2\,.
|
|---|
| 475 | \end{equation}
|
|---|
| 476 | The $\rho$ distribution is obtained by a direct transformation applied to
|
|---|
| 477 | uniform random numbers $R_i$ according to
|
|---|
| 478 | \begin{equation}\label{rho}
|
|---|
| 479 | \rho=\left[C_2(\exp(\beta\,R_i)-1)\right]^{1/4}\,,
|
|---|
| 480 | \end{equation}
|
|---|
| 481 | where
|
|---|
| 482 | \begin{equation}\label{beta}
|
|---|
| 483 | \beta=\log\left(\frac{C_2+\rho_{\rm max}^4}{C_2}\right)\,.
|
|---|
| 484 | \end{equation}
|
|---|
| 485 | Generated distributions of $\rho$ are shown in Fig.\,\ref{plot:rho.eps}
|
|---|
| 486 |
|
|---|
| 487 | \begin{figure}[htpb]
|
|---|
| 488 | % \begin{minipage}[t]{7.5cm}
|
|---|
| 489 | % \includegraphics[scale=.6]{electromagnetic/standard/MuPgen/rho.eps}
|
|---|
| 490 | \center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/rho.eps}
|
|---|
| 491 | \caption{Histograms of generated $\rho$ distributions for beryllium at
|
|---|
| 492 | two different photon energies. The total number of entries at each energy
|
|---|
| 493 | is $10^6$.}
|
|---|
| 494 | \label{plot:rho.eps}
|
|---|
| 495 | % \end{minipage}
|
|---|
| 496 | \end{figure}
|
|---|
| 497 | % \hfill
|
|---|
| 498 | \begin{figure}[htpb]
|
|---|
| 499 | % \begin{minipage}[t]{7.5cm}
|
|---|
| 500 | % \includegraphics[scale=.6]{electromagnetic/standard/MuPgen/thetaPlus.eps}
|
|---|
| 501 | \center\includegraphics[scale=.8]{electromagnetic/standard/MuPgen/thetaPlus.eps}
|
|---|
| 502 | \caption{Histograms of generated $\theta_+$ distributions at different photon energies.}
|
|---|
| 503 | \label{plot:thetaPlus}
|
|---|
| 504 | % \end{minipage}
|
|---|
| 505 | \end{figure}
|
|---|
| 506 |
|
|---|
| 507 | \noindent
|
|---|
| 508 | {\bf 5)} Calculate $\theta_+,\theta_-$ and $\varphi$ from $t, \rho,\psi$ with
|
|---|
| 509 | \begin{equation}
|
|---|
| 510 | \gamma_\pm = \frac{E_\mu^\pm}{m_\mu} \qquad {\rm and} \qquad
|
|---|
| 511 | u=\sqrt{\frac1t-1}\,.
|
|---|
| 512 | \label{eq:gammau}
|
|---|
| 513 | \end{equation}
|
|---|
| 514 | according to
|
|---|
| 515 | \begin{equation}\label{s2}
|
|---|
| 516 | \theta_+=
|
|---|
| 517 | \frac{1}{\gamma_+}\,\left(u +\frac{\rho}{2}\,\cos\psi\right)\,,\quad \theta_-=
|
|---|
| 518 | \frac{1}{\gamma_-}\,\left(u -\frac{\rho}{2}\,\cos\psi\right)\, \quad {\rm and}
|
|---|
| 519 | \quad \varphi=\frac{\rho}{u} \, \sin\psi\, . \,
|
|---|
| 520 | \end{equation}
|
|---|
| 521 | The muon vectors can now be constructed from Eq.\,(\ref{eq:pvec}), where
|
|---|
| 522 | $\varphi_0$ is chosen randomly between 0 and $2\pi$.
|
|---|
| 523 | Fig.\,\ref{plot:thetaPlus} shows distributions of $\theta_+$ at different
|
|---|
| 524 | photon energies (in beryllium). The spectra peak around $1/\gamma$ as
|
|---|
| 525 | expected.
|
|---|
| 526 |
|
|---|
| 527 | The most probable values are $\theta_+\sim m_\mu/E_\mu^+ = 1 / \gamma_+$. In the small angle
|
|---|
| 528 | approximation used here, the values of $\theta_+$ and $\theta_-$
|
|---|
| 529 | can in principle be any positive value from 0 to $\infty$.
|
|---|
| 530 | In the simulation, this may lead (with a very small probability, of the
|
|---|
| 531 | order of $m_\mu/E_\gamma$) to unphysical events in which $\theta_+$ or
|
|---|
| 532 | $\theta_-$ is greater than $\pi$. To avoid this, a limiting angle
|
|---|
| 533 | $\theta_{\rm cut}=\pi$ is introduced, and the angular sampling repeated,
|
|---|
| 534 | whenever $\max(\theta_+,\,\theta_-)>\theta_{\rm cut}$ \, .
|
|---|
| 535 |
|
|---|
| 536 | \begin{figure}[htpb]
|
|---|
| 537 | \center\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/Fig1.eps}
|
|---|
| 538 | \caption{Angular distribution of positive (or negative) muons.
|
|---|
| 539 | %old $E_\gamma=10\:{\rm GeV}$, $x_+=0.3$; iron.
