\section[Gamma Conversion into an Electron - Positron Pair] {Gamma Conversion into an Electron - Positron Pair}\label{sec:em.conv} \subsection{Cross Section and Mean Free Path} \subsubsection{Cross Section per Atom} The total cross-section per atom for the conversion of a gamma into an $(e^+,e^-)$ pair has been parameterized as \begin{equation} \label{conv1} \sigma(Z,E_\gamma) = Z(Z+1) \: \left[ F_1(X) + F_2(X) \: Z + \frac{F_3(X)}{Z} \right], \end{equation} where $E_{\gamma}$ is the incident gamma energy and $X = \ln (E_{\gamma}/m_{e}c^2)$ . The functions $F_n$ are given by \begin{eqnarray} F_1(X) & = & a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^5 \\ F_2(X) & = & b_0 + b_1 X + b_2 X^2 + b_3 X^3 + b_4 X^4 + b_5 X^5 \nonumber \\ F_3(X) & = & c_0 + c_1 X + c_2 X^2 + c_3 X^3 + c_4 X^4 + c_5 X^5 , \nonumber \end{eqnarray} with the parameters $a_i, b_i, c_i$ taken from a least-squares fit to the data \cite{conv.hubb}. Their values can be found in the function which computes formula \ref{conv1}. \\ This parameterization describes the data in the range \begin{eqnarray*} 1\leq Z\leq 100 \end{eqnarray*} and \begin{eqnarray*} E_\gamma \in [1.5 \mbox{ MeV} , 100 \mbox{ GeV}] . \end{eqnarray*} The accuracy of the fit was estimated to be $\frac{\Delta\ \sigma}{\sigma}\leq 5\% $ with a mean value of $\approx 2.2\%$. Above 100 GeV the cross section is constant. Below $E_{low} = 1.5 \mbox{ MeV}$ the extrapolation \begin{equation} \sigma(E) = \sigma(E_{low}) \cdot \left( \frac{E-2m_e c^2}{E_{low}-2m_e c^2} \right)^2 \end{equation} is used. \subsubsection{Mean Free Path} In a given material the mean free path, $\lambda$, for a photon to convert into an $(e^+,e^-)$ pair is \begin{equation} \lambda(E_{\gamma}) = \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1} \end{equation} where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element of the material. \subsection{Final State} \subsubsection{Choosing an Element} The differential cross section depends on the atomic number $Z$ of the material in which the interaction occurs. In a compound material the element $i$ in which the interaction occurs is chosen randomly according to the probability \begin{equation} Prob(Z_i,E_{\gamma}) = \frac{n_{ati} \sigma(Z_i,E_{\gamma})} {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} . \end{equation} \subsubsection{Corrected Bethe-Heitler Cross Section} As written in \cite{conv.heit}, the Bethe-Heitler formula corrected for various effects is \begin{eqnarray} \label{conv.eq1} \frac{d \sigma(Z,\epsilon)}{d \epsilon} & = & \alpha r_e^2 Z [Z + \xi(Z)] \left \{ [\epsilon^2 + ( 1 -\epsilon)^2] \left[ \Phi_1(\delta(\epsilon)) - \frac{F(Z)}{2} \right] \right. \nonumber \\ & & + \left. \frac{2}{3}\epsilon (1-\epsilon) \left[ \Phi_2(\delta(\epsilon)) - \frac{F(Z)}{2} \right] \right \} \end{eqnarray} where $\alpha$ is the fine-structure constant and $r_e$ the classical electron radius. Here $\epsilon = E/E_\gamma$, $E_\gamma$ is the energy of the photon and $E$ is the total energy carried by one particle of the $(e^+,e^-)$ pair. The kinematical limits of $\epsilon$ are therefore \begin{equation} \frac{m_e c^2}{E_\gamma} = \epsilon_0 \leq \epsilon \leq 1-\epsilon_0 . \end{equation} \paragraph*{Screening Effect} The {\it screening variable}, $\delta$, is a function of $\epsilon$ \begin{equation} \delta(\epsilon)=\frac{136}{Z^{1/3}} \ \frac{\epsilon_0}{\epsilon(1-\epsilon)}, \end{equation} and measures the 'impact parameter' of the projectile. Two screening functions are introduced in the Bethe-Heitler formula : \begin{eqnarray} \mbox{for } \delta \leq 1 & \Phi_1 (\delta) = & 20.867 - 3.242 \delta + 0.625 \delta^2 \\ & \Phi_2 (\delta) = & 20.209 - 1.930 \delta - 0.086 \delta^2 \nonumber \\ \mbox{for } \delta > 1 & \Phi_1 (\delta) = & \Phi_2 (\delta) = 21.12 - 4.184 \ln(\delta+0.952). \nonumber \end{eqnarray} Because