source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/annil.tex @ 1288

Last change on this file since 1288 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 6.6 KB
Line 
1
2\section[Positron - Electron Annihilation]{Positron - Electron Annihilation}\label{sec:em.annil}
3
4\subsection{Introduction}
5The process {\tt G4eplusAnnihilation} simulates the in-flight annihilation
6of a positron with an atomic electron.  As is usually done in shower
7programs \cite{egs4}, it is assumed here that the atomic electron is
8initially free and at rest.  Also, annihilation processes producing one, or
9three or more, photons are ignored because these processes are negligible
10compared to the annihilation into two photons \cite{egs4,messel}.
11
12\subsection{Cross Section and Mean Free Path}
13\subsubsection{Cross Section per Atom}
14The annihilation in flight of a positron and electron is described by
15the cross section formula of Heitler \cite{heitler,egs4}:
16
17\begin{eqnarray}
18\sigma(Z,E) & = & \frac{Z \pi r_e^2}{\gamma +1}
19                  \left[\frac{\gamma^2 + 4 \gamma +1}{\gamma^2 -1}
20                  \ln \left(\gamma +\sqrt{\gamma^2 -1} \right)  -\frac
21                  {\gamma +3}{\sqrt{\gamma^2 -1}} \right\\
22{\rm where}\nonumber\\
23E      & = & \mbox{total energy of the incident positron}  \nonumber \\
24\gamma & = & E/m c^\nonumber \\
25r_e    & = & \mbox{classical electron radius}  \nonumber   
26\end{eqnarray}
27
28\subsubsection{Mean Free Path}
29In a given material the mean free path, $\lambda$, for a positron to be
30annihilated with an electron is given by
31\begin{equation}
32\lambda(E) =
33 \left( \sum_i n_{ati} \cdot \sigma(Z_i,E) \right)^{-1}
34\end{equation}
35where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element
36composing the material.
37
38\subsection {Sampling the final state}
39
40The final state of the $e+e-$ annihilation process
41\[e^+ \; e^- \to \gamma_a \; \gamma_b \]
42is simulated by first determining the kinematic limits of the photon energy
43and then sampling the photon energy within those limits using the
44differential cross section.  Conservation of energy-momentum is then used to
45determine the directions of the final state photons.
46 
47\subsubsection{Kinematic Limits}
48
49If the incident $e^+$ has a kinetic energy $T$, then the total energy is
50$E_e = T + mc^2$ and the momentum is $Pc = \sqrt{T(T+2mc^2)}$.
51The total available energy is $E_{tot} = E_e + mc^2 = E_a + E_b$ and
52momentum conservation requires $ \vec{P} = \vec{P}_{\gamma_a} + \vec{P}_{\gamma_b}$ .  The fraction of the total energy transferred to one photon
53(say $\gamma_a$) is
54\begin{equation}
55 \epsilon = \frac{E_a}{E_{tot}} \equiv \frac{E_a}{T+2mc^2} .
56\end{equation}
57The energy transfered to $\gamma_a$ is largest when $\gamma_a$ is emitted in
58the direction of the incident $e^+$.  In that case
59$E_{a max} = (E_{tot}+Pc)/2$ .  The energy transfered to $\gamma_a$ is
60smallest when $\gamma_a$ is emitted in the opposite direction of the
61incident $e^+$.  Then $E_{a min} = (E_{tot}-Pc)/2$ .  Hence,
62\begin {eqnarray}
63  \epsilon_{max} &=& \frac{E_a \mathsf{max}}{E_{tot}} =
64  \frac{1}{2} \left\lbrack 1+ \sqrt{\frac{\gamma - 1}{\gamma+1}} \right\rbrack \\ 
65  \epsilon_{min} &=& \frac{E_a \mathsf{min}}{E_{tot}} =
66  \frac{1}{2} \left\lbrack 1- \sqrt{\frac{\gamma - 1}{\gamma+1}} 
67  \right\rbrack
68\end {eqnarray}
69\\
70where $\qquad \gamma = (T + mc^2)/mc^2$ .  Therefore the range of $\epsilon$
71is
72 $\quad \lbrack \epsilon_{min} \; ; \; \epsilon_{max} \rbrack $
73 $\qquad ( \equiv \lbrack \epsilon_{min} \; ; \; 1-\epsilon_{min} \rbrack) $.
74     
75\subsubsection{Sampling the Gamma Energy}
76
77A short overview of the sampling method is given in Chapter \ref{secmessel}.
