source: trunk/documents/UserDoc/DocBookUsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/ebrem.tex @ 1345

Last change on this file since 1345 was 1211, checked in by garnier, 15 years ago

CVS update

File size: 30.0 KB
Line 
1
2\section[Bremsstrahlung]{Bremsstrahlung} \label{sec:em.ebrem}
3
4The class $G4eBremsstrahlung$ provides the energy loss of electrons and
5positrons due to the radiation of photons in the field of a nucleus
6according to the approach described in Section \ref{en_loss}.
7Above a given threshold energy the energy loss is simulated by the explicit
8production of photons.  Below the threshold the emission of soft photons is
9treated as a continuous energy loss.   
10
11%{\color{red}
12Below electron/positron energies of 1 GeV, the cross
13section evaluation is based on a dedicated parameterization, see
14Sec.\ \ref{sec:em.ebrem.param}. Above this limit an analytic cross
15section is used, cf.\ Sec.\ \ref{sec:em.ebrem.lpm}.
16%}
17In GEANT4 the Landau-Pomeranchuk-Migdal effect has also been implemented. 
18
19\subsection{Cross Section and Energy Loss}\label{sec:em.ebrem.param}
20
21$d\sigma(Z,T,k)/dk$ is the differential cross section for the production of a
22photon of energy $k$ by an electron of kinetic energy $T$ in the field of an
23atom of charge $Z$.  If $k_c$ is the energy cut-off below which the soft
24photons are treated as continuous energy loss, then the mean value of the
25energy lost by the electron is
26\begin{equation}\label{eq:ebrem.eloss}
27  E_{Loss}^{brem} (Z,T,k_c ) =
28\int_{0}^{k_ c}k\frac{d \sigma (Z,T,k)}{dk}dk .
29\end{equation}
30The total cross section for the emission of a photon of energy larger than
31$k_c$ is
32\begin{equation}\label{eq:ebrem.discrete}
33 \sigma_{brem} (Z,T,k_c ) = \int_{k_c}^{T}\frac{d \sigma (Z,T,k)}{dk} dk .
34\end{equation}
35\\
36
37\subsubsection{Parameterization of the Energy Loss and Total Cross Section}
38
39 The cross section and energy loss due to bremsstrahlung have been
40parameterized using the EEDL (Evaluated Electrons Data Library) data set
41\cite{eedl} as input.
42
43\noindent
44The following parameterization was chosen for the electron bremsstrahlung
45cross section :
46\begin{equation}
47\label{ebrem.a}
48\sigma (Z,T,k_c ) =  Z(Z+\xi_{\sigma} ) (1-c_{sigh} Z^{1/4})
49              \left[ \ln \frac{T}{k_c} \right]^{\alpha} \frac{{f_s}}{N_{Avo}} 
50\end{equation}
51where $f_s$ is a polynomial in $x = lg(T)$ with $Z$-dependent coefficients for
52$x < x_l$ , $f_s= 1 $ for $x \ge x_l$, $\xi_{\sigma}, c_{sigh}, \alpha$ are
53constants, $N_{Avo}$ is the Avogadro number.
54For the case of low energy electrons ($T \le T_{lim} = 10 MeV$) the above
55expression should be multiplied by
56
57\begin{equation}
58      \left(\frac{T_{lim}}{T}\right)^{c_l} \cdot \left(1 + \frac {a_l}{\sqrt{Z} T}\right),
59\end{equation}
60  with constant $c_l, a_l$ parameters.
61
62 The energy loss parameterization is the following :
63
64\begin{equation}
65\label{ebrem.b}
66E_{Loss}^{brem} (Z,T,k_c ) =\frac{Z(Z+ \xi_l)(T+m)^2 }
67      {(T+2m)}\left[\frac{k_c}{T}\right]^\beta (2-c_{lh} Z^{\frac{1}{4}} )
68        \frac{a + b \frac{T}{T_{lim}}}{1 + c \frac{T}{T_{lim}}}
69       \frac{f_l}{N_{Avo}}
70\end{equation}
71where $m$ is the mass of the electron, $\xi_l, \beta, c_{lh}, a,b,c$ are
72constants, $f_l$ is a polynomial in $x = lg(T)$ with $Z$-dependent
73coefficients for $x < x_l$ , $f_l= 1 $ for $x \ge x_l$.
74  For low energies this expression should be divided by
75   
76\begin{equation}
77      \left(\frac{T_{lim}}{T}\right)^{c_l} 
78\end{equation}
79
80 and if $T < k_c$ the expression should be multiplied by
81
82\begin{equation}
83      \left(\frac{T}{k_c}\right)^{a_l} 
84\end{equation}
85
86 with some constants $c_l, a_l$.
87 The numerical values of the parameters and the coefficients of the
88 polynomyals $f_s$ and $f_l$ can be found in the class code.
89\\
90
91\noindent
92The errors of the parameterizations (\ref{ebrem.a}) and (\ref{ebrem.b})
93were estimated to be
94
95\begin{eqnarray*}
96\frac{\Delta\sigma} {\sigma} & = & \left \{
97\begin{array}{llr}
98         6-8 \%    & \mbox{for    } & T \leq 1 MeV \\
99        \leq 4-5\% & \mbox{for    } & 1 MeV < T
100\end{array}
101\right . \\[1cm]
102\frac{\Delta E_{Loss}^{brem}}
103     {E_{Loss}^{brem}} & = & \left \{
104\begin{array}{llr}
105        8 -10\%    & \mbox{for    } & T \leq1 MeV  \\
106        5-6\%      & \mbox{for    } & 1 MeV < T .
