| 1 |
|
|---|
| 2 | \section[Positron - Electron Annihilation]{Positron - Electron Annihilation}\label{sec:em.annil}
|
|---|
| 3 |
|
|---|
| 4 | \subsection{Introduction}
|
|---|
| 5 | The process {\tt G4eplusAnnihilation} simulates the in-flight annihilation
|
|---|
| 6 | of a positron with an atomic electron. As is usually done in shower
|
|---|
| 7 | programs \cite{egs4}, it is assumed here that the atomic electron is
|
|---|
| 8 | initially free and at rest. Also, annihilation processes producing one, or
|
|---|
| 9 | three or more, photons are ignored because these processes are negligible
|
|---|
| 10 | compared to the annihilation into two photons \cite{egs4,messel}.
|
|---|
| 11 |
|
|---|
| 12 | \subsection{Cross Section and Mean Free Path}
|
|---|
| 13 | \subsubsection{Cross Section per Atom}
|
|---|
| 14 | The annihilation in flight of a positron and electron is described by
|
|---|
| 15 | the cross section formula of Heitler \cite{heitler,egs4}:
|
|---|
| 16 |
|
|---|
| 17 | \begin{eqnarray}
|
|---|
| 18 | \sigma(Z,E) & = & \frac{Z \pi r_e^2}{\gamma +1}
|
|---|
| 19 | \left[\frac{\gamma^2 + 4 \gamma +1}{\gamma^2 -1}
|
|---|
| 20 | \ln \left(\gamma +\sqrt{\gamma^2 -1} \right) -\frac
|
|---|
| 21 | {\gamma +3}{\sqrt{\gamma^2 -1}} \right] \\
|
|---|
| 22 | {\rm where}\nonumber\\
|
|---|
| 23 | E & = & \mbox{total energy of the incident positron} \nonumber \\
|
|---|
| 24 | \gamma & = & E/m c^2 \nonumber \\
|
|---|
| 25 | r_e & = & \mbox{classical electron radius} \nonumber
|
|---|
| 26 | \end{eqnarray}
|
|---|
| 27 |
|
|---|
| 28 | \subsubsection{Mean Free Path}
|
|---|
| 29 | In a given material the mean free path, $\lambda$, for a positron to be
|
|---|
| 30 | annihilated with an electron is given by
|
|---|
| 31 | \begin{equation}
|
|---|
| 32 | \lambda(E) =
|
|---|
| 33 | \left( \sum_i n_{ati} \cdot \sigma(Z_i,E) \right)^{-1}
|
|---|
| 34 | \end{equation}
|
|---|
| 35 | where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element
|
|---|
| 36 | composing the material.
|
|---|
| 37 |
|
|---|
| 38 | \subsection {Sampling the final state}
|
|---|
| 39 |
|
|---|
| 40 | The final state of the $e+e-$ annihilation process
|
|---|
| 41 | \[e^+ \; e^- \to \gamma_a \; \gamma_b \]
|
|---|
| 42 | is simulated by first determining the kinematic limits of the photon energy
|
|---|
| 43 | and then sampling the photon energy within those limits using the
|
|---|
| 44 | differential cross section. Conservation of energy-momentum is then used to
|
|---|
| 45 | determine the directions of the final state photons.
|
|---|
| 46 |
|
|---|
| 47 | \subsubsection{Kinematic Limits}
|
|---|
| 48 |
|
|---|
| 49 | If the incident $e^+$ has a kinetic energy $T$, then the total energy is
|
|---|
| 50 | $E_e = T + mc^2$ and the momentum is $Pc = \sqrt{T(T+2mc^2)}$.
|
|---|
| 51 | The total available energy is $E_{tot} = E_e + mc^2 = E_a + E_b$ and
|
|---|
| 52 | momentum conservation requires $ \vec{P} = \vec{P}_{\gamma_a} + \vec{P}_{\gamma_b}$ . The fraction of the total energy transferred to one photon
|
|---|
| 53 | (say $\gamma_a$) is
|
|---|
| 54 | \begin{equation}
|
|---|
| 55 | \epsilon = \frac{E_a}{E_{tot}} \equiv \frac{E_a}{T+2mc^2} .
