source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/compton.tex @ 1358

Last change on this file since 1358 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 7.2 KB
Line 
1
2\section[Compton scattering]{Compton scattering}\label{sec:em.compton}
3\subsection{Cross Section and Mean Free Path}
4\subsubsection{Cross Section per Atom}
5When simulating the Compton scattering of a photon from an atomic electron, an
6empirical cross section formula is used, which reproduces the cross section
7data down to 10 keV:
8\begin{equation}
9\sigma(Z,E_{\gamma}) = \left [ P_{1}(Z) \ \frac{\log(1+2X)}{X} +
10\frac{P_{2}(Z)+P_{3}(Z) X + P_{4}(Z) X^{2}}{1+aX+bX^{2}+cX^{3}} \right ] .
11\end{equation}
12Here,
13\begin{eqnarray*}
14 Z          & = & \mbox{atomic number of the medium} \, \\
15 E_{\gamma} & = & \mbox{energy of the photon}  \\
16 X          & = & E_{\gamma}/mc^\\
17 m          & = & \mbox{electron mass}  \\
18 P_{i}(Z)   & = & Z (d_{i} + e_{i}Z + f_{i}Z^{2}) . \,
19\end{eqnarray*}
20\\ 
21The values of the parameters can be found within the method which computes
22the cross section per atom.  A fit of the parameters was made to over 511 data
23points \cite{hubbell.comp,storm.comp} chosen from the intervals
24\begin{eqnarray*}
251 \leq Z \leq 100
26\end{eqnarray*}
27and
28\begin{eqnarray*}
29 E_{\gamma} \in [10 \mbox{ keV} , 100 \mbox{ GeV}] .
30\end{eqnarray*}
31The accuracy of the fit was estimated to be
32 
33\vspace{.3cm}
34$$
35\frac{\Delta\sigma}{\sigma} = \left\{ 
36\begin{array}{lcl}
37\approx 10\% & \makebox[2cm][r]{\rm for } E_{\gamma} & \simeq 10 \mbox{ keV}
38-20 \mbox{ keV} \\ 
39\leq 5-6\% & \makebox[2cm][r]{\rm for } E_{\gamma} & > 20 \mbox{ keV}
40\end{array} \right.
41$$
42\subsubsection{Mean Free Path}
43In a given material the mean free path, $\lambda$, for a photon to interact
44via Compton scattering is given by
45\begin{equation}
46\lambda(E_{\gamma}) =
47 \left( \sum_i n_{ati} \cdot \sigma_i (E_{\gamma}) \right)^{-1}
48\end{equation}
49where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element of
50the material.
51 
52\subsection {Sampling the Final State} 
53The quantum mechanical Klein-Nishina differential cross section per atom
54is \cite{klein.comp} :
55\begin{equation}
56\frac{d\sigma}{d\epsilon} =\pi r_e^2 \
57\frac{m_e c^2}{E_0} \ Z
58     \left[\frac{1}{\epsilon}+\epsilon\right]
59     \left[1 - \frac{\epsilon \sin^2 \theta}{1+\epsilon^2}\right]
60\end{equation}
61where \quad
62\begin{tabular}[t]{l@{\ = \ }l}
63$r_e$       & classical electron radius       \\
64$m_e c^2$   & electron mass                   \\
65$E_0$       & energy of the incident photon   \\
66$E_1$       & energy of the scattered photon  \\
67$\epsilon$  & $E_1/E_0$  .                     
68\end{tabular}
69
70\noindent 
71Assuming an elastic collision, the scattering angle $\theta$ is defined by the
72Compton formula:
73\begin{equation}
74   E_1   = E_0 \ \frac{m_{\rm e}c^2}{ m_{\rm e}c^2 + E_0(1-\cos\theta )} .
75\end{equation}
76
77\subsubsection{Sampling the Photon Energy}
78The value of $\epsilon$ corresponding to the minimum photon energy (backward
79scattering) is given by
80\begin{equation}
81\epsilon_0 = \frac{m_{\rm e}c^2}{m_{\rm e}c^2+2E_0} ,
82\end{equation}
83hence $\epsilon \in [\epsilon_0, 1]$.  Using the combined composition and
84rejection Monte Carlo methods described in
85\cite{butch.comp,messel.comp,ford.comp} one may set
86\begin{equation}
87\Phi(\epsilon)
88     \simeq  \left[ \frac{1}{\epsilon}+\epsilon \right]
89                \left[ 1 - \frac{\epsilon \sin^2 \theta}{1+\epsilon^2} \right]
90     = f(\epsilon) \cdot g(\epsilon)
91     = \left[ \alpha_1 f_1(\epsilon) + \alpha_2 f_2(\epsilon) \right] 
92              \cdot g(\epsilon) ,
93\end{equation}
94where
95$$
96\begin{array}{lcl}
97\alpha_1      = \ln (1/\epsilon_0) & ; &
98f_1(\epsilon) = 1/(\alpha_1\epsilon)       \\
99\alpha_2      = (1-\epsilon_0^2)/2 & ; &
100f_2(\epsilon) = \epsilon/\alpha_2 .         