107\end{array}
108\right .
109\end{eqnarray*}
110
111
112\noindent
113When running GEANT4, the energy loss due to soft photon bremsstrahlung is
114tabulated at initialization time as a function of the medium and of the
115energy, as is the mean free path for discrete bremsstrahlung.
116
117\subsubsection{Corrections for $e^+ e^-$ Differences}
118
119The preceding section has dealt exclusively with electrons.  One might expect
120that positrons could be treated the same way.  According to reference
121\cite{ebrem.kim} however, the differences between the radiative loss of positrons
122and electrons are considerable and cannot be disregarded.
123The ratio of the radiative energy loss for positrons
124to that for electrons obeys a simple scaling law, is a
125function only of the quantity $T/Z^2$. \\
126
127\noindent
128The radiative energy loss for electrons or positrons is given by
129\begin{eqnarray*}
130-\frac{1}{\rho} \left ( \frac{dE}{dx} \right )_{rad}^{\pm} & = &
131\frac{N_{Av} \alpha r_e^2}{A} (T+m) Z^2 \Phi_{rad}^{\pm}(Z,T) \\
132\Phi^{\pm}_{rad}(Z,T) & = & \frac{1}{\alpha r_{e}^2 Z^2 (T+m)}
133\int^{T}_{0}{k\frac{d\sigma^{\pm}}{dk}dk}
134\end{eqnarray*}
135and it is the ratio
136\begin{eqnarray*}
137\eta & = & \frac{\Phi_{rad}^{+}(Z,T)}{\Phi_{rad}^{-}(Z,T)} =
138\eta \left (\frac{T}{Z^2}\right )
139\end{eqnarray*}
140that obeys the scaling law. \\
141
142\noindent 
143The authors have calculated this function in the range $10^{-7}
144\leq \frac{T}{Z^2} \leq 0.5$, where the kinetic energy $T$ is expressed in
145MeV.  Their {\it data} can be fairly accurately reproduced using a
146parametrization:
147
148\begin{eqnarray*}
149\eta & = & \left \{
150\begin{array}{llr}
1510 & \mbox{if   } & x \leq -8 \\
152\frac{1}{2} + \frac{1}{\pi} \arctan \left( a_1 x + a_3 x^3
153+ a_5 x^5 \right ) & \mbox{if  } & -8 < x < 9 \\
1541 & \mbox{if   } & x \geq 9
155\end{array}
156\right .
157\end{eqnarray*}
158where
159\begin{eqnarray*}
160x & = & \log \left ( C \frac{T}{Z^2} \right ) \mbox{(T in GeV)} \\
161C & = & 7.5221 \times 10^{6} \\
162a_1 & = & 0.415 \\
163a_3 & = & 0.0021 \\
164a_5 & = & 0.00054 .
165\end{eqnarray*}
166
167
168\noindent
169The $e^+ e^-$ energy loss difference is not purely a low-energy phenomenon
170(at least for high $Z$), as shown in Table~\ref{ebrem.c}.
171
172\begin{table}[hbt]
173\begin{centering}
174\begin{tabular}{rr|r|r} \hline
175\multicolumn{1}{c}{$\frac{T}{Z^2} (GeV)$}
176& \multicolumn{1}{c|}{T}
177& \multicolumn{1}{c|}{$\eta$}
178& \multicolumn{1}{c}{$\left ( \frac{rad. \ loss}{total \ loss}
179\right )_{e^-}$} \\[3mm] \hline
180$10^{-9}$ & $\sim 7 keV$ & $\sim 0.1$ & $\sim 0\%$ \\
181$10^{-8}$ & $67 keV $ & $\sim 0.2$ & $\sim 1\%$ \\
182$2 \times 10^{-7}$ & $1.35 MeV$ & $\sim 0.5$ & $\sim 15\%$ \\
183$2 \times 10^{-6}$ & $13.5 MeV$ & $\sim 0.8$ & $\sim 60\%$ \\
184$2 \times 10^{-5}$ & $135. MeV$ & $\sim 0.95$ & $> 90\%$ \\ \hline
185\end{tabular}
186\caption{ratio of the $e^+ e^-$ radiative energy loss in lead
187(Z=82).}
188\label{ebrem.c}
189\end{centering}
190\end{table}
191
192
193\noindent 
194The scaling property will be used to obtain the positron energy loss and
195discrete bremsstrahlung from the corresponding electron values.  However,
196while scaling holds for the ratio of the total radiative energy losses, it
197is significantly broken for the photon spectrum in the screened case.  That is,
198\begin{eqnarray*}
199\frac{\Phi^+}{\Phi^-} = \eta \left ( \frac{T}{Z^2} \right )
200& \hspace{3cm} &
201\frac{\frac{d\sigma^+}{dk}}{\frac{d\sigma^-}{dk}} =
202\mbox{does not scale .}
203\end{eqnarray*}
204For the case of a point Coulomb charge, scaling would be restored for the
205photon spectrum.  In order to correct for non-scaling, it is useful to note
206that in the photon spectrum from bremsstrahlung reported in \cite{ebrem.kim}:
207\begin{eqnarray*}
208\frac{d\sigma^{\pm}}{dk} = S^{\pm} \left( \frac{k}{T} \right )
209\hspace{2cm}
210\frac{S^{+}(k)}{S^{-}(k)} \leq 1 & \hspace{1cm} & S^{+}(1) = 0
211\hspace{2cm} S^{-}(1)  >  0
212\end{eqnarray*}
213One can further assume that
214\begin{eqnarray}
215\frac{d\sigma^+}{dk} = f(\epsilon) \frac{d\sigma^-}{dk} ,
216& \hspace{2cm} &
217\epsilon = \frac{k}{T}
218\label{ebrem.d}
219\end{eqnarray}
220and require
221\begin{eqnarray}
222\int^{1}_{0}{f(\epsilon)d\epsilon} & = & \eta
223\label{ebrem.e}
224\end{eqnarray}
225in order to approximately satisfy the scaling law for the ratio of the total
226radiative energy loss.  From the photon spectra the boundary conditions
227\begin{eqnarray}
228\left .
