source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/ebrem.tex.org @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 23.9 KB
Line 
1
2\section[Bremsstrahlung]{Bremsstrahlung}
3
4The class $G4eBremsstrahlung$ provides the energy loss of electrons and
5positrons due to the radiation of photons in the field of a nucleus
6according to the approach described in Section \ref{en_loss}.
7Above a given threshold energy the energy loss is simulated by the explicit
8production of photons.  Below the threshold the emission of soft photons is
9treated as a continuous energy loss.   
10In GEANT4 the Landau-Pomeranchuk-Migdal effect has also been implemented. 
11
12\subsection{Cross Section and Energy Loss}
13
14$d\sigma(Z,T,k)/dk$ is the differential cross section for the production of a
15photon of energy $k$ by an electron of kinetic energy $T$ in the field of an
16atom of charge $Z$.  If $k_c$ is the energy cut-off below which the soft
17photons are treated as continuous energy loss, then the mean value of the
18energy lost by the electron is
19\begin{equation}
20  E_{Loss}^{brem} (Z,T,k_c ) =
21\int_{0}^{k_ c}k\frac{d \sigma (Z,T,k)}{dk}dk .
22\end{equation}
23The total cross section for the emission of a photon of energy larger than
24$k_c$ is
25\begin{equation}
26 \sigma_{brem} (Z,T,k_c ) = \int_{k_c}^{T}\frac{d \sigma (Z,T,k)}{dk} dk .
27\end{equation}
28\\
29
30\subsubsection{Parameterization of the Energy Loss and Total Cross Section}
31
32 The cross section and energy loss due to bremsstrahlung have been
33parameterized using the EEDL (Evaluated Electrons Data Library) data set
34\cite{eedl} as input.
35
36\noindent
37The following parameterization was chosen for the electron bremsstrahlung
38cross section :
39\begin{equation}
40\label{ebrem.a}
41\sigma (Z,T,k_c ) =  Z(Z+\xi_{\sigma} ) (1-c_{sigh} Z^{1/4})
42                    \left[ \frac{T}{k_c} \right]^{\alpha} \dot \frac{f_s}{N_{Avo}}
43\end{equation}
44where $f_s$ is a polynomial in $x = lg(T)$ with $Z$-dependent coefficients for
45$x < x_l$ , $f_s= 1 $ for $x \ge x_l$, $\xi_{\sigma}, c_{sigh}, \alpha$ are
46constants, $N_{Avo}$ is the Avogadro number.
47For the case of low energy electrons ($T \le T_{lim} = 10 MeV$) the above
48expression should be multiplied by
49
50\begin{equation}
51      (\frac{T_{lim}}{T})^{c_l} \dot (1 + \frac {a_l}{\sqrt{Z} T}),
52\end{equation}
53  with constant $c_l, a_l$ parameters.
54
55 The energy loss parameterization is the following :
56
57\begin{equation}
58\label{ebrem.b}
59E_{Loss}^{brem} (Z,T,k_c ) =\frac{Z(Z+ \xi_l)(T+m)^2 }
60      {(T+2m)}\left[\frac{k_c}{T}\right]^\beta (2-c_{lh} Z^{\frac{1}{4}} )
61        \frac{a + b \frac{T}{T_{lim}}}{1 + c \frac{T}{T_{lim}}}
62       \frac{f_l}{N_{Avo}}
63\end{equation}
64where $m$ is the mass of the electron, $\xi_l, \beta, c_{lh}, a,b,c$ are
65constants, $f_l$ is a polynomial in $x = lg(T)$ with $Z$-dependent
66coefficients for $x < x_l$ , $f_l= 1 $ for $x \ge x_l$.
67  For low energies this expression should be divided by
68   
69\begin{equation}
70      (\frac{T_{lim}}{T})^{c_l}
71\end{equation}
72
73 and if $T < k_c$ the expression should be multiplied by
74
75\begin{equation}
76      (\frac{T}{k_c})^{a_l}
77\end{equation}
78
79 with some constants $c_l, a_l$.
80 The numerical values of the parameters and the coefficients of the
81 polynomyals $f_s$ and $f_l$ can be found in the class code.
