source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/conv.tex @ 1358

Last change on this file since 1358 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 11.9 KB
Line 
1
2\section[Gamma Conversion into an Electron - Positron Pair]
3 {Gamma Conversion into an Electron - Positron Pair}\label{sec:em.conv}
4 
5\subsection{Cross Section and Mean Free Path}
6
7\subsubsection{Cross Section per Atom}
8
9The total cross-section per atom for the conversion of a gamma into an
10$(e^+,e^-)$ pair has been parameterized as
11\begin{equation} \label{conv1}
12\sigma(Z,E_\gamma) = Z(Z+1) \: \left[ F_1(X) + F_2(X) \: Z + \frac{F_3(X)}{Z}
13                               \right],
14\end{equation}
15where $E_{\gamma}$ is the incident gamma energy and $X = \ln (E_{\gamma}/m_{e}c^2)$ .  The functions $F_n$ are given by
16\begin{eqnarray}
17F_1(X) & = & a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^\\
18F_2(X) & = & b_0 + b_1 X + b_2 X^2 + b_3 X^3 + b_4 X^4 + b_5 X^\nonumber \\
19F_3(X) & = & c_0 + c_1 X + c_2 X^2 + c_3 X^3 + c_4 X^4 + c_5 X^5 ,  \nonumber
20\end{eqnarray} 
21with the parameters $a_i, b_i, c_i$ taken from a least-squares fit to the
22data \cite{conv.hubb}.  Their values can be found in the function which
23computes formula \ref{conv1}.
24\\ 
25This parameterization describes the data in the range
26\begin{eqnarray*}
27 1\leq Z\leq 100
28\end{eqnarray*}
29and
30\begin{eqnarray*}
31E_\gamma \in [1.5 \mbox{ MeV} , 100 \mbox{ GeV}] .
32\end{eqnarray*}
33The accuracy of the fit was estimated to be
34$\frac{\Delta\ \sigma}{\sigma}\leq 5\% $ with a mean value of
35$\approx 2.2\%$.  Above 100 GeV the cross section is constant.  Below
36$E_{low} = 1.5 \mbox{ MeV}$ the extrapolation
37\begin{equation}
38\sigma(E) = \sigma(E_{low}) \cdot \left( \frac{E-2m_e c^2}{E_{low}-2m_e c^2}
39                                  \right)^2
40\end{equation}
41is used.
42
43\subsubsection{Mean Free Path}
44In a given material the mean free path, $\lambda$, for a photon to convert into
45an $(e^+,e^-)$ pair is
46\begin{equation}
47\lambda(E_{\gamma}) =
48 \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1}
49\end{equation}
50where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element of
51the material.
52
53\subsection{Final State}
54\subsubsection{Choosing an Element}
55The differential cross section depends on the atomic number $Z$ of the
56material in which the interaction occurs.  In a compound material the element
57$i$ in which the interaction occurs is chosen randomly according to the
58probability
59\begin{equation}
60  Prob(Z_i,E_{\gamma}) =
61                      \frac{n_{ati} \sigma(Z_i,E_{\gamma})}
62                      {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} .
63\end{equation}
64
65\subsubsection{Corrected Bethe-Heitler Cross Section}
66As written in \cite{conv.heit}, the Bethe-Heitler formula corrected for various
67effects is
68\begin{eqnarray} \label{conv.eq1}
69\frac{d \sigma(Z,\epsilon)}{d \epsilon} & = & \alpha r_e^2 Z [Z + \xi(Z)]
70\left \{ [\epsilon^2 + ( 1 -\epsilon)^2]
71\left[ \Phi_1(\delta(\epsilon)) - \frac{F(Z)}{2} \right] \right. \nonumber \\ 
72& & + \left. \frac{2}{3}\epsilon (1-\epsilon)
73\left[ \Phi_2(\delta(\epsilon)) - \frac{F(Z)}{2} \right] \right \} 
74\end{eqnarray}
75where $\alpha$ is the fine-structure constant and $r_e$ the classical electron
76radius.  Here $\epsilon = E/E_\gamma$, $E_\gamma$ is the energy of the photon
77and $E$ is the total energy carried by one particle of the $(e^+,e^-)$ pair.