229\begin{array}{l}
230f(0) = 1 \\
231f(1) = 0
232\end{array}
233\right \} \hspace{2cm} \mbox{for all $Z,T$}
234\label{ebrem.f}
235\end{eqnarray}
236may be inferred.  Choosing a simple function for $f$
237\begin{eqnarray}
238f(\epsilon) & = & C (1-\epsilon)^{\alpha} \hspace{3cm} C,\alpha > 0 ,
239\label{ebrem.g}
240\end{eqnarray}
241the conditions (\ref{ebrem.e}), (\ref{ebrem.f}) lead to:
242\begin{eqnarray*}
243C & = & 1 \\
244\alpha & = & \frac{1}{\eta} - 1 \hspace{2cm}
245\mbox{($\alpha > 0$ because $\eta < 1$)} \\
246f(\epsilon) & = & (1-\epsilon)^{\frac{1}{\eta}-1} .
247\end{eqnarray*}
248
249\noindent
250Now the weight factors $F_{l}$ and $F_{\sigma}$ for the positron continuous
251energy loss and the discrete bremsstrahlung cross section can be defined:
252
253\begin{eqnarray}
254F_{l} = \frac{1}{\epsilon_{0}} \int^{\epsilon_{0}}_{0}
255{f(\epsilon)d\epsilon} & \hspace{3cm} &
256F_{\sigma} = \frac{1}{1-\epsilon_{0}} \int^{1}_{\epsilon_{0}}
257{f(\epsilon)d\epsilon}
258\label{ebrem.h}
259\end{eqnarray}
260where $\epsilon_{0} = \frac{k_c}{T}$ and $k_c$ is the photon cut.  In this
261scheme the positron energy loss and discrete bremsstrahlung can be calculated
262as:
263\begin{eqnarray*}
264\left ( - \frac{dE}{dx} \right )^{+} = F_{l}
265\left ( - \frac{dE}{dx} \right )^{-} & \hspace{2cm} &
266\sigma^{+}_{brems} = F_{\sigma} \sigma^{-}_{brems}
267\end{eqnarray*}
268
269\noindent
270In this approximation the photon spectra are identical, therefore the same
271sampling is used for generating $e^-$ or $e^+$ bremsstrahlung.  The following
272relations hold:
273\begin{eqnarray*}
274F_{\sigma} & = & \eta (1-\epsilon_{0})^{\frac{1}{\eta}-1}
275< \eta \\
276\epsilon_{0} F_{l} + (1-\epsilon_{0}) F_{\sigma} & = & \eta
277\hspace{6cm} \mbox{from the def (\ref{ebrem.h})} \\
278\Rightarrow F_{l} & = & \eta \frac{1-(1-\epsilon_{0})^{\frac{1}
279{\eta}})}{\epsilon_{0}} > \eta \frac{1-(1-\epsilon_{0})}
280{\epsilon_{0}} = \eta  \hspace{1cm}
281\Rightarrow   \left \{
282\begin{array}{l}
283F_{l} > \eta \\
284F_{\sigma} < \eta
285\end{array} \right .
286\end{eqnarray*}
287which is consistent with the spectra.  The effect of the difference in $e^-$
288and $e^+$ bremsstrahlung can also be seen in electromagnetic shower
289development when the primary energy is not too high.
290
291
292%{\color{red}
293The dielectric suppression of the photon spectrum  (density effect or
294TerMikaelian effect \cite{ebrem.migdal}) is governed by the suppression function
295\begin{equation}
296\label{eq:ebrem.density}
297  S_p = \frac{k^2}{k^2 + {k_p}^2} ,
298\end{equation}
299where the charakteristic energy $k_p$ is defined by
300\begin{equation}
301\label{eq:ebrem.o}
302 k_p^2 = \frac{r_0 \lambda^2_e n}{\pi} \cdot E^2 .
303\end{equation}
304and the parameters are defined by
305\[
306\begin{array}{ll}
307r_0     & \mbox{classical electron radius} \\
308\lambda_e & \mbox{electron Compton wavelength} \\
309n       & \mbox{electron density in the material.}
310\end{array}
311\]
312%}
313
314\subsection{Simulation of Discrete Bremsstrahlung}
315
316The energy of the final state photons is sampled according to the spectrum
317\cite{ebrem.seltzer} of Seltzer and Berger.  They have calculated the
318bremsstrahlung spectra for materials with atomic numbers Z = 6, 13, 29, 47,
31974 and 92 in the electron kinetic energy range 1 keV - 10 GeV.  Their tabulated
320results have been used as input in a fit of the parameterized function
321
322\[
323S(x) = C k \frac{d \sigma}{d k} ,
324\]
325which will be used to form the rejection function for the sampling process.