82\\
83
84\noindent
85The errors of the parameterizations (\ref{ebrem.a}) and (\ref{ebrem.b})
86were estimated to be
87
88\begin{eqnarray*}
89\frac{\Delta\sigma} {\sigma} & = & \left \{
90\begin{array}{llr}
91         6-8 \%    & \mbox{for    } & T \leq 1 MeV \\
92        \leq 4-5\% & \mbox{for    } & 1 MeV < T
93\end{array}
94\right . \\[1cm]
95\frac{\Delta E_{Loss}^{brem}}
96     {E_{Loss}^{brem}} & = & \left \{
97\begin{array}{llr}
98        8 -10\%    & \mbox{for    } & T \leq1 MeV  \\
99        5-6\%      & \mbox{for    } & 1 MeV < T .
100\end{array}
101\right .
102\end{eqnarray*}
103
104
105\noindent
106When running GEANT4, the energy loss due to soft photon bremsstrahlung is
107tabulated at initialization time as a function of the medium and of the
108energy, as is the mean free path for discrete bremsstrahlung.
109
110\subsubsection{Corrections for $e^+ e^-$ Differences}
111
112The preceding section has dealt exclusively with electrons.  One might expect
113that positrons could be treated the same way.  According to reference
114\cite{ebrem.kim} however, \\
115{\it ``The differences between the radiative loss of positrons
116and electrons are considerable and cannot be disregarded.
117
118[...] The ratio of the radiative energy loss for positrons
119to that for electrons obeys a simple scaling law, [...] is a
120function only of the quantity $T/Z^2$''} \\
121
122\noindent
123The radiative energy loss for electrons or positrons is given by
124\begin{eqnarray*}
125-\frac{1}{\rho} \left ( \frac{dE}{dx} \right )_{rad}^{\pm} & = &
126\frac{N_{Av} \alpha r_e^2}{A} (T+m) Z^2 \Phi_{rad}^{\pm}(Z,T) \\
127\Phi^{\pm}_{rad}(Z,T) & = & \frac{1}{\alpha r_{e}^2 Z^2 (T+m)}
128\int^{T}_{0}{k\frac{d\sigma^{\pm}}{dk}dk}
129\end{eqnarray*}
130and it is the ratio
131\begin{eqnarray*}
132\eta & = & \frac{\Phi_{rad}^{+}(Z,T)}{\Phi_{rad}^{-}(Z,T)} =
133\eta \left (\frac{T}{Z^2}\right )
134\end{eqnarray*}
135that obeys the scaling law. \\
136
137\noindent
138The authors have calculated this function in the range $10^{-7}
139\leq \frac{T}{Z^2} \leq 0.5$, where the kinetic energy $T$ is expressed in
140MeV.  Their {\it data} can be fairly accurately reproduced using a
141parametrization:
142
143\begin{eqnarray*}
144\eta & = & \left \{
145\begin{array}{llr}
1460 & \mbox{if   } & x \leq -8 \\
147\frac{1}{2} + \frac{1}{\pi} \arctan \left( a_1 x + a_3 x^3
148+ a_5 x^5 \right ) & \mbox{if  } & -8 < x < 9 \\
1491 & \mbox{if   } & x \geq 9
150\end{array}
151\right .
152\end{eqnarray*}
153where
154\begin{eqnarray*}
155x & = & \log \left ( C \frac{T}{Z^2} \right ) \mbox{(T in GeV)} \\
156C & = & 7.5221 \times 10^{6} \\
157a_1 & = & 0.415 \\
158a_3 & = & 0.0021 \\
159a_5 & = & 0.00054 .
160\end{eqnarray*}
161
162
163\noindent
164The $e^+ e^-$ energy loss difference is not purely a low-energy phenomenon
165(at least for high $Z$), as shown in Table~\ref{ebrem.c}.