the formula \ref{conv.eq1} is symmetric under the exchange $\epsilon \leftrightarrow (1-\epsilon)$, the range of $\epsilon$ can be restricted to \begin{equation} \epsilon \in [ \epsilon_0 , 1/2] . \end{equation} \paragraph*{Born Approximation} The Bethe-Heitler formula is calculated with plane waves, but Coulomb waves should be used instead. To correct for this, a {\it Coulomb correction function} is introduced in the Bethe-Heitler formula : \begin{eqnarray} \mbox{for $E_\gamma$ } < 50 \mbox{ MeV :} & F(z) = & 8/3 \ln Z \\ \mbox{for $E_\gamma$ } \geq 50 \mbox{ MeV :} & F(z) = & 8/3 \ln Z + 8 f_c (Z) \nonumber \end{eqnarray} with \begin{eqnarray} f_c(Z) &=& (\alpha Z)^2 \left[ \frac{1}{1+(\alpha Z)^2} \right. \\ & & \left. + 0.20206 - 0.0369 (\alpha Z)^2 + 0.0083 (\alpha Z)^4 - 0.0020 (\alpha Z)^6 + \cdots \right]. \nonumber \end{eqnarray} It should be mentioned that, after these additions, the cross section becomes negative if \begin{equation} \delta > \delta_{max} (\epsilon_1) = \exp \left[ \frac{42.24 - F(Z)}{8.368} \right] - 0.952 . \end{equation} This gives an additional constraint on $\epsilon$ : \begin{equation} \delta \leq \delta_{max} \Longrightarrow \epsilon \geq \epsilon_1 = \frac{1}{2} - \frac{1}{2} \sqrt{1-\frac{\delta_{min}}{\delta_{max}}} \end{equation} where \begin{equation} \delta_{min} = \delta \left(\epsilon = \frac{1}{2} \right) = \frac{136}{Z^{1/3}} \ 4 \epsilon_0 \end{equation} has been introduced. Finally the range of $\epsilon$ becomes \begin{equation} \epsilon \in [ \epsilon_{min}=\max (\epsilon_0,\epsilon_1),\ 1/2] . \end{equation} \vspace{0mm} \begin{center} \includegraphics* [width=\textwidth,height=0.4\textheight,draft=false] {electromagnetic/standard/conv.eps} \end{center} \paragraph*{Gamma Conversion in the Electron Field} The electron cloud gives an additional contribution to pair creation, proportional to $Z$ (instead of $Z^2$). This is taken into account through the expression \begin{equation} \xi(Z) = \frac{\ln(1440/Z^{2/3})}{\ln(183/Z^{1/3}) - f_c(Z)} . \end{equation} \paragraph*{Factorization of the Cross Section} $\epsilon$ is sampled using the techniques of 'composition+rejection', as treated in \cite{conv.ford,conv.butch,conv.messel}. First, two auxiliary screening functions should be introduced: \begin{eqnarray} F_1(\delta) &=& 3 \Phi_1(\delta) - \Phi_2(\delta) - F(Z) \nonumber \\ F_2(\delta) &=& \frac{3}{2} \Phi_1(\delta) - \frac{1}{2} \Phi_2(\delta) - F(Z) \end{eqnarray} It can be seen that $F_1(\delta)$ and $F_2(\delta)$ are decreasing functions of $\delta$, $\forall \delta \in [\delta_{min} , \delta_{max}]$. They reach their maximum for $\delta_{min} = \delta(\epsilon = 1/2)$ : \begin{eqnarray} F_{10} = \max F_1(\delta) = F_1(\delta_{min}) \nonumber \\ F_{20} = \max F_2(\delta) = F_2(\delta_{min}) . \, \end{eqnarray} After some algebraic manipulations the formula \ref{conv.eq1} can be written : \begin{eqnarray} \label{conv.eq2} \frac{d \sigma(Z,\epsilon)}{d \epsilon} &=& \alpha r_e^2 Z [Z + \xi(Z)] \frac{2}{9} \left[ \frac{1}{2} - \epsilon_{min} \right] \nonumber \\ & & \times \left[ N_1 \ f_1(\epsilon) \ g_1(\epsilon) + N_2 \ f_2(\epsilon) \ g_2(\epsilon) \right] , \end{eqnarray} where \begin{eqnarray*} N_1 = \left[ \frac{1}{2} - \epsilon_{min} \right]^2 F_{10} \hspace{5mm} & f_1(\epsilon) = \frac{3}{\left[ \frac{1}{2} - \epsilon_{min} \right]^3} \left[ \frac{1}{2} - \epsilon \right]^2 & \hspace{5mm} g_1(\epsilon) = \frac{F_1(\epsilon)}{F_{10}} \\ N_2 = \frac{3}{2} F_{20} \hspace{5mm} & f_2(\epsilon) = \mbox{const} = \frac{1}{\left[ \frac{1}{2} - \epsilon_{min} \right]} & \hspace{5mm} g_2(\epsilon) = \frac{F_2(\epsilon)}{F_{20}} . \end{eqnarray*} $f_1(\epsilon)$ and $f_2(\epsilon)$ are probability density functions on the interval $\epsilon \in [\epsilon_{min} , 1/2]$ such that $$ \int_{\epsilon_{min}}^{1/2} f_i(\epsilon) \, d\epsilon = 