326The parameterization can be written as
327\begin{equation}
328\label{eq:phys341-1}
329S(x) = \left \{
330\begin{array}{ll}
331(1-a_{h} \epsilon )F_{1}(\delta) + b_{h} \epsilon^{2} F_{2} (\delta)
332& T \geq 1 MeV \\
3331 + a_{l} x + b_{l} x^{2} & T < 1 MeV
334\end{array} \right .
335\end{equation}
336where
337\[
338\begin{array}{lcl}
339C & & \mbox{normalization constant} \\
340k & & \mbox{photon energy} \\ [1mm]
341T, E & & \mbox{kinetic and total energy of the primary electron} \\
342x & = & \frac{k}{T} \\ [2mm]
343\epsilon & = & \frac{k}{E} = x \frac{T}{E} \\
344\end{array}
345\]
346and $a_{h,l}$ and $b_{h,l}$ are the parameters to be fitted.  The
347$F_{i}(\delta)$ screening functions depend on the screening variable
348\[
349\begin{array}{lcll}
350\delta & = & \frac{136 m_{e}}{Z^{1/3} E} \frac{\epsilon}{1-\epsilon} \\
351F_{1}(\delta) & = & F_{0} (42.392 - 7.796 \delta +1.961 \delta^{2} - F)
352& \delta \leq 1 \\
353F_{2}(\delta) & = & F_{0} (41.734 - 6.484 \delta +1.250 \delta^{2} - F)
354& \delta \leq 1 \\
355F_{1}(\delta) & = & F_{2}(\delta) =
356F_{0} (42.24 - 8.368 \ln(\delta + 0.952) -F) & \delta > 1 \\
357F_{0} & = & \frac{1}{42.392-F} \\
358F & = & 4 \ln Z - 0.55 (\ln Z)^{2} .
359\end{array}
360\]
361
362\noindent 
363The ``high energy'' ($T >$  1 MeV) formula is essentially the
364Coulomb-corrected, screened Bethe-Heitler formula (see e.g.
365\cite{ebrem.williams,ebrem.butcher,ebrem.egs4}).  However,
366Eq.~(\ref{eq:phys341-1}) differs from Bethe-Heitler in two ways:
367\begin{enumerate}
368\item $a_{h}, b_{h}$ depend on $T$ and on the atomic number $Z$, whereas in
369the Bethe-Heitler spectrum they are fixed ($a_{h} = 1$, $b_{h} =0.75$);
370\item the function $F$ is not the same as that in the Bethe-Heitler
371cross-section;  the present function gives a better behavior in the
372high frequency limit, i.e. when $k \rightarrow T$  ($x \rightarrow 1$).
373\end{enumerate}
374
375\noindent 
376The $T$ and $Z$ dependence of the parameters are described by the equations:
377
378\begin{eqnarray*}
379a_{h} & = & 1 + \frac{a_{h1}}{u}+\frac{a_{h2}}{u^{2}}+\frac{a_{h3}}{u^{3}} \\
380b_{h} & = & 0.75+\frac{b_{h1}}{u}+\frac{b_{h2}}{u^{2}}+\frac{b_{h3}}{u^{3}} \\
381a_{l} & = & a_{l0} + a_{l1} u + a_{l2} u^{2} \\
382b_{l} & = & b_{l0} + b_{l1} u + b_{l2} u^{2} \\
383\mbox{with} \\
384u & = & \ln \left ( \frac{T}{m_{e}} \right )
385\end{eqnarray*}
386The parameters $a_{hi}, b_{hi}, a_{li}, b_{li}$ are polynomials of second order
387in the variable:
388
389\[
390v = [Z (Z+1)]^{1/3} .
391\]
392In the limiting case $T \rightarrow
393\infty$, $a_{h} \rightarrow 1, b_{h} \rightarrow 0.75$,
394Eq.~(\ref{eq:phys341-1}) gives the Bethe-Heitler cross section. \\
395
396\noindent
397There are altogether 36 linear parameters in the formulae and their values are
398given in the code.  This parameterization reproduces the Seltzer-Berger tables
399to within 2-3 \% on average, with the maximum error being less than 10-12 \%.
400The original tables, on the other hand, agree well with the experimental data
401and theoretical (low- and high-energy) results ($<$ 10 \% below 50 MeV and
402$<$ 5 \% above 50 MeV). \\
403
404\noindent 
405Apart from the normalization the cross section differential in photon
406energy can be written as
407\[
408\frac{d \sigma}{d k} = -\frac{g(x)}{x\ln x_{c}} = -\frac{S(x)}{S_{max}x\ln x_{c}},
409\]
410where $x_{c} = k_{c}/T$ and $k_{c}$ is the photon cut-off energy below
411which the bremsstrahlung is treated as a continuous energy loss.  Using this
412decomposition of the cross section and two random numbers $r_{1}$, $r_{2}$ 
413uniformly distributed in $[0,1]$, the sampling of $x$ is done as follows:
414\begin{enumerate}
415\item 
416sample $x$ from $-\frac{1}{x\ln x_{c}}$ setting $x = e^{r_{1} \ln x_{c}}$
417\item calculate the rejection function $g(x)$ and:
418\begin{itemize}
419\item if $r_{2} > g(x)$ reject $x$ and go back to 1;
420\item if $r_{2} \leq g(x)$ accept $x$.
