\section[Compton scattering]{Compton scattering}\label{sec:em.compton} \subsection{Cross Section and Mean Free Path} \subsubsection{Cross Section per Atom} When simulating the Compton scattering of a photon from an atomic electron, an empirical cross section formula is used, which reproduces the cross section data down to 10 keV: \begin{equation} \sigma(Z,E_{\gamma}) = \left [ P_{1}(Z) \ \frac{\log(1+2X)}{X} + \frac{P_{2}(Z)+P_{3}(Z) X + P_{4}(Z) X^{2}}{1+aX+bX^{2}+cX^{3}} \right ] . \end{equation} Here, \begin{eqnarray*} Z & = & \mbox{atomic number of the medium} \, \\ E_{\gamma} & = & \mbox{energy of the photon} \\ X & = & E_{\gamma}/mc^2 \\ m & = & \mbox{electron mass} \\ P_{i}(Z) & = & Z (d_{i} + e_{i}Z + f_{i}Z^{2}) . \, \end{eqnarray*} \\ The values of the parameters can be found within the method which computes the cross section per atom. A fit of the parameters was made to over 511 data points \cite{hubbell.comp,storm.comp} chosen from the intervals \begin{eqnarray*} 1 \leq Z \leq 100 \end{eqnarray*} and \begin{eqnarray*} E_{\gamma} \in [10 \mbox{ keV} , 100 \mbox{ GeV}] . \end{eqnarray*} The accuracy of the fit was estimated to be \vspace{.3cm} $$ \frac{\Delta\sigma}{\sigma} = \left\{ \begin{array}{lcl} \approx 10\% & \makebox[2cm][r]{\rm for } E_{\gamma} & \simeq 10 \mbox{ keV} -20 \mbox{ keV} \\ \leq 5-6\% & \makebox[2cm][r]{\rm for } E_{\gamma} & > 20 \mbox{ keV} \end{array} \right. $$ \subsubsection{Mean Free Path} In a given material the mean free path, $\lambda$, for a photon to interact via Compton scattering is given by \begin{equation} \lambda(E_{\gamma}) = \left( \sum_i n_{ati} \cdot \sigma_i (E_{\gamma}) \right)^{-1} \end{equation} where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element of the material. \subsection {Sampling the Final State} The quantum mechanical Klein-Nishina differential cross section per atom is \cite{klein.comp} : \begin{equation} \frac{d\sigma}{d\epsilon} =\pi r_e^2 \ \frac{m_e c^2}{E_0} \ Z \left[\frac{1}{\epsilon}+\epsilon\right] \left[1 - \frac{\epsilon \sin^2 \theta}{1+\epsilon^2}\right] \end{equation} where \quad \begin{tabular}[t]{l@{\ = \ }l} $r_e$ & classical electron radius \\ $m_e c^2$ & electron mass \\ $E_0$ & energy of the incident photon \\ $E_1$ & energy of the scattered photon \\ $\epsilon$ & $E_1/E_0$ . \end{tabular} \noindent Assuming an elastic collision, the scattering angle $\theta$ is defined by the Compton formula: \begin{equation} E_1 = E_0 \ \frac{m_{\rm e}c^2}{ m_{\rm e}c^2 + E_0(1-\cos\theta )} . \end{equation} \subsubsection{Sampling the Photon Energy} The value of $\epsilon$ corresponding to the minimum photon energy (backward scattering) is given by \begin{equation} \epsilon_0 = \frac{m_{\rm e}c^2}{m_{\rm e}c^2+2E_0} , \end{equation} hence $\epsilon \in [\epsilon_0, 1]$. Using the combined composition and rejection Monte Carlo methods described in \cite{butch.comp,messel.comp,ford.comp} one may set \begin{equation} \Phi(\epsilon) \simeq \left[ \frac{1}{\epsilon}+\epsilon \right] \left[ 1 - \frac{\epsilon \sin^2 \theta}{1+\epsilon^2} \right] = f(\epsilon) \cdot g(\epsilon) = \left[ \alpha_1 f_1(\epsilon) + \alpha_2 f_2(\epsilon) \right] \cdot g(\epsilon) , \end{equation} where $$ \begin{array}{lcl} \alpha_1 = \ln (1/\epsilon_0) & ; & f_1(\epsilon) = 1/(\alpha_1\epsilon) \\ \alpha_2 = (1-\epsilon_0^2)/2 & ; & f_2(\epsilon) = \epsilon/\alpha_2 . \end{array} $$ $f_1$ and $f_2$ are probability density functions defined on the interval $\lbrack\epsilon_0, 1\rbrack$, and $$ g(\epsilon) = \left[ 1 - \frac{\epsilon}{1+\epsilon^2} \sin^2\theta \right] $$ is the rejection function $\forall \epsilon \in [\epsilon_0, 1] \Longrightarrow 0 < g(\epsilon) \leq 1$.