1 $$ , and $g_1(\epsilon)$ and $g_2(\epsilon)$ are valid rejection functions: $0 < g_i (\epsilon) \leq 1$ . \paragraph*{Sampling the Energy} Given a triplet of uniformly distributed random numbers $(r_a, r_b, r_c)$ : \begin{enumerate} \item use $r_a$ to choose which decomposition term in \ref{conv.eq2} to use: \begin{equation} \mbox{if } r_a < N_1/(N_1+N_2) \rightarrow f_1(\epsilon)\ g_1(\epsilon) \\ \mbox{ otherwise } \rightarrow f_2(\epsilon)\ g_2(\epsilon) \end{equation} \item sample $\epsilon$ from $f_1(\epsilon)$ or $f_2(\epsilon)$ with $r_b$ : \begin{equation} \epsilon = \frac{1}{2} - \left(\frac{1}{2} - \epsilon_{min} \right) r_b^{1/3} \hspace{5mm} \mbox{or} \hspace{5mm} \epsilon = \epsilon_{min} + \left(\frac{1}{2} - \epsilon_{min} \right) r_b \end{equation} \item reject $\epsilon$ if $g_1(\epsilon) \mbox{or } g_2(\epsilon) < r_c$ \end{enumerate} {\sc note} : below $E_{\gamma} = 2$ MeV it is enough to sample $\epsilon$ uniformly on $[\epsilon_0,\ 1/2]$, without rejection. \paragraph*{Charge} The charge of each particle of the pair is fixed randomly. \subsubsection{Polar Angle of the Electron or Positron} The polar angle of the electron (or positron) is defined with respect to the direction of the parent photon. The energy-angle distribution given by Tsai \cite{conv.tsai} is quite complicated to sample and can be approximated by a density function suggested by Urban \cite{conv.urban} : \begin{equation} \label{conv.eq3} \forall u \in [0,\ \infty [ \hspace{3mm} f(u) = \frac{9a^2}{9+d} \left[ u \exp (-a u) + d\ u \exp (-3a u) \right] \end{equation} with \begin{equation} a=\frac{5}{8} \hspace{5mm} d=27 \hspace{1cm} \mbox{and } \theta_\pm = \frac{mc^2}{E_\pm} \ u . \end{equation} A sampling of the distribution \ref{conv.eq3} requires a triplet of random numbers such that \begin{equation} \mbox{if } r_1 < \frac{9}{9+d} \rightarrow u = \frac{-\ln(r_2 r_3)}{a} \hspace{5mm} \mbox{otherwise } u = \frac{-\ln(r_2 r_3)}{3a} . \end{equation} The azimuthal angle $\phi$ is generated isotropically. \paragraph*{Final State} The $e^+$ and $e^-$ momenta are assumed to be coplanar with the parent photon. This information, together with energy conservation, is used to calculate the momentum vectors of the $(e^+,e^-)$ pair and to rotate them to the global reference system. \subsection{Status of this document} 12.01.02 created by M.Maire. \\ 21.03.02 corrections in angular distribution (mma) \\ 22.04.02 re-worded by D.H. Wright \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{conv.hubb} J.H.Hubbell, H.A.Gimm, I.Overbo {\it Jou. Phys. Chem. Ref. Data 9:1023} (1980) \bibitem{conv.heit} W. Heitler {\it The Quantum Theory of Radiation, Oxford University Press} (1957) \bibitem{conv.ford} R. Ford and W. Nelson. {\it SLAC-210, UC-32} (1978) \bibitem{conv.butch} J.C. Butcher and H. Messel. {\it Nucl. Phys. 20} 15 (1960) \bibitem{conv.messel} H. Messel and D. Crawford. {\it Electron-Photon shower distribution, Pergamon Press} (1970) \bibitem{conv.tsai} Y. S. Tsai, {\em Rev. Mod. Phys. 46} 815 (1974), Y. S. Tsai, {\em Rev. Mod. Phys. 49} 421 (1977) \bibitem{conv.urban} L.Urban in {\sc Geant3} writeup, section PHYS-211. {\it Cern Program Library} (1993) \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item J.H.Hubbell, H.A.Gimm, I.Overbo {\it Jou. Phys. Chem. Ref. Data 9:1023} (1980) \item W. Heitler {\it The Quantum Theory of Radiation, Oxford University Press} (1957) \item R. Ford and W. Nelson. {\it SLAC-210, UC-32} (1978) \item J.C. Butcher and H. Messel. {\it Nucl. Phys. 20} 15 (1960) \item H. Messel and D. Crawford. {\it Electron-Photon shower distribution, Pergamon Press} (1970) \item Y. S. Tsai, {\em Rev. Mod. Phys. 46} 815 (1974), Y. S. Tsai, {\em Rev. Mod. Phys. 49} 421 (1977) \item L.Urban in {\sc Geant3} writeup, section PHYS-211. {\it Cern Program Library} (1993) \end{enumerate} \end{htmlonly}