421\end{itemize}
422\end{enumerate}
423
424\noindent 
425The application of the dielectric suppression \cite{ebrem.migdal} %and
426                                %the LPM effect
427requires that $\epsilon$ also be sampled.  First, the rejection
428function must be multiplied by a suppression factor
429\[
430C_M (\epsilon)  =\frac{1 + C_0 / \epsilon_c^2}
431               {1 + C_0 / \epsilon^2}
432\]
433where
434\[
435C_0 =\frac{nr_0 \lambda^2 }{\pi}, \hspace{1cm} \epsilon_c = \frac{k_{c}}{E}
436\]
437\begin{itemize}
438\item[$n$]           electron density in the medium
439\item[$r_0$]         classical electron radius
440\item[$\lambda$]    reduced Compton wavelength of the electron.
441\end{itemize}
442Apart from the Migdal correction factor, this is simply expression
443\ref{eq:ebrem.density} .  This correction decreases the cross-section for low photon
444energies. \\
445
446%\noindent
447%While sampling $\epsilon$, the suppression factor $f_{LPM}=\frac{S}{S_p}$ is
448%also used as a rejection function in order to take into account the LPM effect.
449%Here the supression factor is compared to a random number $r$ uniformly
450%distributed in the interval $[0,1]$.  If $f_{LPM} \geq r$ the simulation
451%continues, otherwise the bremsstrahlung process concludes {\em without photon
452%production}.  It can be seen that this procedure performs the LPM suppression
453%correctly. \\
454
455\noindent
456After the successful sampling of $\epsilon$, the polar angles of the radiated
457photon are generated with respect to the parent electron's momentum.  It is
458difficult to find simple formulae for this angle in the literature.  For
459example the double differential cross section reported by
460Tsai~\cite{ebrem.tsai1,ebrem.tsai2} is
461\begin{eqnarray*}
462\frac{d \sigma}{dkd \Omega}
463& = & \frac{2 \alpha^{2}e^{2}}{\pi k m^{4}}
464  \left\{ \left[ \frac{2\epsilon-2}{(1+u^2)^2}+
465\frac{12u^2(1-\epsilon)}{(1+u^2)^4}\right]
466      Z(Z+1)  \right. \\
467&   & \mbox{} + \left. \left[ \frac{2-2\epsilon-\epsilon^{2}}{(1+u^2)^2}-
468      \frac{4u^2(1-\epsilon)}{(1+u^2)^4}
469      \right]
470      \left[ X-2Z^{2}f_{c}((\alpha Z)^{2})\right]
471      \right\} \\
472u & = & \frac{E \theta}{m} \\
473X & = & \int_{t_{min}}^{m^{2}(1+u^{2})^{2}}
474{\left [ G_{Z}^{el}(t) + G_{Z}^{in}(t) \right ] \frac{t-t_{min}}
475{t^{2}} dt} \\
476G_{Z}^{el, in}(t) & & \mbox{atomic form factors} \\
477t_{min} & = & \left [ \frac{k m^{2} (1+u^{2})}{2 E (E-k)} \right ] ^{2}
478 = \left [ \frac{\epsilon m^{2} (1+u^{2})}{2 E (1-\epsilon)} \right ] ^{2} .
479\end{eqnarray*}
480The sampling of this distribution is complicated.  It is also only an
481approximation to within a few percent, due at least to the presence of the
482atomic form factors.  The angular dependence is contained in the variable
483$u = E \theta m^{-1}$.  For a given value of $u$ the dependence of the shape
484of the function on $Z$, $E$ and $\epsilon = k/E$ is very weak.  Thus, the
485distribution can be approximated by a function
486\begin{equation}
487f(u) = C \left( u e^{-au} + d u e^{-3au} \right)
488\end{equation}
489where
490\[
491C = \frac{9a^{2}}{9 + d} \hspace{1cm} a = 0.625 \hspace{1cm}
492d = 27
493\]
494where $E$ is in GeV.  While this approximation is good at high energies,
495it becomes less accurate around a few MeV.  However in that region the
496ionization losses dominate over the radiative losses. \\
497
498\noindent 
499The sampling of the function $f(u)$ can be done with three random numbers
500$r_i$, uniformly distributed on the interval [0,1]:
501\begin{enumerate}
502\item choose between $u e^{-au}$ and $d u e^{-3au}$:
503\[
504b = \left \{ \begin{array}{ll}
505a & \mbox{if\hspace{0.5cm}}r_{1} < 9/(9+d) \\
5063a & \mbox{if\hspace{0.5cm}}r_{1} \geq 9/(9+d)
507\end{array} \right .
508\]
509\item sample $u e^{-bu}$:
510\[
511u=-\frac{\log ( r_{2} r_{3}) }{b}
512\]
513\item check that:
514\[
515u \leq u_{max} = \frac{E \pi}{m}
516\]
517otherwise go back to 1.