166
167\begin{table}[hbt]
168\begin{centering}
169\begin{tabular}{rr|r|r} \hline
170\multicolumn{1}{c}{$\frac{T}{Z^2} (GeV)$}
171& \multicolumn{1}{c|}{T}
172& \multicolumn{1}{c|}{$\eta$}
173& \multicolumn{1}{c}{$\left ( \frac{rad. \ loss}{total \ loss}
174\right )_{e^-}$} \\[3mm] \hline
175$10^{-9}$ & $\sim 7 keV$ & $\sim 0.1$ & $\sim 0\%$ \\
176$10^{-8}$ & $67 keV $ & $\sim 0.2$ & $\sim 1\%$ \\
177$2 \times 10^{-7}$ & $1.35 MeV$ & $\sim 0.5$ & $\sim 15\%$ \\
178$2 \times 10^{-6}$ & $13.5 MeV$ & $\sim 0.8$ & $\sim 60\%$ \\
179$2 \times 10^{-5}$ & $135. MeV$ & $\sim 0.95$ & $> 90\%$ \\ \hline
180\end{tabular}
181\caption{ratio of the $e^+ e^-$ radiative energy loss in lead
182(Z=82).}
183\label{ebrem.c}
184\end{centering}
185\end{table}
186
187
188\noindent
189The scaling property will be used to obtain the positron energy loss and
190discrete bremsstrahlung from the corresponding electron values.  However,
191while scaling holds for the ratio of the total radiative energy losses, it
192is significantly broken for the photon spectrum in the screened case.  That is,
193\begin{eqnarray*}
194\frac{\Phi^+}{\Phi^-} = \eta \left ( \frac{T}{Z^2} \right )
195& \hspace{3cm} &
196\frac{\frac{d\sigma^+}{dk}}{\frac{d\sigma^-}{dk}} =
197\mbox{does not scale .}
198\end{eqnarray*}
199For the case of a point Coulomb charge, scaling would be restored for the
200photon spectrum.  In order to correct for non-scaling, it is useful to note
201that in the photon spectrum from bremsstrahlung reported in \cite{ebrem.kim}:
202\begin{eqnarray*}
203\frac{d\sigma^{\pm}}{dk} = S^{\pm} \left( \frac{k}{T} \right )
204\hspace{2cm}
205\frac{S^{+}(k)}{S^{-}(k)} \leq 1 & \hspace{1cm} & S^{+}(1) = 0
206\hspace{2cm} S^{-}(1)  >  0
207\end{eqnarray*}
208One can further assume that
209\begin{eqnarray}
210\frac{d\sigma^+}{dk} = f(\epsilon) \frac{d\sigma^-}{dk} ,
211& \hspace{2cm} &
212\epsilon = \frac{k}{T}
213\label{ebrem.d}
214\end{eqnarray}
215and require
216\begin{eqnarray}
217\int^{1}_{0}{f(\epsilon)d\epsilon} & = & \eta
218\label{ebrem.e}
219\end{eqnarray}
220in order to approximately satisfy the scaling law for the ratio of the total
221radiative energy loss.  From the photon spectra the boundary conditions
222\begin{eqnarray}
223\left .
224\begin{array}{l}
225f(0) = 1 \\
226f(1) = 0
227\end{array}
228\right \} \hspace{2cm} \mbox{for all $Z,T$}
229\label{ebrem.f}
230\end{eqnarray}
231may be inferred.  Choosing a simple function for $f$
232\begin{eqnarray}
233f(\epsilon) & = & C (1-\epsilon)^{\alpha} \hspace{3cm} C,\alpha > 0 ,
234\label{ebrem.g}
235\end{eqnarray}
236the conditions (\ref{ebrem.e}), (\ref{ebrem.f}) lead to:
237\begin{eqnarray*}
238C & = & 1 \\
239\alpha & = & \frac{1}{\eta} - 1 \hspace{2cm}
240\mbox{($\alpha > 0$ because $\eta < 1$)} \\
241f(\epsilon) & = & (1-\epsilon)^{\frac{1}{\eta}-1} .
