| 1 |
|
|---|
| 2 | \section[Gamma Conversion into an Electron - Positron Pair]
|
|---|
| 3 | {Gamma Conversion into an Electron - Positron Pair}\label{sec:em.conv}
|
|---|
| 4 |
|
|---|
| 5 | \subsection{Cross Section and Mean Free Path}
|
|---|
| 6 |
|
|---|
| 7 | \subsubsection{Cross Section per Atom}
|
|---|
| 8 |
|
|---|
| 9 | The total cross-section per atom for the conversion of a gamma into an
|
|---|
| 10 | $(e^+,e^-)$ pair has been parameterized as
|
|---|
| 11 | \begin{equation} \label{conv1}
|
|---|
| 12 | \sigma(Z,E_\gamma) = Z(Z+1) \: \left[ F_1(X) + F_2(X) \: Z + \frac{F_3(X)}{Z}
|
|---|
| 13 | \right],
|
|---|
| 14 | \end{equation}
|
|---|
| 15 | where $E_{\gamma}$ is the incident gamma energy and $X = \ln (E_{\gamma}/m_{e}c^2)$ . The functions $F_n$ are given by
|
|---|
| 16 | \begin{eqnarray}
|
|---|
| 17 | F_1(X) & = & a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^5 \\
|
|---|
| 18 | F_2(X) & = & b_0 + b_1 X + b_2 X^2 + b_3 X^3 + b_4 X^4 + b_5 X^5 \nonumber \\
|
|---|
| 19 | F_3(X) & = & c_0 + c_1 X + c_2 X^2 + c_3 X^3 + c_4 X^4 + c_5 X^5 , \nonumber
|
|---|
| 20 | \end{eqnarray}
|
|---|
| 21 | with the parameters $a_i, b_i, c_i$ taken from a least-squares fit to the
|
|---|
| 22 | data \cite{conv.hubb}. Their values can be found in the function which
|
|---|
| 23 | computes formula \ref{conv1}.
|
|---|
| 24 | \\
|
|---|
| 25 | This parameterization describes the data in the range
|
|---|
| 26 | \begin{eqnarray*}
|
|---|
| 27 | 1\leq Z\leq 100
|
|---|
| 28 | \end{eqnarray*}
|
|---|
| 29 | and
|
|---|
| 30 | \begin{eqnarray*}
|
|---|
| 31 | E_\gamma \in [1.5 \mbox{ MeV} , 100 \mbox{ GeV}] .
|
|---|
| 32 | \end{eqnarray*}
|
|---|
| 33 | The accuracy of the fit was estimated to be
|
|---|
| 34 | $\frac{\Delta\ \sigma}{\sigma}\leq 5\% $ with a mean value of
|
|---|
| 35 | $\approx 2.2\%$. Above 100 GeV the cross section is constant. Below
|
|---|
| 36 | $E_{low} = 1.5 \mbox{ MeV}$ the extrapolation
|
|---|
| 37 | \begin{equation}
|
|---|
| 38 | \sigma(E) = \sigma(E_{low}) \cdot \left( \frac{E-2m_e c^2}{E_{low}-2m_e c^2}
|
|---|
| 39 | \right)^2
|
|---|
| 40 | \end{equation}
|
|---|
| 41 | is used.
|
|---|
| 42 |
|
|---|
| 43 | \subsubsection{Mean Free Path}
|
|---|
| 44 | In a given material the mean free path, $\lambda$, for a photon to convert into
|
|---|
| 45 | an $(e^+,e^-)$ pair is
|
|---|
| 46 | \begin{equation}
|
|---|
| 47 | \lambda(E_{\gamma}) =
|
|---|
| 48 | \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1}
|
|---|
| 49 | \end{equation}
|
|---|
| 50 | where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element of
|
|---|
| 51 | the material.