78
79The differential cross section of the two-photon positron-electron
80annihilation can be written as
81\cite{heitler,egs4}:
82\begin{equation}
83   \frac{d \sigma (Z, \epsilon)} {d \epsilon} =
84   \frac{Z \pi r_e^2}{\gamma - 1} \ \frac{1}{\epsilon} \
85   \left[
86   1+\frac{2\gamma}{(\gamma+1)^2}-\epsilon-\frac{1}{(\gamma+1)^2}\frac{1}{\epsilon}
87   \right]
88\end{equation}
89where
90$Z$ is the atomic number of the material, $r_e$ the classical electron
91radius, and $\epsilon \in [ \epsilon_{min} \; ; \; \epsilon_{max} ]$ .
92The differential cross section can be decomposed as
93\begin{equation}
94   \frac{d \sigma (Z, \epsilon)} {d \epsilon} =
95   \frac{Z \pi r_e^2}{\gamma - 1} 
96   \alpha f(\epsilon) g(\epsilon)
97\end{equation}
98where
99\begin{eqnarray}
100\alpha      &=& \ln (\epsilon_{max}/\epsilon_{min}\nonumber \\ 
101f(\epsilon) &=& \frac{1}{\alpha \epsilon} \\
102g(\epsilon) &=& \left[
103    1+\frac{2\gamma}{(\gamma+1)^2}-\epsilon-\frac{1}{(\gamma+1)^2}\frac{1}{\epsilon}
104    \right\equiv 
105    1-\epsilon+\frac{2 \gamma \epsilon -1}{\epsilon (\gamma +1)^2}
106\end{eqnarray}
107Given two random numbers $r, r' \in [0,1]$, the photon energies are chosen
108as follows:
109\begin{enumerate}
110\item 
111  sample $\epsilon$ from $f(\epsilon):
112  \epsilon =\epsilon_{min} \left( \frac{\epsilon_{max}}{\epsilon_{min}} \right)^r$
113\item
114  test the rejection function: if $g(\epsilon) \geq r'$ accept
115  $\epsilon$, otherwise return to step 1.
116\end{enumerate}
117Then the photon energies are
118 $E_a = \epsilon E_{tot} \qquad E_b = (1-\epsilon) E_{tot}$ .
119
120\subsubsection{Computing the Final State Kinematics}
121If $\theta$ is the angle between the incident $e^+$ and $\gamma_a$, then
122from energy-momentum conservation,
123\begin{equation}
124\cos \theta = \frac{1}{Pc} \left[ T+mc^2 \frac{2\epsilon -1}{\epsilon} \right]
125 = \frac{\epsilon(\gamma +1) - 1}{\epsilon \sqrt{\gamma^2 -1}} .
126\end{equation} \\
127The azimuthal angle, $\phi$, is generated isotropically and the photon
128momentum vectors, $\vec{P_{\gamma_a}}$ and $\vec{P_{\gamma_b}}$,
129are computed from energy-momentum conservation and transformed into the lab
130coordinate system.
131
132\subsubsection{Annihilation at Rest} 
133The method {\tt AtRestDoIt} treats the special case when a positron comes
134to rest before annihilating.  It generates two photons, each with energy
135$k=mc^2$ and an isotropic angular distribution.
136
137\subsection{Status of this document}
138 09.10.98 created by M.Maire.     \\
139 01.08.01 minor corrections (mma) \\
140 09.01.02 MeanFreePath (mma) \\
141 01.12.02 Re-written by D.H. Wright \\
142   
143\begin{latexonly}
144
145\begin{thebibliography}{99}
146\bibitem{egs4} R. Ford and W. Nelson.
147   {\em SLAC-265, UC-32} (1985)     
148\bibitem{messel} H. Messel and D. Crawford.
149   {\em Electron-Photon shower distribution, Pergamon Press} (1970)
150\bibitem{heitler} W. Heitler.
151   {\em The Quantum Theory of Radiation, Clarendon Press, Oxford} (1954)
152\end{thebibliography}
153
154\end{latexonly}
155   
156\begin{htmlonly}
157
158\subsection{Bibliography}
159
160\begin{enumerate}
161\item R. Ford and W. Nelson.
162   {\em SLAC-265, UC-32} (1985)     
163\item H. Messel and D. Crawford.
164   {\em Electron-Photon shower distribution, Pergamon Press} (1970)
165\item W. Heitler.
166   {\em The Quantum Theory of Radiation, Clarendon Press, Oxford} (1954)
167\end{enumerate}
168
169\end{htmlonly}
170
Note: See TracBrowser for help on using the repository browser.