242\end{eqnarray*}
243
244\noindent
245Now the weight factors $F_{l}$ and $F_{\sigma}$ for the positron continuous
246energy loss and the discrete bremsstrahlung cross section can be defined:
247
248\begin{eqnarray}
249F_{l} = \frac{1}{\epsilon_{0}} \int^{\epsilon_{0}}_{0}
250{f(\epsilon)d\epsilon} & \hspace{3cm} &
251F_{\sigma} = \frac{1}{1-\epsilon_{0}} \int^{1}_{\epsilon_{0}}
252{f(\epsilon)d\epsilon}
253\label{ebrem.h}
254\end{eqnarray}
255where $\epsilon_{0} = \frac{k_c}{T}$ and $k_c$ is the photon cut.  In this
256scheme the positron energy loss and discrete bremsstrahlung can be calculated
257as:
258\begin{eqnarray*}
259\left ( - \frac{dE}{dx} \right )^{+} = F_{l}
260\left ( - \frac{dE}{dx} \right )^{-} & \hspace{2cm} &
261\sigma^{+}_{brems} = F_{\sigma} \sigma^{-}_{brems}
262\end{eqnarray*}
263
264\noindent
265In this approximation the photon spectra are identical, therefore the same
266sampling is used for generating $e^-$ or $e^+$ bremsstrahlung.  The following
267relations hold:
268\begin{eqnarray*}
269F_{\sigma} & = & \eta (1-\epsilon_{0})^{\frac{1}{\eta}-1}
270< \eta \\
271\epsilon_{0} F_{l} + (1-\epsilon_{0}) F_{\sigma} & = & \eta
272\hspace{6cm} \mbox{from the def (\ref{ebrem.h})} \\
273\Rightarrow F_{l} & = & \eta \frac{1-(1-\epsilon_{0})^{\frac{1}
274{\eta}})}{\epsilon_{0}} > \eta \frac{1-(1-\epsilon_{0})}
275{\epsilon_{0}} = \eta  \hspace{1cm}
276\Rightarrow   \left \{
277\begin{array}{l}
278F_{l} > \eta \\
279F_{\sigma} < \eta
280\end{array} \right .
281\end{eqnarray*}
282which is consistent with the spectra.  The effect of the difference in $e^-$
283and $e^+$ bremsstrahlung can also be seen in electromagnetic shower
284development when the primary energy is not too high.
285
286\subsubsection{Landau Pomeranchuk Migdal (LPM) effect}
287
288The LPM effect (see for example \cite{ebrem.galitsky, ebrem.anthony} ) is the
289suppression of photon production due to the multiple scattering of the
290electron.  If an electron undergoes multiple scattering while traversing the
291so called ``formation zone'', the bremsstrahlung amplitudes from before and
292after the scattering can interfere, reducing the probability of bremsstrahlung
293photon emission (a similar suppression occurs for pair production).  The
294suppression becomes significant for photon energies below a certain value,
295given by
296\begin{equation}
297\label{ebrem.k}
298 \frac{k}{E} < \frac{E}{E_{LPM}} ,
299\end{equation}
300where
301\[
302\begin{array}{ll}
303k    & \mbox{photon energy} \\
304E    & \mbox{electron energy} \\
305E_{LPM} & \mbox{characteristic energy for LPM effect (depend on the medium).}
306\end{array}
307\]
308The value of the LPM characteristic energy can be written as
309\begin{equation}
310\label{ebrem.l}
311  E_{LPM} = \frac{\alpha m^2 X_0}{2 h c} ,
312\end{equation}
313where
314\[
315\begin{array}{ll}
316\alpha  & \mbox{fine structure constant} \\
317m       & \mbox{electron mass} \\
318X_0     & \mbox{radiation length in the material} \\
319h       & \mbox{Planck constant} \\
320c       & \mbox{velocity of light in vacuum.}
321\end{array}
322\]
323The LPM suppression of the photon spectrum is given by the formula
324\begin{equation}
325\label{ebrem.m}
326  S_{LPM} = \sqrt{\frac{E_{LPM} \cdot k}{E^2}} ,
327\end{equation}
328while the dielectric suppression (included already in the parameterizations)
329can be written as
330\begin{equation}
331\label{ebrem.n}
332  S_p = \frac{k^2}{k^2 + C_p \cdot E^2} ,
333\end{equation}
334where the quantity $C_p$ is given by
335\begin{equation}
336\label{ebrem.o}
337   C_p = \frac{r_0 \lambda^2_e n}{\pi} .
338\end{equation}
339In eq. \ref{ebrem.o} the parameters are
340\[
341\begin{array}{ll}
342r_0     & \mbox{classical electron radius} \\
343\lambda_e & \mbox{electron Compton wavelength} \\
344n       & \mbox{electron density in the material.}
345\end{array}
346\]
347
348\noindent
349Both suppression effects reduce the effective formation length of the photon,
350so the suppressions {\em do not simply multiply.}  For the total suppression
351$S$ the following equation holds (see \cite{ebrem.galitsky})
352\begin{equation}
353\label{ebrem.p}
354  \frac{1}{S} = 1 + \frac{1}{S_p} + \frac{S}{S^2_{LPM}}
355\end{equation}
356which can be solved easily for $S$
357\begin{equation}
358\label{ebrem.q}
359  S = \frac{\sqrt{S^4_{LPM}\cdot (1 + \frac{1}{S_p})^2 + 4 \cdot S^2_{LPM}}
360      -S^2_{LPM} \cdot (1 + \frac{1}{S_p})}{2} .
