| 1 |
|
|---|
| 2 | \section[Positron - Electron Annihilation into Hadrons]{Positron - Electron Annihilation into Hadrons}
|
|---|
| 3 |
|
|---|
| 4 | \subsection{Introduction}
|
|---|
| 5 | The process {\tt G4eeToHadrons} simulates the in-flight annihilation
|
|---|
| 6 | of a positron with an atomic electron into hadrons. It is assumed here
|
|---|
| 7 | that the atomic electron is initially free and at rest. Currently only
|
|---|
| 8 | two-pion production is available with a validity range up to 1 TeV.
|
|---|
| 9 |
|
|---|
| 10 | \subsection{Cross Section and Mean Free Path}
|
|---|
| 11 | The annihilation of positrons and target electrons producing pion pairs in
|
|---|
| 12 | the final state (${\rm e}^+{\rm e}^- \to \pi^+\pi^-$) may give an
|
|---|
| 13 | appreciable contribution to electron-jet conversion at the LHC, and
|
|---|
| 14 | for the increasing total number of muons produced in the beam pipe of
|
|---|
| 15 | the linear collider \cite{anniToHad.mu}. The threshold positron energy in the
|
|---|
| 16 | laboratory system for this process with the target electron at rest is
|
|---|
| 17 | \begin{equation}\label{he0}
|
|---|
| 18 | E_{\rm th}=2m_\pi^2/m_e-m_e\approx 70.35\:{\rm GeV}\,,
|
|---|
| 19 | \end{equation}
|
|---|
| 20 | where $m_\pi$ and $m_e$ are the pion and electron masses, respectively.
|
|---|
| 21 | The total cross section is dominated by the reaction
|
|---|
| 22 | \begin{equation}\label{he1}
|
|---|
| 23 | {\rm e}^+{\rm e}^- \to \rho\gamma\to\pi^+\pi^-\gamma,
|
|---|
| 24 | \end{equation}
|
|---|
| 25 | where $\gamma$ is a radiative photon and $\rho(770)$ is a well known vector
|
|---|
| 26 | meson. This radiative correction is essential, because it significantly
|
|---|
| 27 | modifies the shape of the resonance. Details of the theory are described in
|
|---|
| 28 | \cite{anniToHad.ben}, in which the main term and the leading $\alpha^2$
|
|---|
| 29 | corrections are taken into account.
|
|---|
| 30 |
|
|---|
| 31 | \subsection {Sampling the final state}
|
|---|
| 32 |
|
|---|
| 33 | The final state of the $e+e-$ annihilation process \ref{he1}
|
|---|
| 34 | is simulated by first determining the kinematic limits of the photon energy
|
|---|
| 35 | in the center of mass system
|
|---|
| 36 | and then sampling the photon energy within those limits using the
|
|---|
| 37 | differential cross section. Conservation of energy-momentum is then used to
|
|---|
| 38 | determine the four-momentum of the pion final state. Then
|
|---|
| 39 | the backward transformation to the laboratory system is performed.
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | \subsection{Status of this document}
|
|---|
| 43 | 09.12.05 created by V.Ivanchenko \\
|
|---|
| 44 |
|
|---|
| 45 | \begin{latexonly}
|
|---|
| 46 |
|
|---|
| 47 | \begin{thebibliography}{99}
|
|---|
| 48 | \bibitem{anniToHad.mu} A.G. Bogdanov et al., IEEE-NSS-33-179
|
|---|
| 49 | conference Record, 2004, accepted by IEEE Transaction.
|
|---|
| 50 | \bibitem{anniToHad.ben} M. Benayoun et al., Mod. Phys. Lett. A14,
|
|---|
| 51 | 2605 (1999).
|
|---|
| 52 | \end{thebibliography}
|
|---|
| 53 |
|
|---|
| 54 | \end{latexonly}
|
|---|
| 55 |
|
|---|
| 56 | \begin{htmlonly}
|
|---|
| 57 |
|
|---|
| 58 | \subsection{Bibliography}
|
|---|
| 59 |
|
|---|
| 60 | \begin{enumerate}
|
|---|
| 61 | \item A.G. Bogdanov et al., IEEE-NSS-33-179
|
|---|
| 62 | conference Record, 2004, accepted by IEEE Transaction.
|
|---|
| 63 | \item M. Benayoun et al., Mod. Phys. Lett. A14,
|
|---|
| 64 | 2605 (1999).
|
|---|
| 65 | \end{enumerate}
|
|---|
| 66 |
|
|---|
| 67 | \end{htmlonly}
|
|---|
| 68 |
|
|---|