|
|---|
| 540 | The solid curve represents
|
|---|
| 541 | the results of the exact calculations. The histogram is the simulated
|
|---|
| 542 | distribution. The angular distribution for pairs created in the field
|
|---|
| 543 | of the Coulomb centre (point-like target) is shown by the dashed curve
|
|---|
| 544 | for comparison.}
|
|---|
| 545 | \label{plot:Fig1}
|
|---|
| 546 | \end{figure}
|
|---|
| 547 |
|
|---|
| 548 | \begin{figure}[htpb]
|
|---|
| 549 | % \begin{minipage}[t]{7.5cm}
|
|---|
| 550 | % { \center\includegraphics[scale=.65]{electromagnetic/standard/MuPgen/Fig2.eps}
|
|---|
| 551 | \center\includegraphics[scale=0.8]{electromagnetic/standard/MuPgen/Fig2.eps}
|
|---|
| 552 | \caption{Angular distribution in logarithmic scale. The curve corresponds
|
|---|
| 553 | to the exact calculations and the histogram is the simulated
|
|---|
| 554 | distribution.}
|
|---|
| 555 | \label{plot:Fig2}
|
|---|
| 556 | % }
|
|---|
| 557 | % \end{minipage}
|
|---|
| 558 | \end{figure}
|
|---|
| 559 | % \hfill
|
|---|
| 560 | \begin{figure}[htpb]
|
|---|
| 561 | % \begin{minipage}[t]{7.5cm}
|
|---|
| 562 | % \includegraphics[scale=.65]{electromagnetic/standard/MuPgen/Fig3.eps}
|
|---|
| 563 | \center\includegraphics[scale=0.8]{electromagnetic/standard/MuPgen/Fig3.eps}
|
|---|
| 564 | \caption{Distribution of the difference of transverse momenta of positive
|
|---|
| 565 | and negative muons (with logarithmic x-scale).}
|
|---|
| 566 | \label{plot:Fig3}
|
|---|
| 567 | % \end{minipage}
|
|---|
| 568 | \end{figure}
|
|---|
| 569 |
|
|---|
| 570 | Figs.\,\ref{plot:Fig1},\ref{plot:Fig2} and \ref{plot:Fig3} show
|
|---|
| 571 | distributions of the simulated angular characteristics of muon pairs in
|
|---|
| 572 | comparison with results of exact calculations. The latter were obtained
|
|---|
| 573 | by means of numerical integration of the squared matrix elements with
|
|---|
| 574 | respective nuclear and atomic form factors. All these calculations were
|
|---|
| 575 | made for iron, with $E_\gamma=10\,{\rm GeV}$ and $x_+=0.3$. As seen from
|
|---|
| 576 | Fig.\,\ref{plot:Fig1}, wide angle pairs (at low values of the argument in
|
|---|
| 577 | the figure) are suppressed in comparison with the Coulomb center
|
|---|
| 578 | approximation. This is due to the influence of the finite nuclear size
|
|---|
| 579 | which is comparable to the inverse mass of the muon. Typical angles of
|
|---|
| 580 | particle emission are of the order of
|
|---|
| 581 | $1/\gamma_\pm=m_\mu/E_\mu^\pm$ (Fig.\,\ref{plot:Fig2}). Fig.\,\ref{plot:Fig3}
|
|---|
| 582 | illustrates the influence of the momentum transferred to the target on the
|
|---|
| 583 | angular characteristics of the produced pair. In the frame of the often
|
|---|
| 584 | used model which neglects target recoil, the pair particles would be
|
|---|
| 585 | symmetric in transverse momenta, and coplanar with the initial photon.
|
|---|
| 586 |
|
|---|
| 587 |
|
|---|
| 588 | \subsection{Status of this document}
|
|---|
| 589 | 28.05.02 created by H.Burkhardt. \\
|
|---|
| 590 | 01.12.02 re-worded by D.H. Wright \\
|
|---|
| 591 |
|
|---|
| 592 | \begin{latexonly}
|
|---|
| 593 |
|
|---|
| 594 | \begin{thebibliography}{99}
|
|---|
| 595 |
|
|---|
| 596 | \bibitem{MuPgen}
|
|---|
| 597 | H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Monte Carlo Generator for Muon
|
|---|
| 598 | Pair Production''. CERN-SL-2002-016 (AP) and CLIC Note 511, May 2002.
|
|---|
| 599 |
|
|---|
| 600 | \bibitem{Kelner:1995hu}
|
|---|
| 601 | S.~R. Kelner, R.~P. Kokoulin, and A.~A. Petrukhin, ``About cross section
|
|---|
| 602 | for high energy muon bremsstrahlung,''. Moscow Phys. Eng. Inst. 024-95, 1995.
|
|---|
| 603 | 31pp.
|
|---|
| 604 |
|
|---|
| 605 | \end{thebibliography}
|
|---|
| 606 |
|
|---|
| 607 | \end{latexonly}
|
|---|
| 608 |
|
|---|
| 609 | \begin{htmlonly}
|
|---|
| 610 |
|
|---|
| 611 | \subsection{Bibliography}
|
|---|
| 612 |
|
|---|
| 613 | \begin{enumerate}
|
|---|
| 614 | \item H.~Burkhardt, S.~Kelner, and R.~Kokoulin,
|
|---|
| 615 | ``Monte Carlo Generator for Muon
|
|---|
| 616 | Pair Production''. CERN-SL-2002-016 (AP) and CLIC Note 511, May 2002.
|
|---|
| 617 |
|
|---|
| 618 | \item S.~R. Kelner, R.~P. Kokoulin, and A.~A. Petrukhin, ``About cross section
|
|---|
| 619 | for high energy muon bremsstrahlung,''. Moscow Phys. Eng. Inst. 024-95, 1995.
|
|---|
| 620 | 31pp.
|
|---|
| 621 | \end{enumerate}
|
|---|
| 622 |
|
|---|
| 623 | \end{htmlonly}
|
|---|
| 624 |
|
|---|
| 625 |
|
|---|