361\end{equation}
362
363\noindent
364The LPM effect was implemented by applying to the energy loss a factor
365$\frac{S}{S_p}$, which depends on the energy and material.  This is done at
366initialization time by computing the correction factor
367\begin{equation}
368\label{ebrem.r}
369   f_c = \frac{\int_0^{k_cut} n_\gamma (k) \cdot \frac{S}{S_p} dk}
370              {\int_0^{k_cut} n_\gamma (k) dk} ,
371\end{equation}
372where $n_\gamma(k)$ is the photon spectrum.  A similar correction has not been
373applied to the total cross section given by the parameterization \ref{ebrem.a}.
374Instead the LPM effect is included in the photon generation algorithm.
375
376\subsection{Simulation of Discrete Bremsstrahlung}
377
378The energy of the final state photons is sampled according to the spectrum
379\cite{ebrem.seltzer} of Seltzer and Berger.  They have calculated the
380bremsstrahlung spectra for materials with atomic numbers Z = 6, 13, 29, 47,
38174 and 92 in the electron kinetic energy range 1 keV - 10 GeV.  Their tabulated
382results have been used as input in a fit of the parameterized function
383
384\[
385S(x) = C k \frac{d \sigma}{d k} ,
386\]
387which will be used to form the rejection function for the sampling process.
388The parameterization can be written as
389\begin{equation}
390\label{eq:phys341-1}
391S(x) = \left \{
392\begin{array}{ll}
393(1-a_{h} \epsilon )F_{1}(\delta) + b_{h} \epsilon^{2} F_{2} (\delta)
394& T \geq 1 MeV \\
3951 + a_{l} x + b_{l} x^{2} & T < 1 MeV
396\end{array} \right .
397\end{equation}
398where
399\[
400\begin{array}{lcl}
401C & & \mbox{normalization constant} \\
402k & & \mbox{photon energy} \\ [1mm]
403T, E & & \mbox{kinetic and total energy of the primary electron} \\
404x & = & \frac{k}{T} \\ [2mm]
405\epsilon & = & \frac{k}{E} = x \frac{T}{E} \\
406\end{array}
407\]
408and $a_{h,l}$ and $b_{h,l}$ are the parameters to be fitted.  The
409$F_{i}(\delta)$ screening functions depend on the screening variable
410\[
411\begin{array}{lcll}
412\delta & = & \frac{136 m_{e}}{Z^{1/3} E} \frac{\epsilon}{1-\epsilon} \\
413F_{1}(\delta) & = & F_{0} (42.392 - 7.796 \delta +1.961 \delta^{2} - F)
414& \delta \leq 1 \\
415F_{2}(\delta) & = & F_{0} (41.734 - 6.484 \delta +1.250 \delta^{2} - F)
416& \delta \leq 1 \\
417F_{1}(\delta) & = & F_{2}(\delta) =
418F_{0} (42.24 - 8.368 \ln(\delta + 0.952) -F) & \delta > 1 \\
419F_{0} & = & \frac{1}{42.392-F} \\
420F & = & 4 \ln Z - 0.55 (\ln Z)^{2} .
421\end{array}
422\]
423
424\noindent
425The ``high energy'' ($T >$  1 MeV) formula is essentially the
426Coulomb-corrected, screened Bethe-Heitler formula (see e.g.
427\cite{ebrem.williams,ebrem.butcher,ebrem.egs4}).  However,
428Eq.~(\ref{eq:phys341-1}) differs from Bethe-Heitler in two ways:
429\begin{enumerate}
430\item $a_{h}, b_{h}$ depend on $T$ and on the atomic number $Z$, whereas in
431the Bethe-Heitler spectrum they are fixed ($a_{h} = 1$, $b_{h} =0.75$);
432\item the function $F$ is not the same as that in the Bethe-Heitler
433cross-section;  the present function gives a better behavior in the
434high frequency limit, i.e. when $k \rightarrow T$  ($x \rightarrow 1$).