78The kinematical limits of $\epsilon$ are therefore
79\begin{equation}
80\frac{m_e c^2}{E_\gamma} = \epsilon_0 \leq \epsilon \leq 1-\epsilon_0 .
81\end{equation}
82
83\paragraph*{Screening Effect}
84The {\it screening variable}, $\delta$, is a function of $\epsilon$ 
85\begin{equation}
86\delta(\epsilon)=\frac{136}{Z^{1/3}} \ \frac{\epsilon_0}{\epsilon(1-\epsilon)},
87\end{equation}
88and measures the 'impact parameter' of the projectile.  Two screening
89functions are introduced in the Bethe-Heitler formula :
90\begin{eqnarray}
91\mbox{for } \delta \leq 1 & \Phi_1 (\delta) =
92                          & 20.867 - 3.242 \delta + 0.625 \delta^2 \\
93                          & \Phi_2 (\delta) =
94                          & 20.209 - 1.930 \delta - 0.086 \delta^2 \nonumber \\
95\mbox{for } \delta > 1    & \Phi_1 (\delta) =
96                          & \Phi_2 (\delta) = 21.12 - 4.184 \ln(\delta+0.952).
97                            \nonumber 
98\end{eqnarray}
99Because the formula \ref{conv.eq1} is symmetric under the exchange $\epsilon
100 \leftrightarrow (1-\epsilon)$, the range of $\epsilon$ can be restricted to
101\begin{equation}
102\epsilon \in [ \epsilon_0 , 1/2] .
103\end{equation}
104
105\paragraph*{Born Approximation}
106The Bethe-Heitler formula is calculated with plane waves, but Coulomb waves
107should be used instead.  To correct for this, a
108{\it Coulomb correction function} is introduced in the Bethe-Heitler formula :
109\begin{eqnarray}
110\mbox{for $E_\gamma$ } <    50 \mbox{ MeV :} & F(z) = & 8/3 \ln Z \\
111\mbox{for $E_\gamma$ } \geq 50 \mbox{ MeV :} & F(z) = & 8/3 \ln Z + 8 f_c (Z)
112                            \nonumber 
113\end{eqnarray}
114with
115\begin{eqnarray} 
116f_c(Z) &=& (\alpha Z)^2 \left[ \frac{1}{1+(\alpha Z)^2} \right.
117 \\ & & \left.
118+ 0.20206 - 0.0369 (\alpha Z)^2 + 0.0083 (\alpha Z)^4 - 0.0020 (\alpha Z)^6
119+ \cdots \right]. \nonumber
120\end{eqnarray}
121It should be mentioned that, after these additions, the cross section
122becomes negative if
123\begin{equation} 
124\delta > \delta_{max} (\epsilon_1) = \exp \left[ \frac{42.24 - F(Z)}{8.368}
125                                          \right] - 0.952  .
126\end{equation}
127This gives an additional constraint on $\epsilon$ :
128\begin{equation}
129\delta \leq \delta_{max} \Longrightarrow
130\epsilon \geq \epsilon_1 = \frac{1}{2} -
131 \frac{1}{2} \sqrt{1-\frac{\delta_{min}}{\delta_{max}}}
132\end{equation}
133where
134\begin{equation}
135\delta_{min} = \delta \left(\epsilon = \frac{1}{2} \right)
136             = \frac{136}{Z^{1/3}} \ 4 \epsilon_0
137\end{equation}
138has been introduced.  Finally the range of $\epsilon$ becomes
139\begin{equation}
140\epsilon \in [ \epsilon_{min}=\max (\epsilon_0,\epsilon_1),\ 1/2] .
141\end{equation}
142\vspace{0mm}
143\begin{center}
144\includegraphics*
145[width=\textwidth,height=0.4\textheight,draft=false]
146                             {electromagnetic/standard/conv.eps}
147\end{center}
148\paragraph*{Gamma Conversion in the Electron Field}
149The electron cloud gives an additional contribution to pair creation,
150proportional to $Z$ (instead of $Z^2$).  This is taken into account through
151the expression
152\begin{equation}
153\xi(Z) = \frac{\ln(1440/Z^{2/3})}{\ln(183/Z^{1/3}) - f_c(Z)} .