|
|---|
| 56 | \end{equation}
|
|---|
| 57 | The energy transfered to $\gamma_a$ is largest when $\gamma_a$ is emitted in
|
|---|
| 58 | the direction of the incident $e^+$. In that case
|
|---|
| 59 | $E_{a max} = (E_{tot}+Pc)/2$ . The energy transfered to $\gamma_a$ is
|
|---|
| 60 | smallest when $\gamma_a$ is emitted in the opposite direction of the
|
|---|
| 61 | incident $e^+$. Then $E_{a min} = (E_{tot}-Pc)/2$ . Hence,
|
|---|
| 62 | \begin {eqnarray}
|
|---|
| 63 | \epsilon_{max} &=& \frac{E_a \mathsf{max}}{E_{tot}} =
|
|---|
| 64 | \frac{1}{2} \left\lbrack 1+ \sqrt{\frac{\gamma - 1}{\gamma+1}} \right\rbrack \\
|
|---|
| 65 | \epsilon_{min} &=& \frac{E_a \mathsf{min}}{E_{tot}} =
|
|---|
| 66 | \frac{1}{2} \left\lbrack 1- \sqrt{\frac{\gamma - 1}{\gamma+1}}
|
|---|
| 67 | \right\rbrack
|
|---|
| 68 | \end {eqnarray}
|
|---|
| 69 | \\
|
|---|
| 70 | where $\qquad \gamma = (T + mc^2)/mc^2$ . Therefore the range of $\epsilon$
|
|---|
| 71 | is
|
|---|
| 72 | $\quad \lbrack \epsilon_{min} \; ; \; \epsilon_{max} \rbrack $
|
|---|
| 73 | $\qquad ( \equiv \lbrack \epsilon_{min} \; ; \; 1-\epsilon_{min} \rbrack) $.
|
|---|
| 74 |
|
|---|
| 75 | \subsubsection{Sampling the Gamma Energy}
|
|---|
| 76 |
|
|---|
| 77 | A short overview of the sampling method is given in Chapter \ref{secmessel}.
|
|---|
| 78 |
|
|---|
| 79 | The differential cross section of the two-photon positron-electron
|
|---|
| 80 | annihilation can be written as
|
|---|
| 81 | \cite{heitler,egs4}:
|
|---|
| 82 | \begin{equation}
|
|---|
| 83 | \frac{d \sigma (Z, \epsilon)} {d \epsilon} =
|
|---|
| 84 | \frac{Z \pi r_e^2}{\gamma - 1} \ \frac{1}{\epsilon} \
|
|---|
| 85 | \left[
|
|---|
| 86 | 1+\frac{2\gamma}{(\gamma+1)^2}-\epsilon-\frac{1}{(\gamma+1)^2}\frac{1}{\epsilon}
|
|---|
| 87 | \right]
|
|---|
| 88 | \end{equation}
|
|---|
| 89 | where
|
|---|
| 90 | $Z$ is the atomic number of the material, $r_e$ the classical electron
|
|---|
| 91 | radius, and $\epsilon \in [ \epsilon_{min} \; ; \; \epsilon_{max} ]$ .
|
|---|
| 92 | The differential cross section can be decomposed as
|
|---|
| 93 | \begin{equation}
|
|---|
| 94 | \frac{d \sigma (Z, \epsilon)} {d \epsilon} =
|
|---|
| 95 | \frac{Z \pi r_e^2}{\gamma - 1}
|
|---|
| 96 | \alpha f(\epsilon) g(\epsilon)
|
|---|
| 97 | \end{equation}
|
|---|
| 98 | where
|
|---|
| 99 | \begin{eqnarray}
|
|---|
| 100 | \alpha &=& \ln (\epsilon_{max}/\epsilon_{min}) \nonumber \\
|
|---|
| 101 | f(\epsilon) &=& \frac{1}{\alpha \epsilon} \\
|
|---|
| 102 | g(\epsilon) &=& \left[
|
|---|
| 103 | 1+\frac{2\gamma}{(\gamma+1)^2}-\epsilon-\frac{1}{(\gamma+1)^2}\frac{1}{\epsilon}
|
|---|
| 104 | \right] \equiv
|
|---|
| 105 | 1-\epsilon+\frac{2 \gamma \epsilon -1}{\epsilon (\gamma +1)^2}
|
|---|
| 106 | \end{eqnarray}
|
|---|
| 107 | Given two random numbers $r, r' \in [0,1]$, the photon energies are chosen
|
|---|
| 108 | as follows:
|
|---|
| 109 | \begin{enumerate}
|
|---|
| 110 | \item
|
|---|
| 111 | sample $\epsilon$ from $f(\epsilon):
|
|---|
| 112 | \epsilon =\epsilon_{min} \left( \frac{\epsilon_{max}}{\epsilon_{min}} \right)^r$
|
|---|
| 113 | \item
|
|---|
| 114 | test the rejection function: if $g(\epsilon) \geq r'$ accept
|
|---|
| 115 | $\epsilon$, otherwise return to step 1.