435\end{enumerate}
436
437\noindent
438The $T$ and $Z$ dependence of the parameters are described by the equations:
439
440\begin{eqnarray*}
441a_{h} & = & 1 + \frac{a_{h1}}{u}+\frac{a_{h2}}{u^{2}}+\frac{a_{h3}}{u^{3}} \\
442b_{h} & = & 0.75+\frac{b_{h1}}{u}+\frac{b_{h2}}{u^{2}}+\frac{b_{h3}}{u^{3}} \\
443a_{l} & = & a_{l0} + a_{l1} u + a_{l2} u^{2} \\
444b_{l} & = & b_{l0} + b_{l1} u + b_{l2} u^{2} \\
445\mbox{with} \\
446u & = & \ln \left ( \frac{T}{m_{e}} \right )
447\end{eqnarray*}
448The parameters $a_{hi}, b_{hi}, a_{li}, b_{li}$ are polynomials of second order
449in the variable:
450
451\[
452v = [Z (Z+1)]^{1/3} .
453\]
454In the limiting case $T \rightarrow
455\infty$, $a_{h} \rightarrow 1, b_{h} \rightarrow 0.75$,
456Eq.~(\ref{eq:phys341-1}) gives the Bethe-Heitler cross section. \\
457
458\noindent
459There are altogether 36 linear parameters in the formulae and their values are
460given in the code.  This parameterization reproduces the Seltzer-Berger tables
461to within 2-3 \% on average, with the maximum error being less than 10-12 \%.
462The original tables, on the other hand, agree well with the experimental data
463and theoretical (low- and high-energy) results ($<$ 10 \% below 50 MeV and
464$<$ 5 \% above 50 MeV). \\
465
466\noindent
467Apart from the normalization the cross section differential in photon
468energy can be written as
469\[
470\frac{d \sigma}{d k} = \frac{1}{\ln \frac{1}{x_{c}}} \frac{1}{x}
471g(x) = \frac{1}{\ln \frac{1}{x_{c}}} \frac{1}{x} \frac{S(x)}{S_{max}}
472\]
473where $x_{c} = k_{c}/T$ and $k_{c}$ is the photon cut-off energy below
474which the bremsstrahlung is treated as a continuous energy loss.  Using this
475decomposition of the cross section and two random numbers $r_{1}$, $r_{2}$
476uniformly distributed in $[0,1]$, the sampling of $x$ is done as follows:
477\begin{enumerate}
478\item sample $x$ from
479\[
480\frac{1}{\ln \frac{1}{x_{c}}} \frac{1}{x} \mbox{\hspace{1cm}setting\hspace{1cm}}
481x = e^{r_{1} \ln x_{c}}
482\]
483
484\item calculate the rejection function $g(x)$ and:
485\begin{itemize}
486\item if $r_{2} > g(x)$ reject $x$ and go back to 1;
487\item if $r_{2} \leq g(x)$ accept $x$.
488\end{itemize}
489\end{enumerate}
490
491\noindent
492The application of the dielectric suppression \cite{ebrem.migdal} and the LPM
493effect requires that $\epsilon$ also be sampled.  First, the rejection
494function must be multiplied by a suppression factor
495\[
496C_M (\epsilon)  =\frac{1 + C_0 / \epsilon_c^2}
497               {1 + C_0 / \epsilon^2}
498\]
499where
500\[
501C_0 =\frac{nr_0 \lambda^2 }{\pi}, \hspace{1cm} \epsilon_c = \frac{k_{c}}{E}
502\]
503\begin{itemize}
504\item[$n$]           electron density in the medium
505\item[$r_0$]         classical electron radius
506\item[$\lambda$]    reduced Compton wavelength of the electron.
507\end{itemize}
508Apart from the Migdal correction factor, this is simply expression
509\ref{ebrem.n} .  This correction decreases the cross-section for low photon
510energies. \\
511
512\noindent
513While sampling $\epsilon$, the suppression factor $f_{LPM}=\frac{S}{S_p}$ is
514also used as a rejection function in order to take into account the LPM effect.