154\end{equation}
155
156\paragraph*{Factorization of the Cross Section}
157$\epsilon$ is sampled using the techniques of 'composition+rejection', as
158treated in \cite{conv.ford,conv.butch,conv.messel}.  First, two auxiliary
159screening functions should be introduced:
160\begin{eqnarray}
161F_1(\delta) &=& 3 \Phi_1(\delta) - \Phi_2(\delta) - F(Z)  \nonumber \\
162F_2(\delta) &=& \frac{3}{2} \Phi_1(\delta) - \frac{1}{2} \Phi_2(\delta) - F(Z)
163\end{eqnarray}
164It can be seen that $F_1(\delta)$ and $F_2(\delta)$ are decreasing
165functions of $\delta$, $\forall \delta \in [\delta_{min} , \delta_{max}]$.
166They reach their maximum for $\delta_{min} = \delta(\epsilon = 1/2)$ :
167\begin{eqnarray}
168F_{10} = \max F_1(\delta) = F_1(\delta_{min}\nonumber \\
169F_{20} = \max F_2(\delta) = F_2(\delta_{min}) . \,
170\end{eqnarray}
171After some algebraic manipulations the formula \ref{conv.eq1} can be written :
172\begin{eqnarray} \label{conv.eq2}
173\frac{d \sigma(Z,\epsilon)}{d \epsilon} &=& \alpha r_e^2 Z [Z + \xi(Z)]
174\frac{2}{9} \left[ \frac{1}{2} - \epsilon_{min} \right] \nonumber \\
175 & & \times \left[
176N_1 \ f_1(\epsilon) \ g_1(\epsilon) + N_2 \ f_2(\epsilon) \ g_2(\epsilon)
177\right] ,
178\end{eqnarray}
179where
180\begin{eqnarray*}
181N_1 = \left[ \frac{1}{2} - \epsilon_{min} \right]^2 F_{10} \hspace{5mm} &
182f_1(\epsilon) = \frac{3}{\left[ \frac{1}{2} - \epsilon_{min} \right]^3}
183                \left[ \frac{1}{2} - \epsilon \right]^2    &
184\hspace{5mm} g_1(\epsilon) = \frac{F_1(\epsilon)}{F_{10}}
185\\                             
186N_2 = \frac{3}{2} F_{20} \hspace{5mm} &
187f_2(\epsilon) = \mbox{const}
188              = \frac{1}{\left[ \frac{1}{2} - \epsilon_{min} \right]} &
189\hspace{5mm} g_2(\epsilon) = \frac{F_2(\epsilon)}{F_{20}} .
190\end{eqnarray*}
191$f_1(\epsilon)$ and $f_2(\epsilon)$ are probability density functions on the
192interval $\epsilon \in [\epsilon_{min} , 1/2]$ such that
193$$ \int_{\epsilon_{min}}^{1/2} f_i(\epsilon) \, d\epsilon = 1 $$ ,
194and $g_1(\epsilon)$ and $g_2(\epsilon)$ are valid rejection functions:
195$0 < g_i (\epsilon) \leq 1$ .
196
197\paragraph*{Sampling the Energy}
198Given a triplet of uniformly distributed random numbers $(r_a, r_b, r_c)$ :
199\begin{enumerate}
200\item use $r_a$ to choose which decomposition term in \ref{conv.eq2} to use:
201\begin{equation}
202 \mbox{if } r_a < N_1/(N_1+N_2) \rightarrow f_1(\epsilon)\ g_1(\epsilon) \\
203 \mbox{  otherwise } \rightarrow f_2(\epsilon)\ g_2(\epsilon)
204\end{equation}
205\item sample $\epsilon$ from $f_1(\epsilon)$ or $f_2(\epsilon)$ with $r_b$ :
206\begin{equation}
207\epsilon = \frac{1}{2} - \left(\frac{1}{2} - \epsilon_{min} \right) r_b^{1/3}
208\hspace{5mm} \mbox{or} \hspace{5mm}
209\epsilon = \epsilon_{min} + \left(\frac{1}{2} - \epsilon_{min} \right) r_b
210\end{equation}
211\item reject $\epsilon$ if $g_1(\epsilon) \mbox{or }  g_2(\epsilon) < r_c$   
212\end{enumerate}
213{\sc note} :
214below $E_{\gamma} = 2$ MeV it is enough to sample $\epsilon$ uniformly on
215$[\epsilon_0,\ 1/2]$, without rejection.