518\end{enumerate}
519The probability of failing the last test is reported in
520table~\ref{tb:phys341-1}. \\
521
522\begin{table}
523\begin{centering}
524\begin{tabular}{|l|l|}
525\multicolumn{2}{c}{$\displaystyle
526P = \int^{\infty}_{u_{max}}{f(u) \: du} \hfill $} \\ [0.5cm]
527\hline
528E (MeV) & P(\%) \\ \hline
5290.511 & 3.4 \\
5300.6 &  2.2 \\
5310.8 & 1.2 \\
5321.0 & 0.7 \\
5332.0 & $<$ 0.1 \\ \hline
534\end{tabular}
535\caption{Angular sampling efficiency}
536\label{tb:phys341-1}
537\end{centering}
538\end{table}
539
540
541\noindent 
542The function $f(u)$ can also be used to describe the angular distribution of
543the photon in $\mu$ bremsstrahlung and to describe the angular distribution in
544photon pair production. \\
545
546\noindent
547The azimuthal angle $\phi$ is generated isotropically.  Along with $\theta$,
548this information is used to calculate the momentum vectors of the radiated
549photon and parent recoiled electron, and to transform them to the
550global coordinate system.
551The momentum transfer to the atomic nucleus is neglected.
552
553\subsection{Bremsstrahlung of high-energy electrons}\label{sec:em.ebrem.lpm}
554%
555%{\color{red}
556Above an electron energy of 1 GeV an analytic
557differential cross section representation is used
558\cite{ebrem.perl}, which was modified to account for the density
559effect and the Landau-Pomeranchuk-Migdal (LPM) effect
560\cite{ebrem.klein,ebrem.stanev}.
561%}
562
563\subsubsection{Relativistic Bremsstrahlung cross section}
564
565%{\color{red}
566The basis of the implementation is the well known high energy limit of
567the Bremsstrahlung process \cite{ebrem.perl},
568\begin{multline}
569\frac{d\sigma}{dk} = \frac{4 \alpha r_e^2}{3k} \biggl[ \{ y^2 + 2 [ 1
570+ (1-y)^2 ] \} [ Z^2 ( F_{el}  - f ) + Z F_{inel}  ] \\+ (1-y) \frac{Z^2
571  + Z }{3} \biggr]
572\label{eq:perl}
573\end{multline}
574The {\em elastic from factor} $F_{el}$ and {\em inelastic form factor}
575$F_{inel}$,
576describe the scattering on the nucleus and on the shell electrons,
577respectively, and for $Z>4$ are given by \cite{ebrem.PDGreview}
578\begin{align*}
579F_{el}   &= \log\biggl( \frac{184.15}{Z^{\frac{1}{3}} }
580\biggr)
581&\mbox{and}\quad
582F_{inel} &= \log\biggl( \frac{1194.}{Z^{\frac{2}{3}} }  \biggr\;.
583\end{align*}
584This corresponds to the complete screening approximation.
585The Coulomb correction is defined as \cite{ebrem.PDGreview}
586\begin{align*}
587f        &= \alpha^2 Z^2 \sum_{n=1}^\infty 
588\frac{1}{n ( n^2 + \alpha^2Z^2 )} 
589\end{align*}
590%
591This approach provides an analytic differential cross section for an
592efficient evaluation in a Monte Carlo computer code. Note
593that in this approximation the differential cross section $d\sigma/dk$
594is independent of the energy of the initial electron and is also valid
595for positrons.
596
597The total integrated cross section $\int d\sigma/dk \, dk$ is
598divergent, but the energy loss integral $\int k d\sigma/dk \, dk$ is finite.
599%
600This allows the usual separation into
601continuous enery loss, and discrete photon production according to
602Eqs.\ (\ref{eq:ebrem.eloss}) and (\ref{eq:ebrem.discrete}).
603
604
605
606%}
607
608\subsubsection{Landau Pomeranchuk Migdal (LPM) effect}
609
610%{\color{red}
611At higher energies matter effects become more and
612more important. In GEANT4 the two leading matter effects, the
613LPM effect and the dielectric suppresion (or Ter-Mikaelian effect),
614are considered. The analytic cross section representation, eq.\
615\eqref{eq:perl}, provides the basis for the incorporation of these
616matter effects.
617%}
618
619The LPM effect (see for example \cite{ebrem.galitsky, ebrem.anthony, ebrem.hansen} ) is the
620suppression of photon production due to the multiple scattering of the
621electron.  If an electron undergoes multiple scattering while traversing the
622so called ``formation zone'', the bremsstrahlung amplitudes from before and
623after the scattering can interfere, reducing the probability of bremsstrahlung
624photon emission (a similar suppression occurs for pair production).  The
625suppression becomes significant for photon energies below a certain value,
626given by
627\begin{equation}
628\label{ebrem.k}
629 \frac{k}{E} < \frac{E}{E_{LPM}} ,
630\end{equation}
631where
632\[
633\begin{array}{ll}
634k    & \mbox{photon energy} \\
635E    & \mbox{electron energy} \\
636E_{LPM} & \mbox{characteristic energy for LPM effect (depend on the medium).}
637\end{array}
638\]
639The value of the LPM characteristic energy can be written as
640\begin{equation}
641\label{eq:ebrem.elpm}
642  E_{LPM} = \frac{\alpha m^2 X_0}{4 h c} ,
643\end{equation}
644where
645\[
646\begin{array}{ll}
647\alpha  & \mbox{fine structure constant} \\
648m       & \mbox{electron mass} \\
649X_0     & \mbox{radiation length in the material} \\
650h       & \mbox{Planck constant} \\
651c       & \mbox{velocity of light in vacuum.}
652\end{array}
653\]
654
655%{\color{red}
656\noindent
657At high energies (approximately above 1 GeV) the differential cross section including the
658Landau-Pomeranchuk-Migdal effect, can be expressed using an evaluation
659based on \cite{ebrem.migdal,ebrem.stanev,ebrem.klein} 
660\begin{multline}
661\label{eq:ebrem.lpm}
662  \frac{d\sigma}{dk} = \frac{4 \alpha r_e^2}{3k} \biggl[ \xi(s)
663\{ y^2 G(s) + 2 [ 1 + (1-y)^2 ] \phi(s) \} \\
664 \times [ Z^2 (F_{el}  - f ) + Z F_{inel} ] + (1-y) \frac{Z^2 + Z }{3} \biggr]
665\end{multline}
666where LPM suppression functions are defined by \cite{ebrem.migdal}
667\begin{align}
668G(s) &= 24s^2 \biggl( \frac{\pi}{2} -  \int_0^\infty
669e^{-st} \frac{\sin(st)}{\sinh(\frac{t}{2})} dt\biggr)
670\end{align}
671and
672\begin{align}
673\phi(s) &= 12s^2 \Biggl( -\frac{\pi}{2} + \int_0^\infty
674e^{-st} \sin(st) \sinh\Bigl(\frac{t}{2}\Bigr)\, dt\Biggr)
675\end{align}
676They can be piecewise approximated with simple analytic functions, see e.g.\ \cite{ebrem.stanev}.