515Here the supression factor is compared to a random number $r$ uniformly
516distributed in the interval $[0,1]$.  If $f_{LPM} \geq r$ the simulation
517continues, otherwise the bremsstrahlung process concludes {\em without photon
518production}.  It can be seen that this procedure performs the LPM suppression
519correctly. \\
520
521\noindent
522After the successful sampling of $\epsilon$, the polar angles of the radiated
523photon are generated with respect to the parent electron's momentum.  It is
524difficult to find simple formulae for this angle in the literature.  For
525example the double differential cross section reported by
526Tsai~\cite{ebrem.tsai1,ebrem.tsai2} is
527\begin{eqnarray*}
528\frac{d \sigma}{dkd \Omega}
529& = & \frac{2 \alpha^{2}e^{2}}{\pi k m^{4}}
530  \left\{ \left[ \frac{2\epsilon-2}{(1+u^2)^2}+
531\frac{12u^2(1-\epsilon)}{(1+u^2)^4}\right]
532      Z(Z+1)  \right. \\
533&   & \mbox{} + \left. \left[ \frac{2-2\epsilon-\epsilon^{2}}{(1+u^2)^2}-
534      \frac{4u^2(1-\epsilon)}{(1+u^2)^4}
535      \right]
536      \left[ X-2Z^{2}f_{c}((\alpha Z)^{2})\right]
537      \right\} \\
538u & = & \frac{E \theta}{m} \\
539X & = & \int_{t_{min}}^{m^{2}(1+u^{2})^{2}}
540{\left [ G_{Z}^{el}(t) + G_{Z}^{in}(t) \right ] \frac{t-t_{min}}
541{t^{2}} dt} \\
542G_{Z}^{el, in}(t) & & \mbox{atomic form factors} \\
543t_{min} & = & \left [ \frac{k m^{2} (1+u^{2})}{2 E (E-k)} \right ] ^{2}
544 = \left [ \frac{\epsilon m^{2} (1+u^{2})}{2 E (1-\epsilon)} \right ] ^{2} .
545\end{eqnarray*}
546The sampling of this distribution is complicated.  It is also only an
547approximation to within a few percent, due at least to the presence of the
548atomic form factors.  The angular dependence is contained in the variable
549$u = E \theta m^{-1}$.  For a given value of $u$ the dependence of the shape
550of the function on $Z$, $E$ and $\epsilon = k/E$ is very weak.  Thus, the
551distribution can be approximated by a function
552\begin{equation}
553f(u) = C \left( u e^{-au} + d u e^{-3au} \right)
554\end{equation}
555where
556\[
557C = \frac{9a^{2}}{9 + d} \hspace{1cm} a = 0.625 \hspace{1cm}
558d = 27
559\]
560where $E$ is in GeV.  While this approximation is good at high energies,
561it becomes less accurate around a few MeV.  However in that region the
562ionization losses dominate over the radiative losses. \\
563
564\noindent
565The sampling of the function $f(u)$ can be done with three random numbers
566$r_i$, uniformly distributed on the interval [0,1]:
567\begin{enumerate}
568\item choose between $u e^{-au}$ and $d u e^{-3au}$:
569\[
570b = \left \{ \begin{array}{ll}
571a & \mbox{if\hspace{0.5cm}}r_{1} < 9/(9+d) \\
5723a & \mbox{if\hspace{0.5cm}}r_{1} \geq 9/(9+d)
573\end{array} \right .
574\]
575\item sample $u e^{-bu}$:
576\[
577u=-\frac{\log ( r_{2} r_{3}) }{b}
578\]
579\item check that:
580\[
581u \leq u_{max} = \frac{E \pi}{m}
582\]
583otherwise go back to 1.
584\end{enumerate}
585The probability of failing the last test is reported in
586table~\ref{tb:phys341-1}. \\
587
588\begin{table}
589\begin{centering}
590\begin{tabular}{|l|l|}
591\multicolumn{2}{c}{$\displaystyle
592P = \int^{\infty}_{u_{max}}{f(u) \: du} \hfill $} \\ [0.5cm]
593\hline
594E (MeV) & P(\%) \\ \hline
5950.511 & 3.4 \\
5960.6 &  2.2 \\
5970.8 & 1.2 \\
5981.0 & 0.7 \\
5992.0 & $<$ 0.1 \\ \hline
600\end{tabular}
601\caption{Angular sampling efficiency}
602\label{tb:phys341-1}
603\end{centering}
604\end{table}
605
606
607\noindent
608The function $f(u)$ can also be used to describe the angular distribution of
609the photon in $\mu$ bremsstrahlung and to describe the angular distribution in
610photon pair production. \\
611
612\noindent
613The azimuthal angle $\phi$ is generated isotropically.  Along with $\theta$,
614this information is used to calculate the momentum vectors of the radiated
615photon and parent recoiled electron, and to transform them to the
616global coordinate system.