216\paragraph*{Charge}
217The charge of each particle of the pair is fixed randomly.
218
219\subsubsection{Polar Angle of the Electron or Positron}
220The polar angle of the electron (or positron) is defined with respect to the
221direction of the parent photon.  The energy-angle distribution given by
222Tsai \cite{conv.tsai} is quite complicated to sample and can be approximated
223by a density function suggested by Urban \cite{conv.urban} :
224\begin{equation} \label{conv.eq3}
225\forall u \in [0,\ \infty [  \hspace{3mm}
226f(u) = \frac{9a^2}{9+d} \left[ u \exp (-a u) + d\ u \exp (-3a u) \right] 
227\end{equation}
228with
229\begin{equation}
230a=\frac{5}{8} \hspace{5mm} d=27 \hspace{1cm} \mbox{and } 
231  \theta_\pm = \frac{mc^2}{E_\pm} \ u .
232\end{equation}
233A sampling of the distribution \ref{conv.eq3} requires a triplet of random
234numbers such that
235\begin{equation}
236\mbox{if } r_1 < \frac{9}{9+d} \rightarrow u = \frac{-\ln(r_2 r_3)}{a}
237          \hspace{5mm} \mbox{otherwise } u = \frac{-\ln(r_2 r_3)}{3a} .
238\end{equation}
239The azimuthal angle $\phi$ is generated isotropically.
240\paragraph*{Final State}
241The $e^+$ and $e^-$ momenta are assumed to be coplanar with the parent photon.
242This information, together with energy conservation, is used to calculate the
243momentum vectors of the $(e^+,e^-)$ pair and to rotate them to the global
244reference system.
245
246\subsection{Status of this document}
24712.01.02 created by M.Maire. \\
24821.03.02 corrections in angular distribution (mma) \\
24922.04.02 re-worded by D.H. Wright \\ 
250
251\begin{latexonly}
252
253\begin{thebibliography}{99}
254\bibitem{conv.hubb} J.H.Hubbell, H.A.Gimm, I.Overbo
255 {\it Jou. Phys. Chem. Ref. Data 9:1023} (1980)
256\bibitem{conv.heit} W. Heitler
257 {\it The Quantum Theory of Radiation, Oxford University Press} (1957) 
258\bibitem{conv.ford} R. Ford and W. Nelson.
259 {\it SLAC-210, UC-32} (1978)   
260\bibitem{conv.butch} J.C. Butcher and H. Messel.
261 {\it Nucl. Phys. 20} 15 (1960)   
262\bibitem{conv.messel} H. Messel and D. Crawford.
263 {\it Electron-Photon shower distribution, Pergamon Press} (1970)
264\bibitem{conv.tsai}
265  Y. S. Tsai, {\em Rev. Mod. Phys. 46} 815 (1974),
266  Y. S. Tsai, {\em Rev. Mod. Phys. 49} 421 (1977)
267\bibitem{conv.urban} L.Urban in {\sc Geant3} writeup, section PHYS-211.
268 {\it Cern Program Library} (1993)
269\end{thebibliography}
270
271\end{latexonly}
272
273\begin{htmlonly}
274
275\subsection{Bibliography}
276
277\begin{enumerate}
278\item J.H.Hubbell, H.A.Gimm, I.Overbo
279 {\it Jou. Phys. Chem. Ref. Data 9:1023} (1980)
280\item W. Heitler
281 {\it The Quantum Theory of Radiation, Oxford University Press} (1957) 
282\item R. Ford and W. Nelson.
283 {\it SLAC-210, UC-32} (1978)   
284\item J.C. Butcher and H. Messel.
285 {\it Nucl. Phys. 20} 15 (1960)   
286\item H. Messel and D. Crawford.
287 {\it Electron-Photon shower distribution, Pergamon Press} (1970)
288\item Y. S. Tsai, {\em Rev. Mod. Phys. 46} 815 (1974),
289  Y. S. Tsai, {\em Rev. Mod. Phys. 49} 421 (1977)
290\item L.Urban in {\sc Geant3} writeup, section PHYS-211.
291 {\it Cern Program Library} (1993)
292\end{enumerate}
293
294\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.