\\ \noindent Given a set of 3 random numbers $r, r', r''$ uniformly distributed on the interval [0,1], the sampling procedure for $\epsilon$ is the following: \begin{enumerate} \item decide whether to sample from $f_1(\epsilon)$ or $f_2(\epsilon)$: \\ if $ r < \alpha_1/(\alpha_1+\alpha_2)$ select $f_1(\epsilon)$, otherwise select $f_2(\epsilon)$ \item sample $\epsilon$ from the distributions corresponding to $f_1$ or $f_2$: \\ for $f_1 : \epsilon = \epsilon_0^{r'} \qquad (\equiv \exp(-r' \alpha_1))$ \\ for $f_2 : \epsilon^2 = \epsilon_0^2 + (1-\epsilon_0^2)r'$ \item calculate $\sin^2\theta = t(2-t)$ where $t \equiv (1-\cos\theta) = m_e c^2 (1-\epsilon)/(E_0 \epsilon)$ \item test the rejection function: \\ if $g(\epsilon) \geq r''$ accept $\epsilon$, otherwise go to step 1. \end{enumerate} \subsubsection{Compute the Final State Kinematics} After the successful sampling of $\epsilon$, the polar angles of the scattered photon with respect to the direction of the parent photon are generated. The azimuthal angle, $\phi$, is generated isotropically and $\theta$ is as defined in the previous section. The momentum vector of the scattered photon, $\overrightarrow{P_{\gamma1}}$, is then transformed into the {\tt World} coordinate system. The kinetic energy and momentum of the recoil electron are then \begin{eqnarray*} T_{el} & = & E_0 - E_1 \\ \overrightarrow{P_{el}} & = & \overrightarrow{P_{\gamma0}} - \overrightarrow{P_{\gamma1}} . \end{eqnarray*} \subsection{Validity} The differential cross-section is valid only for those collisions in which the energy of the recoil electron is large compared to its binding energy (which is ignored). However, as pointed out by Rossi \cite{rossi.comp}, this has a negligible effect because of the small number of recoil electrons produced at very low energies. \subsection{Status of this document} 09.10.98 created by M.Maire. \\ 14.01.02 minor revision (mma) \\ 22.04.02 reworded by D.H. Wright \\ 18.03.04 include references for total cross section (mma) \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{hubbell.comp} Hubbell, Gimm and Overbo. {\em J. Phys. Chem. Ref. Data 9} 1023 (1980) \bibitem{storm.comp} H. Storm and H.I. Israel {\em Nucl. Data Tables A7} 565 (1970) \bibitem{klein.comp} O. Klein and Y. Nishina. {\em Z. Physik 52} 853 (1929) \bibitem{butch.comp} J.C. Butcher and H. Messel. {\em Nucl. Phys. 20} 15 (1960) \bibitem{messel.comp} H. Messel and D. Crawford. {\em Electron-Photon shower distribution, Pergamon Press} (1970) \bibitem{ford.comp} R. Ford and W. Nelson. {\em SLAC-265, UC-32} (1985) \bibitem{rossi.comp} B. Rossi. {\em High energy particles, Prentice-Hall} 77-79 (1952) \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item Hubbell, Gimm and Overbo. {\em J. Phys. Chem. Ref. Data 9} 1023 (1980) \item H. Storm and H.I. Israel {\em Nucl. Data Tables A7} 565 (1970) \item O. Klein and Y. Nishina. {\em Z. Physik 52} 853 (1929) \item J.C. Butcher and H. Messel. {\em Nucl. Phys. 20} 15 (1960) \item H. Messel and D. Crawford. {\em Electron-Photon shower distribution, Pergamon Press} (1970) \item R. Ford and W. Nelson. {\em SLAC-265, UC-32} (1985) \item B. Rossi. {\em High energy particles, Prentice-Hall} 77-79 (1952) \end{enumerate} \end{htmlonly}