101\end{array}
102$$ 
103$f_1$ and $f_2$ are probability density functions defined on the interval
104$\lbrack\epsilon_0, 1\rbrack$, and
105$$
106g(\epsilon) = \left[ 1 - \frac{\epsilon}{1+\epsilon^2} \sin^2\theta \right]
107$$ 
108is the rejection function
109$\forall \epsilon \in [\epsilon_0, 1] \Longrightarrow 0 < g(\epsilon) \leq 1$.\\
110 
111\noindent 
112Given a set of 3 random numbers $r, r', r''$ uniformly distributed on the
113interval [0,1], the sampling procedure for $\epsilon$ is the following:
114\begin{enumerate}
115\item
116decide whether to sample from $f_1(\epsilon)$ or $f_2(\epsilon)$: \\
117if $ r < \alpha_1/(\alpha_1+\alpha_2)$ select $f_1(\epsilon)$, otherwise
118select $f_2(\epsilon)$
119\item 
120sample $\epsilon$ from the distributions corresponding to $f_1$ or $f_2$: \\ 
121for $f_1 : \epsilon   = \epsilon_0^{r'} \qquad (\equiv \exp(-r' \alpha_1))$ \\ 
122for $f_2 : \epsilon^2 = \epsilon_0^2 + (1-\epsilon_0^2)r'$
123 
124\item 
125calculate $\sin^2\theta = t(2-t)$ where
126$t \equiv (1-\cos\theta) = m_e c^2 (1-\epsilon)/(E_0 \epsilon)$
127
128\item 
129test the rejection function: \\
130if $g(\epsilon) \geq r''$ accept $\epsilon$, otherwise go to step 1.
131\end{enumerate}
132
133\subsubsection{Compute the Final State Kinematics}
134After the successful sampling of $\epsilon$, the polar angles of the
135scattered photon with respect to the direction of the parent photon
136are generated.  The azimuthal angle, $\phi$, is generated isotropically and
137$\theta$ is as defined in the previous section.  The momentum vector of the
138scattered photon, $\overrightarrow{P_{\gamma1}}$, is then transformed into
139the {\tt World} coordinate system.  The kinetic energy and momentum of the
140recoil electron are then
141\begin{eqnarray*}
142T_{el} & = & E_0 - E_1 \\
143\overrightarrow{P_{el}} & = & 
144              \overrightarrow{P_{\gamma0}} - \overrightarrow{P_{\gamma1}} .
145\end{eqnarray*}
146
147\subsection{Validity}
148 
149The differential cross-section is valid only for those collisions in which the
150energy of the recoil electron is large compared to its binding energy (which
151is ignored).  However, as pointed out by Rossi \cite{rossi.comp}, this has a
152negligible effect because of the small number of recoil electrons produced at
153very low energies.
154
155\subsection{Status of this document}
15609.10.98 created by M.Maire. \\
15714.01.02 minor revision (mma) \\
15822.04.02 reworded by D.H. Wright \\
15918.03.04 include references for total cross section (mma) \\ 
160 
161\begin{latexonly}
162
163\begin{thebibliography}{99}
164\bibitem{hubbell.comp} Hubbell, Gimm and Overbo.
165   {\em J. Phys. Chem. Ref. Data 9} 1023 (1980)
166\bibitem{storm.comp} H. Storm and H.I. Israel
167   {\em Nucl. Data Tables A7} 565 (1970)   
168\bibitem{klein.comp} O. Klein and Y. Nishina.
169   {\em Z. Physik 52} 853 (1929)
170\bibitem{butch.comp} J.C. Butcher and H. Messel.
171   {\em Nucl. Phys. 20} 15 (1960)   
172\bibitem{messel.comp} H. Messel and D. Crawford.
173   {\em Electron-Photon shower distribution, Pergamon Press} (1970)
174\bibitem{ford.comp} R. Ford and W. Nelson.
175   {\em SLAC-265, UC-32} (1985)   
176\bibitem{rossi.comp} B. Rossi.
177   {\em High energy particles, Prentice-Hall} 77-79 (1952)       
178\end{thebibliography}
179
180\end{latexonly}
181
182\begin{htmlonly}
183
184\subsection{Bibliography}
185
186\begin{enumerate}
187\item Hubbell, Gimm and Overbo.
188   {\em J. Phys. Chem. Ref. Data 9} 1023 (1980)
189\item H. Storm and H.I. Israel
190   {\em Nucl. Data Tables A7} 565 (1970)   
191\item O. Klein and Y. Nishina.
192   {\em Z. Physik 52} 853 (1929)
193\item J.C. Butcher and H. Messel.
194   {\em Nucl. Phys. 20} 15 (1960)   
195\item H. Messel and D. Crawford.
196   {\em Electron-Photon shower distribution, Pergamon Press} (1970)
197\item R. Ford and W. Nelson.
198   {\em SLAC-265, UC-32} (1985)   
199\item B. Rossi.
200   {\em High energy particles, Prentice-Hall} 77-79 (1952)       
201\end{enumerate}
202
203\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.