|
|---|
| 52 |
|
|---|
| 53 | \subsection{Final State}
|
|---|
| 54 | \subsubsection{Choosing an Element}
|
|---|
| 55 | The differential cross section depends on the atomic number $Z$ of the
|
|---|
| 56 | material in which the interaction occurs. In a compound material the element
|
|---|
| 57 | $i$ in which the interaction occurs is chosen randomly according to the
|
|---|
| 58 | probability
|
|---|
| 59 | \begin{equation}
|
|---|
| 60 | Prob(Z_i,E_{\gamma}) =
|
|---|
| 61 | \frac{n_{ati} \sigma(Z_i,E_{\gamma})}
|
|---|
| 62 | {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} .
|
|---|
| 63 | \end{equation}
|
|---|
| 64 |
|
|---|
| 65 | \subsubsection{Corrected Bethe-Heitler Cross Section}
|
|---|
| 66 | As written in \cite{conv.heit}, the Bethe-Heitler formula corrected for various
|
|---|
| 67 | effects is
|
|---|
| 68 | \begin{eqnarray} \label{conv.eq1}
|
|---|
| 69 | \frac{d \sigma(Z,\epsilon)}{d \epsilon} & = & \alpha r_e^2 Z [Z + \xi(Z)]
|
|---|
| 70 | \left \{ [\epsilon^2 + ( 1 -\epsilon)^2]
|
|---|
| 71 | \left[ \Phi_1(\delta(\epsilon)) - \frac{F(Z)}{2} \right] \right. \nonumber \\
|
|---|
| 72 | & & + \left. \frac{2}{3}\epsilon (1-\epsilon)
|
|---|
| 73 | \left[ \Phi_2(\delta(\epsilon)) - \frac{F(Z)}{2} \right] \right \}
|
|---|
| 74 | \end{eqnarray}
|
|---|
| 75 | where $\alpha$ is the fine-structure constant and $r_e$ the classical electron
|
|---|
| 76 | radius. Here $\epsilon = E/E_\gamma$, $E_\gamma$ is the energy of the photon
|
|---|
| 77 | and $E$ is the total energy carried by one particle of the $(e^+,e^-)$ pair.
|
|---|
| 78 | The kinematical limits of $\epsilon$ are therefore
|
|---|
| 79 | \begin{equation}
|
|---|
| 80 | \frac{m_e c^2}{E_\gamma} = \epsilon_0 \leq \epsilon \leq 1-\epsilon_0 .
|
|---|
| 81 | \end{equation}
|
|---|
| 82 |
|
|---|
| 83 | \paragraph*{Screening Effect}
|
|---|
| 84 | The {\it screening variable}, $\delta$, is a function of $\epsilon$
|
|---|
| 85 | \begin{equation}
|
|---|
| 86 | \delta(\epsilon)=\frac{136}{Z^{1/3}} \ \frac{\epsilon_0}{\epsilon(1-\epsilon)},
|
|---|
| 87 | \end{equation}
|
|---|
| 88 | and measures the 'impact parameter' of the projectile. Two screening
|
|---|
| 89 | functions are introduced in the Bethe-Heitler formula :
|
|---|
| 90 | \begin{eqnarray}
|
|---|
| 91 | \mbox{for } \delta \leq 1 & \Phi_1 (\delta) =
|
|---|
| 92 | & 20.867 - 3.242 \delta + 0.625 \delta^2 \\
|
|---|
| 93 | & \Phi_2 (\delta) =
|
|---|
| 94 | & 20.209 - 1.930 \delta - 0.086 \delta^2 \nonumber \\
|
|---|
| 95 | \mbox{for } \delta > 1 & \Phi_1 (\delta) =
|
|---|
| 96 | & \Phi_2 (\delta) = 21.12 - 4.184 \ln(\delta+0.952).
|
|---|
| 97 | \nonumber
|
|---|
| 98 | \end{eqnarray}
|
|---|
| 99 | Because the formula \ref{conv.eq1} is symmetric under the exchange $\epsilon
|
|---|
| 100 | \leftrightarrow (1-\epsilon)$, the range of $\epsilon$ can be restricted to
|
|---|
| 101 | \begin{equation}
|
|---|
| 102 | \epsilon \in [ \epsilon_0 , 1/2] .