677The suppression function $\xi(s)$ is recursively defined via
678\begin{align*}
679 s = \sqrt{ \frac{k\,E_{\rm LPM} }{8 E(E-k) \xi(s)} }
680\end{align*}
681but can be well approximated using an algorithm introduced by \cite{ebrem.stanev}.
682%
683The material dependent characteristic energy $E_{\rm LPM}$ is defined
684in Eq.\ (\ref{eq:ebrem.elpm})
685%\begin{align}
686%  E_{\rm LPM} = X_0 \frac{\alpha\,m_e^2}{8\pi\hbar c}
687%\end{align}
688according to \cite{ebrem.anthony}. Note that this definition differs from
689other definition (e.g. \cite{ebrem.klein}) by a factor $\frac{1}{2}$.
690
691An additional multiplicative factor governs the dielectric suppression
692effect (Ter-Mikaelian effect) \cite{ebrem.terMikaelian1}.
693\begin{align*}
694 S(k) = \frac{k^2}{k^2+k_p^2}
695\end{align*}
696 The characteristic photon energy scale $k_p$ is given by the
697plasma frequency of the media, defined as
698\begin{align*}
699 k_p = \hbar \omega_p \frac{E_e}{m_e c^2} =  \frac{\hbar E_e}{m_e
700   c^2}\cdot \sqrt{\frac{n_e e^2}{\epsilon_0 m_e} }
701 \;.
702\end{align*}
703
704%
705%\begin{align*}
706% S_{LPM} = \sqrt{ \frac{k\,E_{LPM} }{E^2 } }
707%\end{align*}
708%
709
710Both suppression effects, dielectric suppresion and LPM effect, reduce
711the effective formation length of the photon, 
712so the suppressions {\em do not simply multiply.} 
713%For the total suppression
714%$S$ the following equation holds (see \cite{ebrem.galitsky})
715
716A consistent treatment of the overlap region, where both suppression
717mechanism, was suggested by \cite{ebrem.terMikaelian2}.
718The algorithm garanties that the LPM suppression is turned off
719as the density effect becomes important. This is achieved by defining
720a modified  suppression variable $\hat{s}$ via
721\begin{align*}
722  \hat{s} &=  s \cdot \biggl( 1 + \frac{k_p^2}{k^2} \biggr)
723\end{align*}
724and using $\hat{s}$ in the LPM suppression functions $G(s)$ and
725$\phi(s)$ instead of $s$ in Eq.\ (\ref{eq:ebrem.lpm}).
726
727%The presented algorithms could be translated into Monte Carlo code,
728%which proved to perform efficiently for moderately high energies (1
729%GeV to 100 TeV).
730%}
731
732\subsection{Status of this document}
73309.10.98 created by L. Urb\'an. \\
73421.03.02 modif in angular distribution (M.Maire) \\
73527.05.02 re-written by D.H. Wright \\
73601.12.03 minor update by V. Ivanchenko     \\
73720.05.04 updated by L.Urban \\
73809.12.05 minor update by V. Ivanchenko     \\
73915.03.07 modify definition of Elpm (mma)     \\
74012.12.08 update LPM effect and relativistic Model \\
74103.12.09 correct total cross section, formula 3 (mma)
742 
743\begin{latexonly}
744
745\begin{thebibliography}{99}
746\bibitem{eedl}
747  S.T.Perkins, D.E.Cullen, S.M.Seltzer, UCRL-50400 Vol.31
748\bibitem{ebrem.geant3}
749  GEANT3 manual ,CERN Program Library Long Writeup W5013 (October 1994).
750\bibitem{ebrem.galitsky}
751  V.M.~Galitsky and I.I.~Gurevich, Nuovo Cimento 32 (1964) 1820.
752\bibitem{ebrem.anthony}
753  P.L. Anthony et al.,
754  Phys.\ Rev.\ D {\bf 56} (1997) 1373,
755  SLAC-PUB-7413/LBNL-40054 (February 1997).
756\bibitem{ebrem.seltzer}
757  S.M.Seltzer and M.J.Berger, % Nucl.Inst.Meth. 80 (1985) 12.
758   Nucl.\ Inst.\ Meth.\ {\bf B12} (1985) 95.
759\bibitem{ebrem.egs4} W.R. Nelson et al.:The EGS4 Code System.