617The momentum transfer to the atomic nucleus is neglected.
618
619\subsection{Status of this document}
62009.10.98 created by L. Urb\'an. \\
62121.03.02 modif in angular distribution (M.Maire) \\
62227.05.02 re-written by D.H. Wright \\
62301.12.03 minor update by V. Ivanchenko     \\
62420.05.04 updated by L.Urban \\
62509.12.05 minor update by V. Ivanchenko     \\
62615.03.07 modify definition of Elpm (mma)     \\
627 
628\begin{latexonly}
629
630\begin{thebibliography}{99}
631\bibitem{eedl}
632  S.T.Perkins, D.E.Cullen, S.M.Seltzer, UCRL-50400 Vol.31
633\bibitem{ebrem.geant3}
634  GEANT3 manual ,CERN Program Library Long Writeup W5013 (October 1994).
635\bibitem{ebrem.galitsky}
636  V.M.Galitsky and I.I.Gurevich. Nuovo Cimento 32 (1964) 1820.
637\bibitem{ebrem.anthony}
638  P.L. Anthony et al. SLAC-PUB-7413/LBNL-40054 (February 1997)
639\bibitem{ebrem.seltzer}
640  S.M.Seltzer and M.J.Berger. Nucl.Inst.Meth. 80 (1985) 12.
641\bibitem{ebrem.egs4} W.R. Nelson et al.:The EGS4 Code System.
642   {\em SLAC-Report-265 , December 1985 }
643\bibitem{ebrem.messel}
644  H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.
645\bibitem{ebrem.migdal}
646   A.B. Migdal. Phys.Rev. 103. (1956) 1811.
647\bibitem{ebrem.kim}
648   L. Kim et al. Phys. Rev. A33 (1986) 3002.
649\bibitem{ebrem.williams}
650   R.W. Williams, Fundamental Formulas of Physics, vol.2., Dover Pubs. (1960).
651\bibitem{ebrem.butcher}
652   J. C. Butcher and H. Messel. Nucl.Phys. 20. (1960) 15.
653\bibitem{ebrem.tsai1}
654   Y-S. Tsai, Rev. Mod. Phys. 46. (1974) 815.
655\bibitem{ebrem.tsai2}
656   Y-S. Tsai, Rev. Mod. Phys. 49. (1977) 421.
657
658\end{thebibliography}
659
660\end{latexonly}
661
662\begin{htmlonly}
663
664\subsection{Bibliography}
665
666\begin{enumerate}
667\item S.T.Perkins, D.E.Cullen, S.M.Seltzer, UCRL-50400 Vol.31
668\item GEANT3 manual ,CERN Program Library Long Writeup W5013 (October 1994).
669\item V.M.Galitsky and I.I.Gurevich. Nuovo Cimento 32 (1964) 1820.
670\item P.L. Anthony et al. SLAC-PUB-7413/LBNL-40054 (February 1997)
671\item S.M.Seltzer and M.J.Berger. Nucl.Inst.Meth. 80 (1985) 12.
672\item W.R. Nelson et al.:The EGS4 Code System.
673   {\em SLAC-Report-265 , December 1985 }
674\item H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.
675\item A.B. Migdal. Phys.Rev. 103. (1956) 1811.
676\item L. Kim et al. Phys. Rev. A33 (1986) 3002.
677\item R.W. Williams, Fundamental Formulas of Physics, vol.2., Dover Pubs. (1960).
678\item J. C. Butcher and H. Messel. Nucl.Phys. 20. (1960) 15.
679\item Y-S. Tsai, Rev. Mod. Phys. 46. (1974) 815.
680\item Y-S. Tsai, Rev. Mod. Phys. 49. (1977) 421.
681\end{enumerate}
682
683\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.