|
|---|
| 103 | \end{equation}
|
|---|
| 104 |
|
|---|
| 105 | \paragraph*{Born Approximation}
|
|---|
| 106 | The Bethe-Heitler formula is calculated with plane waves, but Coulomb waves
|
|---|
| 107 | should be used instead. To correct for this, a
|
|---|
| 108 | {\it Coulomb correction function} is introduced in the Bethe-Heitler formula :
|
|---|
| 109 | \begin{eqnarray}
|
|---|
| 110 | \mbox{for $E_\gamma$ } < 50 \mbox{ MeV :} & F(z) = & 8/3 \ln Z \\
|
|---|
| 111 | \mbox{for $E_\gamma$ } \geq 50 \mbox{ MeV :} & F(z) = & 8/3 \ln Z + 8 f_c (Z)
|
|---|
| 112 | \nonumber
|
|---|
| 113 | \end{eqnarray}
|
|---|
| 114 | with
|
|---|
| 115 | \begin{eqnarray}
|
|---|
| 116 | f_c(Z) &=& (\alpha Z)^2 \left[ \frac{1}{1+(\alpha Z)^2} \right.
|
|---|
| 117 | \\ & & \left.
|
|---|
| 118 | + 0.20206 - 0.0369 (\alpha Z)^2 + 0.0083 (\alpha Z)^4 - 0.0020 (\alpha Z)^6
|
|---|
| 119 | + \cdots \right]. \nonumber
|
|---|
| 120 | \end{eqnarray}
|
|---|
| 121 | It should be mentioned that, after these additions, the cross section
|
|---|
| 122 | becomes negative if
|
|---|
| 123 | \begin{equation}
|
|---|
| 124 | \delta > \delta_{max} (\epsilon_1) = \exp \left[ \frac{42.24 - F(Z)}{8.368}
|
|---|
| 125 | \right] - 0.952 .
|
|---|
| 126 | \end{equation}
|
|---|
| 127 | This gives an additional constraint on $\epsilon$ :
|
|---|
| 128 | \begin{equation}
|
|---|
| 129 | \delta \leq \delta_{max} \Longrightarrow
|
|---|
| 130 | \epsilon \geq \epsilon_1 = \frac{1}{2} -
|
|---|
| 131 | \frac{1}{2} \sqrt{1-\frac{\delta_{min}}{\delta_{max}}}
|
|---|
| 132 | \end{equation}
|
|---|
| 133 | where
|
|---|
| 134 | \begin{equation}
|
|---|
| 135 | \delta_{min} = \delta \left(\epsilon = \frac{1}{2} \right)
|
|---|
| 136 | = \frac{136}{Z^{1/3}} \ 4 \epsilon_0
|
|---|
| 137 | \end{equation}
|
|---|
| 138 | has been introduced. Finally the range of $\epsilon$ becomes
|
|---|
| 139 | \begin{equation}
|
|---|
| 140 | \epsilon \in [ \epsilon_{min}=\max (\epsilon_0,\epsilon_1),\ 1/2] .
|
|---|
| 141 | \end{equation}
|
|---|
| 142 | \vspace{0mm}
|
|---|
| 143 | \begin{center}
|
|---|
| 144 | \includegraphics*
|
|---|
| 145 | [width=\textwidth,height=0.4\textheight,draft=false]
|
|---|
| 146 | {electromagnetic/standard/conv.eps}
|
|---|
| 147 | \end{center}
|
|---|
| 148 | \paragraph*{Gamma Conversion in the Electron Field}
|
|---|
| 149 | The electron cloud gives an additional contribution to pair creation,
|
|---|
| 150 | proportional to $Z$ (instead of $Z^2$). This is taken into account through
|
|---|
| 151 | the expression
|
|---|
| 152 | \begin{equation}
|
|---|
| 153 | \xi(Z) = \frac{\ln(1440/Z^{2/3})}{\ln(183/Z^{1/3}) - f_c(Z)} .