760   {\em SLAC-Report-265 , December 1985 }
761\bibitem{ebrem.messel}
762  H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.
763\bibitem{ebrem.migdal}
764   A.B. Migdal, Phys.\ Rev.\ 103 (1956) 1811.
765\bibitem{ebrem.kim} 
766   L.~Kim et al., Phys.\ Rev.\ A33 (1986) 3002.
767\bibitem{ebrem.williams}
768   R.W.~Williams, Fundamental Formulas of Physics, vol.2., Dover Pubs. (1960).
769\bibitem{ebrem.butcher}
770   J.C.~Butcher and H. Messel., Nucl.\ Phys.\ 20 (1960) 15.
771\bibitem{ebrem.tsai1}
772   Y-S.~Tsai, Rev.\ Mod.\ Phys 46 (1974) 815.
773\bibitem{ebrem.tsai2}
774   Y-S.~Tsai, Rev.\ Mod.\ Phys 49 (1977) 421.
775\bibitem{ebrem.PDGreview}
776C. Amsler et al.,
777%{\em 2008 Review of Particle Physics},
778 Physics Letters B667, 1 (2008).
779\bibitem{ebrem.perl}
780  M.L.~Perl,
781%  {\em Notes on the Landau Pomeranchuk Migdal effect: experiment and
782%  theory},
783  in Procede Les Rencontres de physique de la Valle D'Aoste,
784  SLAC-PUB-6514.
785\bibitem{ebrem.klein} 
786  S.~Klein,
787%  {\em Suppression of bremsstrahlung and pair production due to
788%    environmental factors},
789  Rev.\ Mod.\ Phys.\ {\bf 71} (1999) 1501-1538.
790\bibitem{ebrem.stanev}
791  T.~Stanev et.al.,
792%  {\em Development of ultrahigh-energy electromagnetic cascades in
793%    water and lead including the Landau-Pomeranchuk-Migdal effect}
794  Phys. Rev. D25 (1982) 1291.
795\bibitem{ebrem.hansen}
796  H.D.~Hansen et al.,
797%  {\em Landau-Pomeranchuk-Migdal effect for multihundred GeV electrons},
798  Phys.\ Rev.\ D {\bf 69} (2004) 032001.
799\bibitem{ebrem.terMikaelian1}
800  M.L.~Ter-Mikaelian, Dokl.\ Akad. Nauk SSSR 94 (1954) 1033.
801\bibitem{ebrem.terMikaelian2}
802  M.L.~Ter-Mikaelian,
803  {\em High-energy Electromagnetic Processes in Condensed Media},
804  Wiley, (1972).
805
806\end{thebibliography}
807
808\end{latexonly}
809
810\begin{htmlonly}
811
812\subsection{Bibliography}
813
814\begin{enumerate}
815\item S.T.Perkins, D.E.Cullen, S.M.Seltzer, UCRL-50400 Vol.31
816\item GEANT3 manual ,CERN Program Library Long Writeup W5013 (October 1994).
817\item V.M.Galitsky and I.I.Gurevich. Nuovo Cimento 32 (1964) 1820.
818\item P.L. Anthony et al., Phys. Rev. D56 (1997) 1373, SLAC-PUB-7413/LBNL-40054 (February 1997)
819\item S.M.Seltzer and M.J.Berger. Nucl.Inst.Meth. 12 (1985) 95.
820\item W.R. Nelson et al.:The EGS4 Code System.
821   {\em SLAC-Report-265 , December 1985 }
822\item H.Messel and D.F.Crawford. Pergamon Press,Oxford,1970.
823\item A.B. Migdal. Phys.Rev. 103. (1956) 1811.
824\item L. Kim et al. Phys. Rev. A33 (1986) 3002.
825\item R.W. Williams, Fundamental Formulas of Physics, vol.2., Dover Pubs. (1960).
826\item J. C. Butcher and H. Messel. Nucl.Phys. 20. (1960) 15.
827\item Y-S. Tsai, Rev. Mod. Phys. 46. (1974) 815.
828\item Y-S. Tsai, Rev. Mod. Phys. 49. (1977) 421.
829\item
830C. Amsler et al.,
831%{\em 2008 Review of Particle Physics},
832 Physics Letters B667, 1 (2008).
833\item
834  M.L.~Perl,
835  in Procede Les Rencontres de physique de la Valle D'Aoste,
836  SLAC-PUB-6514.
837\item
838  S.~Klein,
839  Rev.\ Mod.\ Phys.\ {\bf 71} (1999) 1501-1538.
840\item
841  T.~Stanev et.al.,
842  Phys. Rev. D25 (1982) 1291.
843\item
844  H.D.~Hansen et al.,
845  Phys.\ Rev.\ D {\bf 69} (2004) 032001.
846\item
847  M.L.~Ter-Mikaelian, Dokl.\ Akad. Nauk SSSR 94 (1954) 1033.
848\item
849  M.L.~Ter-Mikaelian,
850  {\em High-energy Electromagnetic Processes in Condensed Media},
851  Wiley, (1972).
852
853\end{enumerate}
854
855\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.