|
|---|
| 116 | \end{enumerate}
|
|---|
| 117 | Then the photon energies are
|
|---|
| 118 | $E_a = \epsilon E_{tot} \qquad E_b = (1-\epsilon) E_{tot}$ .
|
|---|
| 119 |
|
|---|
| 120 | \subsubsection{Computing the Final State Kinematics}
|
|---|
| 121 | If $\theta$ is the angle between the incident $e^+$ and $\gamma_a$, then
|
|---|
| 122 | from energy-momentum conservation,
|
|---|
| 123 | \begin{equation}
|
|---|
| 124 | \cos \theta = \frac{1}{Pc} \left[ T+mc^2 \frac{2\epsilon -1}{\epsilon} \right]
|
|---|
| 125 | = \frac{\epsilon(\gamma +1) - 1}{\epsilon \sqrt{\gamma^2 -1}} .
|
|---|
| 126 | \end{equation} \\
|
|---|
| 127 | The azimuthal angle, $\phi$, is generated isotropically and the photon
|
|---|
| 128 | momentum vectors, $\vec{P_{\gamma_a}}$ and $\vec{P_{\gamma_b}}$,
|
|---|
| 129 | are computed from energy-momentum conservation and transformed into the lab
|
|---|
| 130 | coordinate system.
|
|---|
| 131 |
|
|---|
| 132 | \subsubsection{Annihilation at Rest}
|
|---|
| 133 | The method {\tt AtRestDoIt} treats the special case when a positron comes
|
|---|
| 134 | to rest before annihilating. It generates two photons, each with energy
|
|---|
| 135 | $k=mc^2$ and an isotropic angular distribution.
|
|---|
| 136 |
|
|---|
| 137 | \subsection{Status of this document}
|
|---|
| 138 | 09.10.98 created by M.Maire. \\
|
|---|
| 139 | 01.08.01 minor corrections (mma) \\
|
|---|
| 140 | 09.01.02 MeanFreePath (mma) \\
|
|---|
| 141 | 01.12.02 Re-written by D.H. Wright \\
|
|---|
| 142 |
|
|---|
| 143 | \begin{latexonly}
|
|---|
| 144 |
|
|---|
| 145 | \begin{thebibliography}{99}
|
|---|
| 146 | \bibitem{egs4} R. Ford and W. Nelson.
|
|---|
| 147 | {\em SLAC-265, UC-32} (1985)
|
|---|
| 148 | \bibitem{messel} H. Messel and D. Crawford.
|
|---|
| 149 | {\em Electron-Photon shower distribution, Pergamon Press} (1970)
|
|---|
| 150 | \bibitem{heitler} W. Heitler.
|
|---|
| 151 | {\em The Quantum Theory of Radiation, Clarendon Press, Oxford} (1954)
|
|---|
| 152 | \end{thebibliography}
|
|---|
| 153 |
|
|---|
| 154 | \end{latexonly}
|
|---|
| 155 |
|
|---|
| 156 | \begin{htmlonly}
|
|---|
| 157 |
|
|---|
| 158 | \subsection{Bibliography}
|
|---|
| 159 |
|
|---|
| 160 | \begin{enumerate}
|
|---|
| 161 | \item R. Ford and W. Nelson.
|
|---|
| 162 | {\em SLAC-265, UC-32} (1985)
|
|---|
| 163 | \item H. Messel and D. Crawford.
|
|---|
| 164 | {\em Electron-Photon shower distribution, Pergamon Press} (1970)
|
|---|
| 165 | \item W. Heitler.
|
|---|
| 166 | {\em The Quantum Theory of Radiation, Clarendon Press, Oxford} (1954)
|
|---|
| 167 | \end{enumerate}
|
|---|
| 168 |
|
|---|
| 169 | \end{htmlonly}
|
|---|
| 170 |
|
|---|