|
|---|
| 154 | \end{equation}
|
|---|
| 155 |
|
|---|
| 156 | \paragraph*{Factorization of the Cross Section}
|
|---|
| 157 | $\epsilon$ is sampled using the techniques of 'composition+rejection', as
|
|---|
| 158 | treated in \cite{conv.ford,conv.butch,conv.messel}. First, two auxiliary
|
|---|
| 159 | screening functions should be introduced:
|
|---|
| 160 | \begin{eqnarray}
|
|---|
| 161 | F_1(\delta) &=& 3 \Phi_1(\delta) - \Phi_2(\delta) - F(Z) \nonumber \\
|
|---|
| 162 | F_2(\delta) &=& \frac{3}{2} \Phi_1(\delta) - \frac{1}{2} \Phi_2(\delta) - F(Z)
|
|---|
| 163 | \end{eqnarray}
|
|---|
| 164 | It can be seen that $F_1(\delta)$ and $F_2(\delta)$ are decreasing
|
|---|
| 165 | functions of $\delta$, $\forall \delta \in [\delta_{min} , \delta_{max}]$.
|
|---|
| 166 | They reach their maximum for $\delta_{min} = \delta(\epsilon = 1/2)$ :
|
|---|
| 167 | \begin{eqnarray}
|
|---|
| 168 | F_{10} = \max F_1(\delta) = F_1(\delta_{min}) \nonumber \\
|
|---|
| 169 | F_{20} = \max F_2(\delta) = F_2(\delta_{min}) . \,
|
|---|
| 170 | \end{eqnarray}
|
|---|
| 171 | After some algebraic manipulations the formula \ref{conv.eq1} can be written :
|
|---|
| 172 | \begin{eqnarray} \label{conv.eq2}
|
|---|
| 173 | \frac{d \sigma(Z,\epsilon)}{d \epsilon} &=& \alpha r_e^2 Z [Z + \xi(Z)]
|
|---|
| 174 | \frac{2}{9} \left[ \frac{1}{2} - \epsilon_{min} \right] \nonumber \\
|
|---|
| 175 | & & \times \left[
|
|---|
| 176 | N_1 \ f_1(\epsilon) \ g_1(\epsilon) + N_2 \ f_2(\epsilon) \ g_2(\epsilon)
|
|---|
| 177 | \right] ,
|
|---|
| 178 | \end{eqnarray}
|
|---|
| 179 | where
|
|---|
| 180 | \begin{eqnarray*}
|
|---|
| 181 | N_1 = \left[ \frac{1}{2} - \epsilon_{min} \right]^2 F_{10} \hspace{5mm} &
|
|---|
| 182 | f_1(\epsilon) = \frac{3}{\left[ \frac{1}{2} - \epsilon_{min} \right]^3}
|
|---|
| 183 | \left[ \frac{1}{2} - \epsilon \right]^2 &
|
|---|
| 184 | \hspace{5mm} g_1(\epsilon) = \frac{F_1(\epsilon)}{F_{10}}
|
|---|
| 185 | \\
|
|---|
| 186 | N_2 = \frac{3}{2} F_{20} \hspace{5mm} &
|
|---|
| 187 | f_2(\epsilon) = \mbox{const}
|
|---|
| 188 | = \frac{1}{\left[ \frac{1}{2} - \epsilon_{min} \right]} &
|
|---|
| 189 | \hspace{5mm} g_2(\epsilon) = \frac{F_2(\epsilon)}{F_{20}} .
|
|---|
| 190 | \end{eqnarray*}
|
|---|
| 191 | $f_1(\epsilon)$ and $f_2(\epsilon)$ are probability density functions on the
|
|---|
| 192 | interval $\epsilon \in [\epsilon_{min} , 1/2]$ such that
|
|---|
| 193 | $$ \int_{\epsilon_{min}}^{1/2} f_i(\epsilon) \, d\epsilon = 1 $$ ,
|
|---|
| 194 | and $g_1(\epsilon)$ and $g_2(\epsilon)$ are valid rejection functions:
|
|---|
| 195 | $0 < g_i (\epsilon) \leq 1$ .
|
|---|
| 196 |
|
|---|
| 197 | \paragraph*{Sampling the Energy}
|
|---|
| 198 | Given a triplet of uniformly distributed random numbers $(r_a, r_b, r_c)$ :
|
|---|
| 199 | \begin{enumerate}
|
|---|
| 200 | \item use $r_a$ to choose which decomposition term in \ref{conv.eq2} to use:
|
|---|
| 201 | \begin{equation}
|
|---|
| 202 | \mbox{if } r_a < N_1/(N_1+N_2) \rightarrow f_1(\epsilon)\ g_1(\epsilon) \\
|
|---|
| 203 | \mbox{ otherwise } \rightarrow f_2(\epsilon)\ g_2(\epsilon)
|
|---|
| 204 | \end{equation}
|
|---|
| 205 | \item sample $\epsilon$ from $f_1(\epsilon)$ or $f_2(\epsilon)$ with $r_b$ :
|
|---|
| 206 | \begin{equation}
|
|---|
| 207 | \epsilon = \frac{1}{2} - \left(\frac{1}{2} - \epsilon_{min} \right) r_b^{1/3}
|
|---|
| 208 | \hspace{5mm} \mbox{or} \hspace{5mm}
|
|---|
| 209 | \epsilon = \epsilon_{min} + \left(\frac{1}{2} - \epsilon_{min} \right) r_b
|
|---|
| 210 | \end{equation}
|
|---|
| 211 | \item reject $\epsilon$ if $g_1(\epsilon) \mbox{or } g_2(\epsilon) < r_c$
|
|---|
| 212 | \end{enumerate}
|
|---|
| 213 | {\sc note} :
|
|---|
| 214 | below $E_{\gamma} = 2$ MeV it is enough to sample $\epsilon$ uniformly on
|
|---|
| 215 | $[\epsilon_0,\ 1/2]$, without rejection.
|
|---|
| 216 | \paragraph*{Charge}
|
|---|
| 217 | The charge of each particle of the pair is fixed randomly.
|
|---|
| 218 |
|
|---|
| 219 | \subsubsection{Polar Angle of the Electron or Positron}
|
|---|
| 220 | The polar angle of the electron (or positron) is defined with respect to the
|
|---|
| 221 | direction of the parent photon. The energy-angle distribution given by
|
|---|
| 222 | Tsai \cite{conv.tsai} is quite complicated to sample and can be approximated
|
|---|
| 223 | by a density function suggested by Urban \cite{conv.urban} :
|
|---|
| 224 | \begin{equation} \label{conv.eq3}
|
|---|
| 225 | \forall u \in [0,\ \infty [ \hspace{3mm}
|
|---|
| 226 | f(u) = \frac{9a^2}{9+d} \left[ u \exp (-a u) + d\ u \exp (-3a u) \right]
|
|---|
| 227 | \end{equation}
|
|---|
| 228 | with
|
|---|
| 229 | \begin{equation}
|
|---|
| 230 | a=\frac{5}{8} \hspace{5mm} d=27 \hspace{1cm} \mbox{and }
|
|---|
| 231 | \theta_\pm = \frac{mc^2}{E_\pm} \ u .
|
|---|
| 232 | \end{equation}
|
|---|
| 233 | A sampling of the distribution \ref{conv.eq3} requires a triplet of random
|
|---|
| 234 | numbers such that
|
|---|
| 235 | \begin{equation}
|
|---|
| 236 | \mbox{if } r_1 < \frac{9}{9+d} \rightarrow u = \frac{-\ln(r_2 r_3)}{a}
|
|---|
| 237 | \hspace{5mm} \mbox{otherwise } u = \frac{-\ln(r_2 r_3)}{3a} .
|
|---|
| 238 | \end{equation}
|
|---|
| 239 | The azimuthal angle $\phi$ is generated isotropically.
|
|---|
| 240 | \paragraph*{Final State}
|
|---|
| 241 | The $e^+$ and $e^-$ momenta are assumed to be coplanar with the parent photon.
|
|---|
| 242 | This information, together with energy conservation, is used to calculate the
|
|---|
| 243 | momentum vectors of the $(e^+,e^-)$ pair and to rotate them to the global
|
|---|
| 244 | reference system.
|
|---|
| 245 |
|
|---|
| 246 | \subsection{Status of this document}
|
|---|
| 247 | 12.01.02 created by M.Maire. \\
|
|---|
| 248 | 21.03.02 corrections in angular distribution (mma) \\
|
|---|
| 249 | 22.04.02 re-worded by D.H. Wright \\
|
|---|
| 250 |
|
|---|
| 251 | \begin{latexonly}
|
|---|
| 252 |
|
|---|
| 253 | \begin{thebibliography}{99}
|
|---|
| 254 | \bibitem{conv.hubb} J.H.Hubbell, H.A.Gimm, I.Overbo
|
|---|
| 255 | {\it Jou. Phys. Chem. Ref. Data 9:1023} (1980)
|
|---|
| 256 | \bibitem{conv.heit} W. Heitler
|
|---|
| 257 | {\it The Quantum Theory of Radiation, Oxford University Press} (1957)
|
|---|
| 258 | \bibitem{conv.ford} R. Ford and W. Nelson.
|
|---|
| 259 | {\it SLAC-210, UC-32} (1978)
|
|---|
| 260 | \bibitem{conv.butch} J.C. Butcher and H. Messel.
|
|---|
| 261 | {\it Nucl. Phys. 20} 15 (1960)
|
|---|
| 262 | \bibitem{conv.messel} H. Messel and D. Crawford.
|
|---|
| 263 | {\it Electron-Photon shower distribution, Pergamon Press} (1970)
|
|---|
| 264 | \bibitem{conv.tsai}
|
|---|
| 265 | Y. S. Tsai, {\em Rev. Mod. Phys. 46} 815 (1974),
|
|---|
| 266 | Y. S. Tsai, {\em Rev. Mod. Phys. 49} 421 (1977)
|
|---|
| 267 | \bibitem{conv.urban} L.Urban in {\sc Geant3} writeup, section PHYS-211.
|
|---|
| 268 | {\it Cern Program Library} (1993)
|
|---|
| 269 | \end{thebibliography}
|
|---|
| 270 |
|
|---|
| 271 | \end{latexonly}
|
|---|
| 272 |
|
|---|
| 273 | \begin{htmlonly}
|
|---|
| 274 |
|
|---|
| 275 | \subsection{Bibliography}
|
|---|
| 276 |
|
|---|
| 277 | \begin{enumerate}
|
|---|
| 278 | \item J.H.Hubbell, H.A.Gimm, I.Overbo
|
|---|
| 279 | {\it Jou. Phys. Chem. Ref. Data 9:1023} (1980)
|
|---|
| 280 | \item W. Heitler
|
|---|
| 281 | {\it The Quantum Theory of Radiation, Oxford University Press} (1957)
|
|---|
| 282 | \item R. Ford and W. Nelson.
|
|---|
| 283 | {\it SLAC-210, UC-32} (1978)
|
|---|
| 284 | \item J.C. Butcher and H. Messel.
|
|---|
| 285 | {\it Nucl. Phys. 20} 15 (1960)
|
|---|
| 286 | \item H. Messel and D. Crawford.
|
|---|
| 287 | {\it Electron-Photon shower distribution, Pergamon Press} (1970)
|
|---|
| 288 | \item Y. S. Tsai, {\em Rev. Mod. Phys. 46} 815 (1974),
|
|---|
| 289 | Y. S. Tsai, {\em Rev. Mod. Phys. 49} 421 (1977)
|
|---|
| 290 | \item L.Urban in {\sc Geant3} writeup, section PHYS-211.
|
|---|
| 291 | {\it Cern Program Library} (1993)
|
|---|
| 292 | \end{enumerate}
|
|---|
| 293 |
|
|---|
| 294 | \end{htmlonly}
|
|---|